
Notes on Counting with Finite Machines

Dmitry Chistikov

Max Planck Institute for Software Systems (MPI-SWS)
Kaiserslautern and Saarbrücken, Germany
dch@mpi-sws.org

Abstract
We determine the descriptional complexity (smallest number of states, up to constant factors) of
recognizing languages {1n} and {1tn : t = 0, 1, 2, . . .} with state-based finite machines of various
kinds. This task is understood as counting to n and modulo n, respectively, and was previously
studied for classes of finite-state automata by Kupferman, Ta-Shma, and Vardi (2001). We
show that for Turing machines it requires logn/ log logn states in the worst case, and individual
values are related to Kolmogorov complexity of the binary encoding of n. For deterministic
pushdown and counter automata, the complexity is logn and

√
n, respectively; for alternating

counter automata, we show an upper bound of logn. For visibly pushdown automata, i. e.,
if the stack movements are determined by input symbols, we consider languages {anbn} and
{atnbtn : t = 0, 1, 2, . . .} and determine their complexity, of

√
n and min(n1 + n2), respectively,

with minimum over all factorizations n = n1n2.

1998 ACM Subject Classification F1.1 Models of Computation, F4.3 Formal Languages

Keywords and phrases State complexity, Unary languages, Counting

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.339

1 Introduction

The task of counting is one of the most basic tasks that can be entrusted to computing
devices. In the framework of formal language theory, it is natural to associate counting with
finite machines that recognize singleton languages {1n}, where n = 0, 1, 2, . . . Since even
most primitive devices, namely finite automata, are expressive enough to perform this task,
questions from the realm of descriptional complexity arise.

A standard problem setting here can be traced back to a classic 1971 paper by Meyer and
Fischer [16] and can be stated as follows: given a specific class C of computational machines
(such as nondeterministic finite automata), estimate the function f(n), whose value on an
arbitrary non-negative integer n is defined as the smallest descriptional complexity of a
machine from this class that recognizes the language {1n}. One then says that machines
from C count to n with complexity f(n). All classes are usually expressive enough to contain
at least one appropriate machine for each n, and so it is always the case that f(n) <∞.

To the best of our knowledge, the most thorough account of the problems of counting
with finite machines can be found in a technical report from 2001 by Kupferman, Ta-Shma,
and Vardi [12], which coins the term counting to n to refer to the problem of recognizing the
language {1n}. Kupferman et al. study this problem for standard classes of finite machines:
deterministic, nondeterministic, universal, and alternating automata, and characterize the
smallest number of states sufficient to count to n within each of these classes. Disregarding
constant factors, this number is n for deterministic and nondeterministic automata,

√
n for

universal and logn for alternating automata.
© Dmitry Chistikov;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 339–350

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62919425?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.339
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

340 Notes on Counting with Finite Machines

Our contribution

Our primary focus is on the problems of counting with more powerful devices, capable of
recognizing non-regular languages. As far as we know, these problems have never been
addressed systematically. Observe that although one of the goals of the study of descriptional
complexity is to compare the expressive power of machines from different classes, the notion of
complexity in the definition above is tied to a specific class of machines. As a consequence, for
different classes one has to use “matching” complexity measures. For all classes of machines
considered in this paper, we use measures that generalize state complexity of finite automata.

Our results are as follows. First, for Turing machines with tape alphabet {0, 1}, we show
in Section 3 that the complexity of counting is at most logn/ log logn. As a corollary, for
an arbitrary string s (not necessarily over the one-letter alphabet), the state complexity of
generating it with a Turing machine is asymptotically equal to K(s)/(|∆|−1) logK(s), where
K(·) denotes the standard Kolmogorov complexity and ∆ is the tape alphabet. (For |∆| ≥ 3,
this follows from a construction by Chaitin [4, sections 1.5–1.6], and we fill in the gap for
|∆| = 2.) In other words, whenever there exists a Turing machine that produces s when
run on empty tape and has binary encoding of length k, there always exists another Turing
machine with the same properties that has at most k/(|∆| − 1) log k states, and the latter
bound is asymptotically tight.

Second, we study the problems of counting for classes of pushdown automata (PDA). For
deterministic PDA, we show in Section 4 that matching upper and lower bounds of O(logn)
and Ω(logn) for all n follow from earlier results due to Pighizzini [19] and Chistikov and
Majumdar [7]. Subclasses of PDA, however, require separate consideration. For deterministic
counter automata, i. e., when the stack alphabet contains only one symbol apart from the
bottom-of-stack, we obtain an upper bound of O(

√
n) and show a matching lower bound

Ω(
√
n) by reducing to counting with deterministic finite automata (DFA). For alternating

counter automata, we prove an upper bound of O(logn) (here we use a complexity measure
that is more refined than just the number of states, so this result is not subsumed by the fact,
due to Kupferman et al., that alternating finite automata count to n with dlogne states).

Third, we consider another well-known subclass of PDA called visibly pushdown automata
(VPA, also known as nested word automata and input-driven PDA) in Section 5. While
counting (and, indeed, recognizing any unary language) for VPA is easily shown to be as hard
as for finite automata, we prove that deterministic VPA recognize languages {anbn}—another
problem interpreted as counting—with complexity Θ(

√
n). We also show that the complexity

of recognizing languages {atnbtn : t = 0, 1, 2, . . .} is Θ(min(n1 + n2)), where the minimum is
taken over all factorizations n = n1n2; this function ranges, for different values of n, between
Θ(
√
n) and Θ(n). By showing sequences for which its value is o(n), we refute a conjecture of

Salomaa [22] on the state complexity, with respect to VPA, of a related language.

Acknowledgements. This paper would be very different without many people’s help. I
would like to thank Rupak Majumdar for support and for sharing a reference to an earlier
version, from 1999, of the technical report by Kupferman, Ta-Shma, and Vardi [12]. I am
grateful to Alexander Shen, who pointed me to Chaitin’s work [4] upon hearing the result of
Corollary 2. Abuzer Yakaryılmaz asked a question on StackExchange that let me come up
with a construction of an alternating counter automaton recognizing a non-regular language
{1n : n = 2k, k = 0, 1, 2, . . .} [3] and lead to Theorem 5. I would also like to thank Rose
Hoberman for useful discussions.

D. Chistikov 341

2 Related work

As explained above, the starting point for our work is the technical report of Kupferman,
Ta-Shma, and Vardi [12], who build upon the results of Leiss [13], Birget [2], and Chrobak [8].
From the general language-theoretic perspective, the problems of counting are closely tied
to numerous phenomena of unary languages, that is, languages over a one-letter alphabet
(also known as tally languages). Classes of unary languages possess many properties that
cannot be observed in classes of languages over larger alphabets. Perhaps the most widely
known is the theorem saying that every unary context-free language is regular, first proved
by Ginsburg and Rice in 1962 [11].

Although the languages {1n} studied in the present paper are finite and therefore regular,
we are interested in their descriptional complexity with respect to classes of machines that
recognize, in general, non-regular languages. Hence, related are not only descriptional
complexity questions for machines specifying non-regular sets, but also questions of so-called
succinctness of representations, or economy of description. This term is associated with
the following question, first asked by Meyer and Fischer in 1971 [16]: suppose that some
language L belongs to a certain class C; how short a description can this language L have
with respect to C, compared to the shortest description within some specific subclass C′ C
such that L ∈ C′? Or, in other words, what is the largest blowup that can be observed when
translating a description from the class C into the “terms” of C′?

For general context-free and regular languages (with sizes of context-free grammars—
CFG—and deterministic finite automata—DFA—as complexity measures), the answer to
this question is given by Meyer and Fischer: the description of a DFA cannot be bounded by
any recursive function in the size of a CFG. For unary languages, translations from CFG (in
Chomsky normal form) into NFA and DFA are shown to be at most exponential [20].

One can easily see that using PDA instead of CFG also leaves the translation exponential.
Tight bounds on the size of the blowup in the case of unary nondeterministic PDA are
also given in [20], and the unary deterministic case is studied in [19]. A general connection
between unary deterministic PDA and grammar compression of binary words is established
in [7]. In the present paper, we use these results to obtain bounds on the size of PDA.

In general, descriptional complexity problems for general context-free languages per se
have so far been mostly associated with grammars and not with automata. As pointed out
above, however, PDA have been intensively studied in connection with questions of economy
of description. In this area, we wish to highlight the paper [10], which not only continues the
line of research started by Meyer and Fischer, but also proves exponential lower bounds for
descriptional complexity of PDA recognizing several natural finite languages.

For context-free grammars, we refer the reader to a recent paper [9], which obtains
strong lower bounds on the size of CFG for several specific finite languages. Counting
problems for context-free grammars are tightly related to the well-studied concept of an
addition chain (see, e. g., [6, Section V-B]), which is a restriction, to the unary alphabet, of
a context-free grammar that generates a single word. (A more general topic is, of course,
grammar compression of non-unary words, see also [21, 6, 15].) As an illustrative example,
one can easily show that the language {1n} can be generated by a context-free grammar
with at most O(logn) symbols in right-hand sides of productions, and prove that this bound
is tight.

For the subclass of context-free languages recognized by visibly pushdown automata,
descriptional complexity questions have been studied somewhat more extensively; see, e. g., [17,
18], where these machines are called “input-driven pushdown automata”.

FSTTCS 2014

342 Notes on Counting with Finite Machines

As for descriptional complexity for Turing machines, the number of states as a complexity
measure was studied by Chaitin [4]; his paper initiated the study of what is now known
as Kolmogorov complexity [14], but then the focus very quickly shifted towards a different
measure, the length of a binary string that encodes the description of a machine. In our
work, we fill in the remaining gap for the original measure, i. e., for the number of states.

3 Turing machines

A Turing machine (TM) with input alphabet Σ and tape alphabet ∆ ⊇ Σ is a tuple
M = (Σ,∆,�, Q, q0, H, δ), where � ∈ ∆ \Σ is the blank symbol, Q the set of states, q0 ∈ Q
the initial state, H the set of halting states, and δ ⊆ (Q×∆)× (Q×∆× {−1, 0,+1}) the
transition relation.

Configurations of M have the form (q, µ, n), where q ∈ Q, µ : Z → ∆, and n ∈ Z; the
interpretation is that cells of the infinite tape, indexed by Z, contain symbols from ∆ specified
by µ, with |µ−1(∆ \ {�})| < ∞, the control state of the machine is q, and the head of
the machine is at the nth cell of the tape. If M is run on input w ∈ Σ∗, then the initial
configuration is (q0, µw, 0) where µw(i) is w[i] for 0 ≤ i < |w| and � otherwise; halting
configurations are those with q ∈ H. The transition relation imparts a step-reachability on
configurations: if (q, σ, q′, τ, d) ∈ δ and q 6∈ H, then at a configuration (q, µ, n), if µ(n) = σ,
the machine can overwrite this σ with τ , change its control state to q′, and change the head’s
position by d. A machine is deterministic if from each configuration at most one configuration
is reachable in one step (i. e., δ defines a mapping from Q×∆ to Q×∆× {−1, 0,+1}).

Instead of the problem of recognizing the language {1n} with a Turing machine, we
consider the problem of generating this language; our results can be easily extended to
language recognition as well. A machine M outputs a word u ∈ (∆ \ {�})∗ when run
on w ∈ Σ∗ if from (q0, µw, 0) it reaches some configuration (q, µ, n) with q ∈ H such that
µ−1(∆ \ {�}) = [a, a+ |u| − 1] for some a ∈ Z and µ(a+ i) = u[i] for 0 ≤ i < |u|.

Let Q∆(s), s ∈ Σ∗ ∆∗, be the smallest number m such that there exists a deterministic
TM with m states and tape alphabet ∆ that outputs s when run on empty tape. The
interpretation is that TMs with tape alphabet ∆ count to n with complexity Q∆(1n).

I Theorem 1. Fix Σ = {1}, ∆ = {0, 1}, and � = 0. Then Q∆(1n) . logn/ log logn.1

Proof. We construct, for each n, a Turing machine Mn with tape alphabet {0, 1} that
has logn/ log logn (1 − o(1)) states and outputs 1n when run on empty tape. Let us
show the workings of Mn. Let n =

∑l−1
i=0 bik

l−1−i be the k-ary representation of n, with
bi ∈ {0, 1, . . . , k − 1}. The value of k will be fixed later. The TM will keep two counters
on the tape, denoted i and v, and written out in unary, as 1i and 1v respectively. Initially
v = 0 and i = 0. Next, the machine will get into the main loop and do the following, as long
as i < l: multiply v by k, add bi to v, and increment i. For multiplication, two auxiliary
counters u and j are needed: at first j = k and u = 0, then the machine will add v to u and
decrement j as long as j > 0; when j becomes 0, the value of u takes the place of v. In the
main loop, when i becomes l, the TM will terminate with output v.

It is easy to see that this procedure is correct: v = n at the end of the computation. Let
us count the number of states needed to implement it. For initial setup, O(1) states suffice.
In the main loop, all operations are fixed and take up O(1) states, with two exceptions: one
of setting j to k, and another of choosing (and generating) bi according to i (we also include

1 We write f(n) . g(n) iff f(n) ≤ g(n) · (1 + o(1)).

D. Chistikov 343

termination on i = l into this exception). For the former, k+O(1) states suffice; we focus on
the latter next. (We omit the description of how to keep all counters on the tape, because
this can be done with standard techniques.)

The choice of bi is implemented as follows: suppose on the tape there are only blanks
(i. e., 0s) to the right of the counter i. This counter is kept as 1i. Create a set of l + k states
ofMn, denoted q0, q1, . . . , ql−1 and p0, . . . , pk−1 (here q0 is not the initial state ofMn). Let
the machine transition to q0 and step on the leftmost 1 in 1i. At each of the states qj ,
j < l − 1, if the observed cell tape contains a 1, the machine moves its head one cell to the
right and goes to qj+1. If the observed cell is 0, then the value of the counter is j. In this
case,Mn also moves its head one cell to the right and goes to ps for s = bj ∈ {0, 1, . . . , k−1}.
At ql−1, if the machine observes 1, it invokes the termination procedure as i = l; otherwise,
it moves its head one cell to the right and goes to ps for s = bl−1. All these transitions are
hardwired inMn and encode, when taken together, the number n. At each of the states ps,
0 < s ≤ k − 1, the machine writes a 1, moves its head one cell to the right, and goes to ps−1;
there is no need to write anything at the state p0. As a result, if put in q0, the machine will
arrive at the state p0 with the unchanged counter i and with 1bi written to the right of 1i

and separated from it by a 0. This is indeed the desired result; the number of states used in
this gadget is l + k +O(1).

In total,Mn has |Q| ≤ l+ 2k+O(1) states. Notice that l = dlogk(n+ 1)e = logn/ log k+
O(1) and take k = logn/(log logn)2, then 2k = o(logn/ log logn) as n → ∞, and so
|Q| ≤ logn/ log logn (1− o(1)), which completes the proof. J

Corollary 2 below shows that the upper bound given by Theorem 1 is tight, i. e., that
lim supQ{0,1}(n)/(logn/ log logn) = 1. However, the lower bound of lognk/ log lognk (1 +
o(1)) only holds for certain sequences of naturals, and not for all n ≥ 0.

For individual values of n, we relate the complexity of counting to Kolmogorov complexity;
the following definitions are standard [14]. If some Turing machineM, when given input y,
halts and outputs x, then the string y is called a description of x with respect toM. Let us
also fix some universal Turing machine U ; given input (z, y), the TM U runs the machine
described by z on input y. Here we fix, in advance, some descriptional system for Turing
machines in which strings z ∈ {0, 1}∗ encode machines. Define the Kolmogorov complexity
of a string x ∈ {0, 1}∗ as the smallest number k such that x has some description of size k,
y ∈ {0, 1}k, with respect to U .

It follows from results of Chaitin [4, sections 1.5–1.6] that for any alphabets Σ ∆,
|∆| ≥ 3, and all strings s ∈ Σ∗ it holds that Q∆(s) ∼ K(s)/(|∆| − 1) logK(s) as K(s)→∞;
Theorem 1 allows us to extend this result to a quite different case |∆| = 2 (where, unlike
Chaitin, we have to use unary-encoded numbers). By bin(n) we denote the binary encoding
of a non-negative integer n; that is, a word over the alphabet {0, 1}.

I Corollary 2. Under conditions of Theorem 1, for all n ≥ 0 it holds that Q{0,1}(1n) ∼
K(1n)/ logK(1n) ∼ K(bin(n))/ logK(bin(n)) as K(bin(n))→∞.

Another way of stating the last result is as follows: whenever there exists a Turing
machine, with tape alphabet ∆, |∆| ≥ 2, that produces a string s when run on empty tape
and has an encoding of length k, there always exists another Turing machine with the same
properties that has at most k/(|∆| − 1) log k · (1 + o(1)) states; in other words, encodings of
Turing machines can always be fit into the smallest possible number of states.
I Remark. The lower bound of K(bin(n))/ logK(bin(n)) holds for all classes of machines
considered in this paper (including nondeterministic and alternating ones), provided that
the number of transitions leaving each control state is bounded by a constant.

FSTTCS 2014

344 Notes on Counting with Finite Machines

4 Pushdown and counter automata

A pushdown automaton (PDA) over an input alphabet Σ is a tuple A = (Σ, Q, q0, P,⊥, F, δ),
where Q is the set of (control) states, q0 ∈ Q the initial state, P the set of stack symbols,
⊥ ∈ P the bottom-of-the-stack symbol, F ⊆ Q the set of accepting states, and δ ⊆
(Q× P × (Σ ∪ {ε}))× (Q× P≤2) the transition relation.

Configurations of a PDA A are tuples of the form (q, s, u), where q ∈ Q is the current
state, s ∈ (P \ {⊥})∗⊥ the contents of the stack, and u ∈ Σ∗ the remaining input tape.
For an input word w ∈ Σ∗, the initial configuration is (q0,⊥, w). For every transition
(q, p, σ, q′, t) ∈ δ, the PDA can, consuming σ from the input, move from a configuration
(q, s, u) to a configuration (q′, s′, u′) such that u = σu′, s = pv and s′ = tv for some v ∈ P ∗.
If p = ⊥, then t ∈ (P \ {⊥})≤1⊥, otherwise t ∈ (P \ {⊥})≤2.

The PDA accepts a word w ∈ Σ∗ if from (q0,⊥, w) it can reach a configuration (q, s, ε)
with q ∈ F . The PDA is deterministic (DPDA) if from each configuration at most one
configuration is reachable in one step; it suffices that, first, for each q ∈ Q transitions
(q, p, σ, q′, t) ∈ δ either all have σ = ε or σ 6= ε, and, second, that δ defines a partial mapping
from Q× P × (Σ ∪ {ε}) to Q× P≤2.

The product |Q| · |P | shall be called the complexity of a deterministic PDA. We recall
that machines from a certain class are said to count to n with complexity f(n) if f(n) is the
smallest size of a machine from the class that recognizes the language {1n}; for a related
language {1tn : t = 0, 1, 2, . . .}, we use the term counting modulo n.

I Theorem 3. Deterministic pushdown automata count to n and modulo n with complexity
Θ(logn).

This result can be obtained as an application of Theorem 1 in Chistikov and Majumdar [7].
The theorem states that the size of the smallest DPDA recognizing a language R ⊆ {1}∗ is
within a constant factor of the smallest size of a pair of context-free grammars P , L generating
single words eval(P), eval(L) such that the ith element of the sequence c = eval(P)·(eval(L))ω

is 1 if 1i ∈ R and 0 if 1i 6∈ R. In our case c = 0n · 1 · 0ω for R = {1n} and c = (10n−1)ω for
R = {1tn : t = 0, 1, 2, . . .}; in both cases, logarithmic upper and lower bounds on the size of
(P,L) follow, because Θ(logn) constant-size productions are necessary and sufficient for a
CFG to generate a word of length n. The lower bound can also be deduced, under minor
structural assumptions about DPDA, from an earlier result of Pighizzini [19, Theorem 12].

A counter automaton (CA) is a pushdown automaton with |P | = 2, that is, with just one
stack symbol apart from ⊥. It is convenient to think of a CA as of a finite automaton with a
non-negative integer counter. Available operations on the counter are increment, decrement,
and zero test; the CA cannot directly distinguish between different non-zero counter values.

I Theorem 4. Deterministic counter automata count to n and modulo n with complexity
Θ(
√
n).

Proof. We first prove the upper bound. Denote r = b
√
nc. Let a deterministic counter

automaton An first consume n− r2 ≤ 2r letters from the input and then increase the counter
value to r; these operations require at most 3r + 1 states, the last of which we denote by q.
At this state q, the automaton An performs a zero test on the counter: if its value is zero,
An accepts and terminates; otherwise it decrements the counter, consumes r letters from the
input, and returns to q. It is easy to see that An has 4r +O(1) states and recognizes {1n};
if instead of termination it goes to the initial state, it will recognize {1tn : t = 0, 1, 2, . . .}.

To prove the lower bound, consider any deterministic counter automaton A. Suppose
its set of states is Q, with |Q| = m. Construct an auxiliary device: a deterministic finite

D. Chistikov 345

automaton D with states of the form (q, k), for q ∈ Q and 0 ≤ k ≤ m + 1. Direct the
transitions of D in such a way that D simulates A, keeping the value of the counter in the
component of the control state denoted k; do not add transitions from states (q,m+ 1) that
need to increase the counter.

If D recognizes the same language as A, then the desired bound holds, because DFA—even
with ε-transitions—need n states to count both to and modulo n. Now consider the only
alternative: suppose that a computation of the CA A on some input word 1s gets to a state q
with counter value m+ 1 and then increases the counter. For each i = 1, . . . ,m+ 1 consider,
in this computation, the last configuration before this point when the counter value is i.
Denote these configurations by (qi, i); they occur in the computation in the order with i = 1
first and i = m+ 1 last. Note that between (q1, 1) and (qm+1,m+ 1) the counter value is
always positive, and recall that the automaton cannot distinguish between different positive
values. By pigeonhole principle, there exist indices j < k such that qj = qk, so A essentially
gets into a loop: if the input tape provides it with infinitely many 1s, then it will be following
the transitions of this loop forever. In D, rerouting to (qk, j) = (qj , j) the transitions with
destination (qk, k) will make it simulate A faithfully, i. e., recognize the same language.

Let us now consider each counting task separately. First suppose that A recognizes the
language {1n}, then either the loop we have found does not contain any accepting state, or
it contains an accepting state but does not consume any letters from the input. (Indeed, if
neither of these two conditions held, then A would accept infinitely many words.) In both
cases it is possible to replace this loop with at most one state in the DFA. But then the
obtained DFA, possibly with ε-transitions, will accept {1n}, so it should contain at least
n+ 1 states. As a result, m(m+ 2) ≥ n+ 1, and the desired bound follows.

Now suppose that A recognizes {1tn : t = 0, 1, 2, . . .}. Since the constructed DFA, like A,
is trapped forever in the loop, the states in the loop should enable it to accept input words 1tn

and reject all other input words. This means that the loop should consume at least n letters
from the input; since it contains at most m2 + 1 transitions, we conclude that n ≤ m2 + 1.
This completes the proof. J

We next consider the alternating version of counter automata; we use the standard
definition of alternation, which is a little different from the one that appeared originally in
Chandra, Kozen, and Stockmeyer [5]. Informally, the machine is extended with the ability to
make guesses and, dually, assertions during the computation.

More formally, suppose each state q ∈ Q is labeled with either ∃ or ∀; consider the
computational tree imparted on configurations by step-reachability. A node in this tree is
accepting if, first, its state q belongs to F , or, second, its state is labeled by ∃ and has an
accepting successor, or, third, its state is labeled by ∀ and all its successors are accepting
(we use the least fixpoint here; i. e., only finite branches can count towards acceptance). An
input word is accepted if the root in the computational tree is accepting.

Note that whenever the syntax of a state-based machine allows an unbounded number
of transitions from a particular state (as sometimes needed by, e. g., nondeterministic and
alternating machines), the number of control states is no longer a good complexity measure.
For instance, alternating finite-state automata counting to n described by Kupferman
et al. [12] have O(logn) states but Ω(log2 n) transitions. To avoid this issue, we use the
number of transitions in δ as the complexity measure for alternating counter automata.

I Theorem 5. Alternating counter automata count to n with complexity O(logn).

Proof. Suppose n =
∑l−1

i=0 bi2i, with l = dlog2(n+ 1)e and all bi ∈ {0, 1}, and create control
states q0, q1, . . . , ql. The state q0 will be the initial state of the automaton A. Starting at a

FSTTCS 2014

346 Notes on Counting with Finite Machines

state qi, i < l, with a zero counter value, A will, if bi = 1, consume a letter from the input
tape, and then, regardless of the value of bi, get into a loop where it simultaneously reads
from the input and increases the value of the counter. It can nondeterministically choose
to exit the loop; the interpretation is that it guesses some value m and, with m iterations,
reads 1m from the input and increases the value of the counter to m. Upon exiting the
loop, A branches universally: the first branch verifies that the value of the counter is equal
to the number of remaining letters on the input tape, and the second branch goes to qi+1.
At the state ql, A accepts. It is easy to see that A indeed recognizes the language {1n};
O(1)-bounded branching ensures that A has O(logn) transitions. J

5 Visibly pushdown automata

A visibly pushdown automaton [1], or a VPA, A is a pushdown automaton that has the
following property: there exists a partition of the input alphabet Σ into three parts, Σ =
Σcall ∪ Σret ∪ Σint, such that A always pushes a symbol upon reading a letter from Σcall, pops
a symbol upon reading a letter from Σret, and does not use the stack on letters from Σint.
It is implied that, in a VPA, destinations of transitions driven by letters from Σcall ∪ Σint
cannot depend on the top symbol of the stack. Furthermore, a VPA is not allowed to have
ε-transitions—i. e., all transitions are required to consume at least one letter from the input.

It is easy to see that in the problem of counting, defined as recognizing languages {1n}
and {1tn : t = 0, 1, 2, . . .}, visibly pushdown automata cannot do better than standard finite
automata. So it is natural to consider different, although closely related languages {anbn}
and {atnbtn : t = 0, 1, 2, . . .}, where n = 0, 1, 2, . . . , with the restriction that a ∈ Σcall and
b ∈ Σret. Basically, we convert “linear” input words over Σ into nested words, as in [1],
which enables our automata to use the stack. Note that in the framework of nested words,
our languages {anbn} and {atnbtn : t = 0, 1, 2, . . .} translate to languages over a one-letter
alphabet, that is, to a unary language of nested words.

Salomaa [22] proved that every deterministic visibly pushdown automaton over the
alphabet Σ = Σcall ∪ Σret, with Σcall = {a1, a2} and Σret = {b1, b2}, recognizing a related
language

Ln = {ai1 . . . aik
bik

. . . bi1 : i1, . . . , ik ∈ {1, 2}, k = tn, t = 0, 1, 2, . . .}, (1)

should have at least
√
n states. The proof does not essentially use different kinds of push and

pop symbols, so the lower bound extends to {atnbtn : t = 0, 1, 2, . . .}. Moreover, the crucial
point is just that the word anbn is accepted, and all words ambm, 0 < m < n, rejected; as a
result, the lower bound of

√
n holds for the language {anbn} as well.

Salomaa also constructed a VPA with n + 1 states and 3 stack symbols for Ln, and
conjectured that this VPA is optimal in terms of |Q| + |P |. We refute this conjecture by
constructing a VPA with O(

√
n) states and O(1) stack symbols that recognizes Ln.

I Theorem 6. For every n ≥ 1, there exists a deterministic visibly pushdown automaton A
that recognizes the language {anbn} and satisfies |Q| ≤ O(

√
n) and |P | ≤ O(1). In contrast,

every (possibly nondeterministic) visibly pushdown automaton that recognizes this language
satisfies the inequality |Q| ≥

√
n.

I Theorem 7. If n = n1n2 ≥ 1, then there exists a deterministic visibly pushdown automaton
A that recognizes the language {atnbtn : t = 0, 1, 2, . . .} and satisfies |Q| ≤ O(n1 + n2) and
|P | ≤ O(1). In contrast, every deterministic visibly pushdown automaton that recognizes
this language satisfies the inequality |Q| ≥ Ω(min(n1 + n2)), where the minimum is over all
factorizations n = n1n2 with natural n1, n2 ≥ 1.

D. Chistikov 347

Theorem 7 shows that the smallest VPA counting modulo n have Θ(f(n)) control states,
with f(n) = min(n1 + n2) over all factorizations n = n1n2; here

√
n ≤ f(n) ≤ n+ 1 for all n,

the left-hand inequality is tight for perfect squares, n = k2, and the right-hand inequality for
prime numbers, n = p.

I Proposition 8. The results of Theorem 7 also hold for the language Ln, as defined
by (1). For n = k2, k = 1, 2, . . . , the automaton witnessing the upper bound satisfies
|Q| + |P | = O(k) = O(

√
n), which disproves the conjecture of Salomaa [22]. For n = p,

p prime, the lower bound shows that the construction of VPA for Ln given in [22] is optimal
up to a constant factor.

The rest of the section is devoted to the proofs of Theorems 6 and 7 and Proposition 8.

5.1 Main ingredients for upper bounds
The high-level idea for proving the upper bounds is simple and common for all three languages:
let the automaton first count blocks of a, each of size n1, and mark their starting positions
by pushing a special symbol on the stack. Then, as the automaton reads bs and pops from
the stack, it counts the number of blocks. Here it can count either to n2 or modulo n2,
and the bound on the total number of states is O(n1 + n2). So we will need an auxiliary
construction, that of a VPA recognizing the language

Lcycles = {asbt+d : n1 | s, n1n2 | t, s ≥ t+ d, 0 ≤ d < n1}. (2)

Let us define such a VPA, denoted V(n1, n2), as follows.
First take n1 control states and connect them in a single cycle such that reading an a

from the input moves the device one step along the cycle. Make one of these states, q1, the
initial state and let the device push 1 when it reads a at q1, and push 0 when it reads a
at any other state of the cycle. Now take new n2 control states and connect them into a
different cycle. The automaton will only use these states when reading bs from the input;
more specifically, demand that popping 0 from the stack not change the control state, and
popping 1 moves the device one state further along the cycle.

Now connect these two disjoint cycles in the following manner. Let the device, upon
reading b and popping 0 at q1, move to some specific state of the second cycle, q2. We shall
call this state q2 the entry point of the second cycle. Make q1 and q2 the only final states,
and turn all missing transitions into some (new) sink state.

I Lemma 9. The VPA V(n1, n2) has n1 + n2 +O(1) control states and 3 stack symbols and
recognizes Lcycles.

5.2 Proof of Theorem 6
As mentioned above, the lower bound is essentially shown in Salomaa [22, Theorem 4.1]; and
it is instructive to see that it holds even for nondeterministic VPA: it suffices to carry out
the reasoning for an accepting branch of the computation. So, in what follows we only need
to focus on the upper bound.

Given n, choose n1 = n2 = b
√
n− 1c and r = n− n2

1 > 0, construct the VPA V(n1, n2)
described above, and modify it in the following way. First, add a new stack symbol 2, make
a simple path of r transitions reading a and pushing 2, and attach it to the VPA so that the
last of these transitions leads to q1, the “entry point” of the first cycle in V(n1, n2). Mark
the source of the attached path, q0, as the initial state of the VPA. Next, consider the second

FSTTCS 2014

348 Notes on Counting with Finite Machines

cycle of the VPA and transform it into a path by changing the destination of the transition
that pops 1 and leads from a state q to q2, the “entry point” of the second cycle. Make this
transition lead from q to a new state q′ instead, and then add to q′ a path of r transitions
that read b from the input and pop 2 from the stack. Make the last state on this path the
only final state. (As previously, all missing transitions are sent to the sink state.) Now
it is easy to see that the obtained VPA accepts exactly the words asbs′ with s = r + kn1,
s′ = n2

1 + r, and s = s′—or, to put it differently, recognizes the language {anbn}. Since it
has n1 + n2 + 2r +O(1) ≤ 4

√
n+O(1) control states and 4 stack symbols, this completes

the proof of Theorem 6.

5.3 Main ingredients for lower bounds
We now turn our attention to the lower bound of Theorem 7, for the language {atnbtn : t =
0, 1, 2, . . .}. Our goal is to show that every deterministic VPA recognizing this language has
at least Ω(min(n1 + n2)) states, where min is taken over all factorizations n = n1n2 with
integers n1, n2 ≥ 1.

The key insight is the decomposition of a VPA for this language into two finite-state
transducers. The first transducer transforms the first part of the input into a sequence of
stack symbols, and the second transducer transforms the reversal of this sequence into a
sequence of accepting and non-accepting states. Periodic behaviour of these transducers
enables us to obtain the desired lower bound.

To use this idea, we need to go through some auxiliary constructions first. Take a
(deterministic) VPA A and denote by Q the set of its control states. First consider the
behaviour of A on words of the form as, s = 0, 1, 2, . . . ,—one can regard them all as prefixes
of the infinite sequence aω. Restricted to these words, the VPA A behaves as a deterministic
letter-to-letter finite-state transducer, with symbols pushed on the stack interpreted as output
letters. Since the input to this push-transducer is a prefix of the infinite sequence aω, it
is easy to see that the sequence of the states A gets into is eventually periodic with some
period k ≤ |Q|, and the word pushed on the stack is of the form uwmw′, where |w| = k and
w = w′w′′ for some w′′. That is, the push-transducer transforms aω into uwω; words u, w,
and w′ are uniquely determined by q, the state in which A arrives upon reading as. Denote
by Q′ the set of states that A visits infinitely often; |Q′| = k.

Now let A stop in some state q ∈ Q′ after an input as. Suppose this state q is fixed. If,
from this point on, the input tape supplies A with symbols b only, then A will operate as
another finite-state transducer, the pop-transducer : the symbols popped from the stack are
interpreted as input letters of the transducer, and the states from Q the device visits are the
output letters. Observe that the input to this transducer is (w̄)mū, for w̄ = (w′)R(w′′)R and
ū = (w′)R

uR, where by vR we denote the reversal of a word v. This input is a prefix of the
infinite periodic sequence αq = (w̄)ω augmented with the finite word ū. Note that the words
w̄ and ū are uniquely determined by q.

I Lemma 10. For each q ∈ Q′, the pop-transducer transforms the sequence αq into an
eventually periodic sequence with a period rq such that rq | tqk for some tq ≤ |Q|.

I Lemma 11. For each i, 0 ≤ i < k, the behaviour of A on words asbs with s mod k = i is
eventually periodic with period rq for some fixed q ∈ Q′: more precisely, for each i, 0 ≤ i < k,
there exists some q ∈ Q′ and an integer s(i) such that the VPA A either accepts or rejects
both words as1bs1 and as2bs2 , provided that s1, s2 ≥ s(i), the period rq divides |s1 − s2|, and
k divides |s1 − s2|.

D. Chistikov 349

I Lemma 12. If A recognizes {atnbtn : t = 0, 1, 2, . . .}, then n | g1g2 for some integers
g1, g2 ≤ |Q|.

As the proof shows, the conclusion of Lemma 12 holds for any VPA A that recognizes a
language L with L ∩ {asbs : s ≥ s0} = {atnbtn : t = t0, t0 + 1, . . .} for some fixed s0, t0 ∈ N.

5.4 Proofs of Theorem 7 and Proposition 8
Proof of Theorem 7. The lower bound can be obtained as a corollary of Lemma 12, by the
following argument. Since n|g1g2, there exists some f such that nf = g1g2. Therefore, we can
assume that n = n1n2 for some n1, n2 with n1 |g1 and n2 |g2. Furthermore, as g1, g2 ≤ |Q|, it
also holds that n1, n2 ≤ |Q|, that is, |Q| ≥ max{n1, n2}. But max{n1, n2} ≥ (n1 + n2)/2, so
it follows that |Q| ≥ (n1+n2)/2, and so |Q| ≥ min(n′1+n′2)/2, with min over all factorizations
n = n′1n

′
2. This concludes the proof of the lower bound.

As mentioned above, we use the same idea as in Theorem 6 to prove the upper bound.
Given a factorization n = n1n2, we show how to construct a VPA that accepts this language
and satisfies the stated bounds. First note that {atnbtn : t = 0, 1, 2, . . .} = Lbalanced ∩ Lcycles,
where Lbalanced = {asbs : s ≥ 0} and Lcycles is given by the definition in (2) on p. 347. It is
straightforward to construct a VPA for Lbalanced with 5 control states and 2 stack symbols,
and a VPA for the intersection of languages is easily obtained by taking the products of
control states and stack alphabets. Therefore, it suffices to show that Lcycles can be recognized
with a VPA with |Q| = n1 + n2 + O(1) and |P | ≤ 3, but we already know how to do this
with Lemma 9. This completes the proof of Theorem 7. J

Proof of Proposition 8. The lower bound holds, because the intersection Ln ∩ {a1, b1}∗
is essentially {atnbtn : t = 0, 1, 2, . . .}, just with a1, b1 in place of a, b. As a result, the
smallest VPA recognizing Ln can be at most a constant factor smaller than the smallest VPA
recognizing {atnbtn : t = 0, 1, 2, . . .}. As for the upper bound, it suffices to replace, in the VPA
V(n1, n2) for Lcycles, transitions reading a and b with pairs of transitions reading ai and bj , and
replace the VPA for Lbalanced with a VPA for {ai1 . . . aik

bik
. . . bi1 : i1, . . . , ik ∈ {1, 2}}. J

6 Open questions

Unanswered questions of a related nature abound. Probably the most natural is the following
one: for which classes of machines are other modes of operation (nondeterministic, universal,
and alternating ones) of help for the task of recognizing the language {1n} ? Kupferman
et al. [12] provide a comprehensive answer for the classes of finite-state machines. For other
classes, a short list of some specific problems follows:

1. Does nondeterminism or alternation make it possible for pushdown automata to count
to n with o(logn) states for all n? The arguments that lead to the lower bound of
Ω(logn) in Theorem 3 only work for deterministic PDA and seem tricky or impossible
to generalize. For other modes of operation, the only known lower bound is at most
logn/ log logn (1+o(1)), given by the Kolmogorov argument of Corollary 2 and Remark 3.

2. Can nondeterministic or universal counter automata count to n with o(
√
n) states? As

seen from the upper bound of Theorem 5, counter automata with unbounded alternation
can, but is it achievable with bounded alternation depth?

3. What is the state complexity of recognizing the language {atnbtn : t = 0, 1, 2, . . .} with
nondeterministic visibly pushdown automata?

Needless to say, many other related problem settings exist.

FSTTCS 2014

350 Notes on Counting with Finite Machines

References
1 Rajeev Alur and P. Madhusudan. Adding nesting structure to words. J. ACM, 56(3):16:1–

43, 2009. Revised version available at http://robotics.upenn.edu/~alur/Jacm09.pdf.
2 Jean-Camille Birget. Two-way automata and length-preserving homomorphisms. Mathem-

atical Systems Theory, 29(3):191–226, 1996.
3 Can one-way alternating automata with one-counter recognize some unary non-regular

languages? http://cstheory.stackexchange.com/q/19046/13649, 2013–2014.
4 Gregory J. Chaitin. On the length of programs for computing finite binary sequences.

J. ACM, 13(4):547–569, 1966.
5 Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. J. ACM,

28(1):114–133, 1981.
6 Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit Sahai,

and abhi shelat. The smallest grammar problem. IEEE Transactions on Information
Theory, 51(7):2554–2576, 2005.

7 Dmitry Chistikov and Rupak Majumdar. Unary pushdown automata and straight-line
programs. In ICALP’14, Part II, volume 8573 of LNCS, pages 146–157, 2014.

8 Marek Chrobak. Finite automata and unary languages. Theor. Comput. Sci., 47(3):149–
158, 1986.

9 Yuval Filmus. Lower bounds for context-free grammars. Inf. Process. Lett., 111(18):895–
898, 2011.

10 Matthew M. Geller, Harry B. Hunt III, Thomas G. Szymanski, and Jeffrey D. Ullman.
Economy of description by parsers, DPDA’s, and PDA’s. Theor. Comput. Sci., 4(2):143–
153, 1977.

11 Seymour Ginsburg and H. Gordon Rice. Two families of languages related to ALGOL.
J. ACM, 9(3):350–371, 1962.

12 Orna Kupferman, Amnon Ta-Shma, and Moshe Y. Vardi. Concurrency counts. Technical re-
port, available at http://www.cs.tau.ac.il/~amnon/Papers/KTV.submitted.cjtcs.ps,
2001.

13 Ernst L. Leiss. Succinct representation of regular languages by boolean automata. Theor.
Comput. Sci., 13(3):323–330, 1981.

14 Ming Li and Paul M. B. Vitányi. An introduction to Kolmogorov complexity and its applic-
ations. Texts and monographs in computer science. Springer, 1993.

15 Markus Lohrey. Algorithmics on SLP-compressed strings: a survey. Groups Complexity
Cryptology, 4(2):241–299, 2012.

16 Albert R. Meyer and Michael J. Fischer. Economy of description by automata, grammars,
and formal systems. In SWAT (FOCS) 1971, pages 188–191, 1971.

17 Alexander Okhotin, Xiaoxue Piao, and Kai Salomaa. Descriptional complexity of input-
driven pushdown automata. In Dassow Festschrift 2012, volume 7300 of LNCS, pages
186–206, 2012.

18 Alexander Okhotin and Kai Salomaa. Complexity of input-driven pushdown automata.
SIGACT News, 45(2):47–67, 2014.

19 Giovanni Pighizzini. Deterministic pushdown automata and unary languages. Int. J. Found.
Comput. Sci., 20(4):629–645, 2009.

20 Giovanni Pighizzini, Jeffrey Shallit, and Ming-wei Wang. Unary context-free grammars and
pushdown automata, descriptional complexity and auxiliary space lower bounds. J. Comput.
Syst. Sci., 65(2):393–414, 2002.

21 Wojciech Rytter. Grammar compression, LZ-encodings, and string algorithms with implicit
input. In ICALP’04, volume 3142 of LNCS, pages 15–27, 2004.

22 Kai Salomaa. Limitations of lower bound methods for deterministic nested word automata.
Inf. Comput., 209(3):580–589, 2011.

http://robotics.upenn.edu/~alur/Jacm09.pdf
http://cstheory.stackexchange.com/q/19046/13649
http://www.cs.tau.ac.il/~amnon/Papers/KTV.submitted.cjtcs.ps

	Introduction
	Related work
	Turing machines
	Pushdown and counter automata
	Visibly pushdown automata
	Main ingredients for upper bounds
	Proof of Theorem 6
	Main ingredients for lower bounds
	Proofs of Theorem 7 and Proposition 8

	Open questions

