
Maintaining Approximate Maximum Matching in
an Incremental Bipartite Graph in Polylogarithmic
Update Time
Manoj Gupta∗

Xerox Research, India
manoj.gupta@xerox.com, gmanoj@cse.iitd.ac.in

Abstract
A sparse subgraph G′ of G is called a matching sparsifier if the size or weight of matching in G′
is approximately equal to the size or weight of maximum matching in G. Recently, algorithms
have been developed to find matching sparsifiers in a static bipartite graph. In this paper, we
show that we can find matching sparsifier even in an incremental bipartite graph.

This observation leads to following results:
1. We design an algorithm that maintains a (1 + ε) approximate matching in an incremental

bipartite graph in O(log2 n
ε4) update time.

2. For weighted graphs, we design an algorithm that maintains (1 + ε) approximate weighted
matching in O(logn log(nN)

ε4) update time where N is the maximum weight of any edge in the
graph.

1998 ACM Subject Classification E.1 [Data Structures]: Graphs and Networks, F.2.2 [Analysis
of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems, G.2.2 [Graph
Theory]: Graph Algorithms

Keywords and phrases Graph Algorithm, Dynamic Graph

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.227

1 Introduction

A matching is a set of vertex disjoint edges in the graph. Finding a matching of maximum
size in a graph is one of the most important question in combinatorial optimization. For
static graph, Hopcroft and Karp [12] designed an algorithm that found maximum matching
in a bipartite graph in O(m

√
n) time. However, extending this result to general graph turned

out to be a challenging problem. Micali and Vazirani [14, 18] were the first to show that a
maximum matching in a general graph can be found in O(m

√
n) time.

In recent years, there has been a lot of activity for maintaining approximate/exact
matching in a dynamic graph. In a dynamic graph, at each update step an edge is added
or deleted from the graph. If only insertions are allowed, then the graph is said to be an
incremental dynamic graph. If only deletions are allowed, then the graph is said to be a
decremental dynamic graph. If both insertions and deletions are allowed, then the graph is
said to be fully dynamic graph.

For the analysis, we assume that an adversary executes a sequence of addition and
deletion of edges in a graph with the objective of maximizing the update time of a given
algorithm. An adversary is oblivious if he/she knows the code of the algorithm but does

∗ The work was done when the author was a student at IIT Delhi.

© Manoj Gupta;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 227–239

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62919407?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.227
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

228 Maintaining Approximate Maximum Matching in an Incremental Bipartite Graph

not have access to the random bits used in the algorithm. In the literature, there are some
randomized algorithm that assumes an oblivious adversary which means that the adversary
has no knowledge of the matched edges maintained by the algorithm. If the algorithm is
deterministic, then the adversary can run this algorithm on an input sequence and find the
matched edges at each update step of the algorithm. In the following literature survey, all
the randomized algorithm assume oblivious adversary model.

Ivković and Llyod[13] were the first to investigate matching in dynamic graphs. They
designed a deterministic algorithm that maintains a maximal matching with O((n+m)

√
2

2)
update time. Sankowski[17] designed a deterministic algorithm that maintains maximum
matching in O(n1.495) update time. Onak and Rubinfeld[16] designed a randomized algorithm
that maintains a c-approximation of maximum matching in O(log2 n) update time, where c
is a large unspecified constant. Baswana, Gupta and Sen[5] showed that maximal matching
can be maintained in a dynamic graph in an amortized O(logn) update time with high
probability. Subsequently, Anand et al. {[2, 3]} extended this work to the weighted case, and
designed a randomized algorithm that maintains a matching with a weight that is expected
to be at least 1/4.9108 ≈ 0.2036 of the optimum. Neiman and Solomon[15] designed a
deterministic algorithm that maintains a matching of size at least 2/3 of the size of optimum
matching in O(

√
m) time per update in general graphs. Gupta and Peng [11] generalized

this result — they designed a deterministic algorithm that maintains a (1 + ε) approximate
maximum matching in O(

√
mε−2) update time. They also extended this result to a weighted

graph by designing a deterministic algorithm that maintains a (1 + ε)-approximate weighted
matching in O(mε−O(1/ε) logN) update time where the edges have weights in the range
[1, N].

We investigate the problem of finding maximum matching in an incremental bipartite
graph. To the best of our knowledge, there are no results for maintaining near approximate
maximum matching in incremental bipartite graphs. However, the results of Gupta and
Peng [11] also applies to a bipartite graph. Note that their result applies for matching in
fully dynamic graph which seems to be a harder problem than maintaining matching in
an incremental graph. However, the running time they obtain have a dependence on (

√
m)

where m is the maximum number of edges in the graph at any point of time.
To obtain better bounds, we look for inspiration from the field of streaming algorithms.

Recently, there has been much interest[9, 10, 8] in the study of graph problems in a semi-
streaming environment. In this model, the algorithm has to work with O(n poly logn) space
and the one of the aim of the algorithm is to minimize the total number of passes over the
stream. Ahn and Guha [1] showed that there exists a semi-streaming algorithm that find
a (1 + ε)-approximate bipartite matching in an unweighted/weighted graph in O(logn/ε3)
passes. One of the ingredients they use is what we call as matching sparsifier.

I Definition 1. A subgraph G′ of G is said to be a (ε, β)-sparsifier if the size or weight of
matching in G′ is at least β

1+ε whenever the size or weight of maximum matching in G is
equal to β.

Ahn and Guha [1] showed that a (O(ε), β)-sparsifier can be found in O(m logn/ε3) time.
We show that this algorithm works even for an incremental bipartite graph. This observation
helps us in showing the following results:

I Theorem 2. For any ε ≤ 1/2, there exists an algorithm that maintains a (1+ε) approximate
maximum cardinality matching in an incremental bipartite graph in an amortized O(log2 n

ε4)
update time.

We extend the above result to weighted graphs:

M. Gupta 229

I Theorem 3. For any ε ≤ 1/2, there exists an algorithm that maintains a (1+ε) approximate
maximum weighted matching in an incremental weighted bipartite graph in an amortized
O(logn log(nN)

ε4) update time where each edge has weight in the range [1, N].

2 Preliminaries

An undirected graph is represented by G = (V,E), where V represents the set of vertices and
E represents the set of edges in the graph. We will use n to denote the number of vertices
|V | and m to denote the number of edges |E|.

A matching in a graph is a set of independent edges in the graph. The maximum
cardinality matching(MCM) in a graph is the matching of maximum size. LetM denote
a maximum matching in the graph. Similarly, given a set of weights w : E → [1, N], we
can denote the weight of a matching M as w(M) =

∑
e∈M w(e). The maximum weight

matching(MWM) in a graph is in turn the matching of maximum weight.
For measuring the quality of approximate matching, we will use the notation of α-

approximation, which indicates that the objective (either cardinality or weight) given by the
current solution is at least 1/α of the optimum. Specifically, a matching M is called α-MCM
if |M | ≥ 1

α (size of MCM), and α-MWM if w(M) ≥ 1
α (weight of MWM).

Finding or approximating MCMs and MWMs in the static setting have been intensely
studied. Near linear time algorithms have been developed for finding (1 + ε) approximations
and we will make crucial use of these algorithms in our data structure. For maximum
cardinality matching, such an algorithm for bipartite graph was introduced by Hopcroft and
Karp[12].

I Lemma 4. [12] For any ε < 1, there exists an algorithm ApproxMCM that finds a
(1 + ε)-MCM in a static unweighted bipartite graph G in O(mε−1) time where there are m
edge in G.

For approximate MWM, there has been some recent progress. Duan et al.[6, 7] designed an
algorithm that finds a (1 + ε) approximate maximum weighted matching in O(mε−1 log(ε−1))
time.

I Lemma 5. [6, 7] For any ε < 1, there exists an algorithm ApproxMWM that finds a
(1 + ε)-MWM in a static weighted graph G in O(mε−1 log(ε−1)) time where there are m edge
in G.

In Section 3, we reproduce the results of [1] that finds a (O(ε), β)-sparsifier in a static
bipartite graph. In section 4, we design an algorithm that finds a (O(ε), β)-sparsifier in an
incremental bipartite graph and use this algorithm to maintain a (1 + ε)-MCM. In Section
5, we reproduce the algorithm in [1] that finds a (O(ε), β)-sparsifier in a static weighted
bipartite graph. In Section 6, we design an algorithm that finds a (O(ε), β)-sparsifier in an
incremental weighted bipartite graph and use this algorithm to maintain a (1 + ε)-MWM.

3 Background

Consider the following primal-dual for bipartite matching. Here the dual(LP2) is the linear
program for bipartite matching and the primal(LP1) is the linear program for vertex cover.

FSTTCS 2014

230 Maintaining Approximate Maximum Matching in an Incremental Bipartite Graph

u1
i = 1 ∀i ∈ V ;

for t = 1 to T do
Call find-admissible-solution(t)
Let M(i,yt) =

∑
j:(i,j)∈E yij − 1 ∀i

∀i, set ut+1
i = uti(1 + ε)M(i,yt)/ρ if M(i,yt) ≥ 0

uti(1− ε)−M(i,yt)/ρ if M(i,yt) < 0

Output y =
(1

1+4δ
) 1
T

∑
t yt;

Figure 1 Multiplicative-Weight-Update(): The Multiplicative weight update method.

Primal
min

∑
i
xi

s. t. xi + xj ≥ 1 ∀(i, j) ∈ E LP1
xi ≥ 0

Dual
max

∑
i
yij

s. t.
∑

j:(i,j)∈E yij ≤ 1 ∀i ∈ V LP2
yij ≥ 0

We follow the algorithm of Ahn and Guha [1] in this section. We will use the multi-
plicative weight update method of Arora, Hazan and Kale [4]. Consider the multiplicat-
ive weight update method Multiplicative-Weight-Update in Figure 1. The aim of
Multiplicative-Weight-Update is to find a feasible solution y such that

∑
yij ≈ α, i.e,

the aim of our algorithm is to find a matching of a size approximately α. The algorithm runs
for T iterations where we will calculate T at the end of the analysis. For each constraint
associated with a vertex i in the dual LP, we associate it with a value ui. Initially u1

i = 1. In
each iteration of the algorithm, we find an admissible dual solution (by calling the procedure
find-admissible-solution). We will define the notion of admissibility in Definition 6. Let
yt be an admissible solution in iteration t. Define M(i,yt) =

∑
j:(i,j)∈E y

t
ij − 1 for each

constraint associated with vertex i. Then comes the step which justifies the name of the
method, i.e., we update the weights of each ui based on the value of M(i,yt). Note that ρ
and ε are parameters in this update step which we will calculate in the analysis.

We now define the notion of admissibility.

I Definition 6. Define E(yt) to be the expected value of M(i,yt) if constraint i is chosen
with probability uti∑

j
ut
j

, i.e, E(yt) =
∑
i

uti∑
j
ut
j

M(i,yt). The dual solution yt is admissible if

E(yt) ≤ δ and
∑
i,j yij ≥ α and M(i,yt) ∈ [l, ρ] where δ, ρ, l are parameter dependent on ε.

In [1], the following theorem calculates the number of iterations for which Multiplicative-
Weight-Update needs to run.

I Theorem 7. Let ε ≤ 1/2,δ = 4εl. If find-admissible-solution returns an admissible
solution in all T = 2ρ logn

δε iterations , then for all constraints i,M(i,y) ≤ 1

Theorem 7 implies that if find-admissible-solution returns an admissible solution for
T iteration, then we can find a feasible solution y. Since y =

(1
1+4δ

) 1
T

∑
t yt and

∑
ij y

t
ij ≥ α,∑

ij yij ≥
(1

1+4δ
)
α. So we obtain a feasible fractional solution of a value approximately equal

to α.

M. Gupta 231

∀i, let xti = αuti∑
j
ut
j

;

Let Etviolated = {(i, j) : xti + xtj < 1}
Find a maximal matching St in Etviolated.
if |St| < δα then

For each (i, j) ∈ St, increase xti and xtj by 1
return failure

else
Return ytij = α

|St| for (i, j) ∈ St and 0 otherwise

Figure 2 find-admissible-solution(t): The procedure that finds an admissible solution.

3.1 MCM
The multiplicative weight update method mandates that an admissible solution is found at
each iteration. We now reproduce find-admissible-solution designed by Ahn and Guha
[1] which finds an admissible solution.

find-admissible-solution starts by setting xi values for all vertices in the graph. The
value of xti is α times the probability of choosing a vertex i under the probability distribution
ut. We look at the edges which violated the dual LP constraint using the assignment xt,
i.e., all the edges e = (i, j) such that xti + xtj < 1. Let the set of all violated edge be denoted
by Eviolated. We find a maximal matching St in the set Eviolated. If |St| < δα, we return a
failure, else we return yt by setting ytij = α/|St| for all the edges in the matching.

We reproduce the following lemma from [1]

I Lemma 8. [1] If |St| < δα, then find-admissible-solution returns a feasible solution
for LP 2 with a value at most (1 + 2δ)α.

Proof. For each edge (i, j) such that xti + xtj < 1, at least one of the endpoint is in the
maximal matching (since St is a maximal matching). We increase xti and xtj by 1 to satisfy
this constraint. So all the violated constraints are satisfied. Initially,

∑
i x

t
i = α and since we

have increased the value of all the vertices in the maximal matching, the total increase is
< 2δα. So the total value of the solution of LP1 is at most (1 + 2δ)α. J

I Lemma 9. [1] If |St| ≥ δα, then find-admissible-solution returns an admissible
solution with l = 1 and ρ = 1/δ and E(yt) ≤ δ.

Proof. Since yti,j = α/|St|, for all (i, j) ∈ St, so∑
(i,j)∈St

yti,j = α∑
(i,j)∈St

yti,j(xti + xtj) < α { For each (i, j) ∈ St, xti + xtj < 1 }∑
(i,j)∈E y

t
i,j(xti + xtj) = α { Since yti,j = 0 for all other edges }∑

i
xti
∑

j:(i,j)∈E y
t
i,j =

∑
i
xti∑

i
xti
(∑

j:(i,j)∈E y
t
i,j − 1

)
= 0∑

i
xtiM(i, yt) = 0∑
i

xti∑
j
xt
j

M(i, yt) = 0

This implies E(yt) ≤ 0 ≤ δ. Also, if (i, j) ∈ St, ytij = 1/δ, this implies M(i,yt) = 1/δ, so
ρ = 1/δ. If (i, j) /∈ St, M(i,yt) = −1, so l = 1. J

Now comes the crucial step of the algorithm. We never want find-admissible-solution
to fail. This implies that the size of the maximal matching found by our algorithm should

FSTTCS 2014

232 Maintaining Approximate Maximum Matching in an Incremental Bipartite Graph

always be greater than or equal to δα. To achieve this, we set a suitable value of α. Let M
be any matching in the graph such that |M | = β. Suppose that we set αi = (1 + ε)i for
i ≥ 0. Let αj be the smallest value above β. So αj ≥ β ≥ αj−1. We now prove the following
lemma:

I Lemma 10. If β ≥ αj−1 and if we set α = αj/(1+ε)9 in multiplicative-weight-update
procedure, then find-admissible-solution never fails.

Proof. Suppose the algorithm fails. By Lemma 8, this implies that there exists a feasible
solution of LP1 with value (1 + 2δ)α. Since ε = δ/4 (since δ = 4εl and l = 1), this value is
≤ (1 + 8ε)α = (1 + 8ε)αj/(1 + ε)9 ≤ (1 + 8ε)β/(1 + ε)8 < β. This leads to a contradiction
since the minimum value of LP1 is ≥ β (as the size of maximum matching is ≥ β). This
implies that find-admissible-solution never fails. J

Using Theorem 7, if we set α = αj/(1 + ε)9, then after T iterations, we will find
a feasible fractional solution y. In multiplicative-weight-update procedure, we set
y =

(1
1+4δ

) 1
T

∑
t yt. Since find-admissible-solution returns an admissible solution of

value = α in each iteration, we have
∑
ytij =

(1
1+4δ

)
α. Since δ = 4εl and l = 1, δ = 4ε. So,∑

yij =
(

1
1+16ε

)
α

=
(

1
1+16ε

)
αj/(1 + ε)9

≥ 1
(1+16ε)(1+ε)9αj

≥ 1
(1+16ε)(1+75ε)αj

(
if ε ≤ 1/2, then 1

(1+ε)9 ≥ 1
1+75ε

)
≥ 1

(1+1200ε)αj

≥ 1
(1+1200ε)β

(
since β ≤ αj

)
Thus, we have proved the following lemma:

I Lemma 11. If find-admissible-solution returns an admissible solution for T iterations,
then the size of the fractional matching returned by Multiplicative-Weight-Update is
≥ 1

1+1200εαj ≥
1

(1+1200ε)β

So if we set ε′ = 1/1200ε, we get a feasible solution y such that the size of this fractional
solution y is ≥ (1 − ε′)β. Also note that at each iteration t, find-admissible-solution
selects at most n edges and sets ytij > 0 for these n edges. Since there are at most T = 2ρ logn

δε

iterations, the total number of edges selected by find-admissible-solution with yij > 0
is ≤ 2ρ logn

δε n. We have the following lemma:

I Theorem 12. There exists an algorithm which finds a (O(ε), β)-sparsifier G′ of G of size
O(n logn/ε3). Moreover, the time taken to find such a graph is O(m logn/ε3),

Proof. From the above discussion, we claim the total number of edges selected by
find-admissible-solution is O(2ρ logn

δε n) = O(n logn
ε3) (since δ = 4ε and ρ = 1/δ). By

Lemma 11, the size of fractional matching in G′, i.e.,
∑

yij is ≥ 1
(1+1200ε)β. Using the

integrality of bipartite matching polytope, we claim that the size of maximum matching
in G′ is ≥ 1

(1+1200ε)β. Regarding the running time, note that each iteration is dominated
by the running time of find-admissible-solution — which is O(m). Since ρ = 1/δ and
δ = 4ε, there are at most T = 2ρ logn

δε = O(logn
ε3) iterations and the total running time is

O(m logn/ε3). J

M. Gupta 233

4 Incremental MCM

Overview
In this section, we show that we can find a (O(ε), β)-sparsifier in an incremental bipartite
graph. This observation is then used to maintain a (1 + ε)-MCM in the following way: We
run many versions of the algorithm in Theorem 12 in parallel such that in the kth run, we set
α = αk/(1 + ε)9 in the multiplicative-weight-update procedure where αk = (1 + ε)k and
k ≥ 9. Since the size of maximum matching is ≤ n, k ≤ logn

log(1+ε) = O(logn
ε). In the kth run,

we want to find a (O(ε), αk)-sparsifier. Note that initially a (O(ε), αk)-sparsifier may not
exist as the size of maximum matching itself may be < αk. So our algorithm returns failure
till the size of maximum matching is approximately equal to αk. At any given update step,
say l, let i be the highest numbered version for which multiplicative-weight-update has
not failed. We find a (1 + ε)-MCM Mi in the (O(ε), αi)-sparsifier found in the ith run. We
will show that Mi is a (1 +O(ε))-MCM in Gl, i.e., the ratio between the size of Mi and the
maximum matching at the lth update step is 1 +O(ε).

Consider an incremental graph where at the update step l, an edge el is added to the
graph, i.e., the graph at lth update step Gl = Gl−1 ∪ el. We use the incremental version of
multiplicative-weight-update and find-admissible-solution (see Figure 3 and 4).

Fix a value of k. We describe our adaptation of the algorithm in the previous section for
kth run of the algorithm when α = αk/(1 + ε)9. Consider the procedure incremental-find-
admissible-solution. Before calling this procedure, we set u1

i = 1 for all the constraints
of LP1. Since the graph is empty initially, the procedure incremental-find-admissible-
solution fails in the first iteration. At update step l, el is added to the graph Gl−1, and the
procedure incremental-multiplicative-weight-update is run. The procedure finds the
iteration (say t), where incremental-find-admissible-solution has failed. Since a new
edge is added to the graph, the procedure calls incremental-find-admissible-solution
hoping that there exists an admissible solution after the addition of this new edge. If
incremental-find-admissible-solution returns failure, then there is still no admissible
solution found at iteration t. Else, incremental-find-admissible-solution successfully
finds an admissible solution. We increment t and try to find an admissible solution in iteration
t+ 1. If t = T + 1, then using Lemma 11, we claim that the size of maximum matching in
our sparsifier is at least 1

(1+1200ε)αk. This implies that we have found a (O(ε), αk)-sparsifier
at this update step. We then run ApproxMCM on this (O(ε), αk)-sparsifier. We then stop
the kth run of our algorithm.

We now describe the incremental version of the algorithm find-admissible-solution
(see Figure 4). If procedure incremental-multiplicative-weight-update calls procedure
incremental-find-admissible-solution for the first time in the iteration t, then we
initialize all xtu’s and find a maximal matching St as in procedure find-admissible-solution.
Else we need to update St with respect to this newly added edge el = (u, v). If xtu + xtv is
less than 1 and u and v are not adjacent to any edge in St, then the edge el is added to
St. If St < δα, then find-admissible-solution was unable to find an admissible solution
and returns failure. Else we return an admissible solution yt(this part is same as in the
find-admissible-solution). The important thing to note is that we return an admissible
solution as soon as |St| is equal to δα.

We now prove the following lemma:

I Lemma 13. If the size of maximum matching crosses αk−1 at update step l, then the kth
run of incremental-multiplicative-weight-update stops before or at update step l.

FSTTCS 2014

234 Maintaining Approximate Maximum Matching in an Incremental Bipartite Graph

Let the current update step be l with el being added to graph Gl−1.
Let t be the iteration in which incremental-find-admissible-solution has
previously failed.
while incremental-find-admissible-solution(t) does not return failure do

t← t+ 1
if t = T+1 then

Run ApproxMCM on the sparsifier found by the kth run
Stop the kth run of the algorithm

else
Let M(i,yt) =

∑
j:(i,j)∈E yij − 1 ∀i

∀i, set ut+1
i = uti(1 + ε)M(i,yt)/ρ if M(i,yt) ≥ 0

uti(1− ε)−M(i,yt)/ρ if M(i,yt) < 0

Figure 3 incremental-multiplicative-weight-update(): The incremental version of Multi-
plicative Weight Update Method.

if this is the first call to incremental-find-admissible-solution in iteration t then
∀w, let xtw = αutw∑

j
ut
j

;

Let Etviolated = {(u, v) : xtu + xtv < 1}
Find a maximal matching St in Etviolated.

else
if xtu + xtv < 1 and u and v are free with respect to St then

St ← St ∪ ei
if |St| < δα then

return failure
else

Return ytij = α
|S| for (i, j) ∈ St and 0 otherwise

Figure 4 incremental-find-admissible-solution(t): The incremental version find-admissible-
solution that finds an admissible solution.

Proof. Suppose that the procedure incremental-multiplicative-weight-update does
not stop at or before the update step l. This implies that there exists an iteration t at
which incremental-find-admissible-solution is unable to find an admissible solution.
Note that incremental-find-admissible-solution incrementally maintains a maximal
matching St. This implies that |St| < δα. At the lth update step, the size of maximum
matching is ≥ αk−1, so Lemma 10 mandates that find-admissible-solution (and therefore
incremental-find-admissible-solution) never fails. This lead to a contradiction thus
proving the lemma. J

At an update step l, let i be the highest numbered version for which the procedure
incremental-multiplicative-weight-update has stopped. This implies that the size of
maximum matching at this update step is less than αi — if not then by Lemma 13, even
(i+ 1)th run of incremental-multiplicative-weight-update should have stopped. After
the ith run stops, we use ApproxMCM to find a (1 + ε)-MCM in the sparsifier found at the
ith run. Using Lemma 11, we claim that the size of matching in the sparsifier is 1

(1+1200ε)α
i.

M. Gupta 235

∀i, let xti = αuti∑
j
ut
j

;

Let Etviolated,k = {(i, j) : xti + xtj < wij , α/2k ≤ wij ≤ α/2k−1}
Find a maximal matching Skt in Etviolated,k for each k = 1, 2, . . . , dlog n

δ e = O(logn).
Let St = ∪kSk, ∆ = w(St)
if ∆ < δα then

For each (i, j) ∈ St, increase xi and xj by 2wij .
Further increase every xi by δα
Return x and report failure.

else
S′ ← ∅
while St 6= ∅ do

Pick the heaviest edge (i, j) from St and add it to S′
Remove all the edges adjacent to i and j from St

Return ytij = α
w(S′) for (i, j) ∈ S′ and 0 otherwise

Figure 5 find-admissible-solution(t): The oracle which finds an admissible solution.

So, ApproxMCM finds a matching of size at least αi

(1+1200ε)(1+ε) ≥
1

(1+1202ε)α
i. If we use

the matching obtained at the ith run as our current matching, the approximation ratio of
our matching with respect to the maximum matching is ≤ αi

αi/(1+1202ε) = 1 + 1202ε.
Now we analyze the running time of the kth run of incremental-multiplicative-

weight-update. The running time of incremental-multiplicative-weight-update is
dominated by the procedure incremental-find-admissible-solution. We claim that the
running time of this procedure at the tth iteration is at most O(m) where m is the number
of edges at the end of all updates. This is true because the initialization step takes at most
O(m) time and processing each update el takes O(1) time. Since there are T = O(logn/ε3)
iterations, the total running time for the kth run of our algorithm is O(m logn/ε3).

Since we run O(logn/ε) versions of incremental-multiplicative-weight-update in
parallel, the total time taken is O(m log2 n/ε4). This implies an amortized update time of
O(log2 n

ε4). Thus, we have proved the following theorem:

I Theorem 14. For any ε ≤ 1/2, there exists an algorithm that maintains a (1 + ε)-MCM
in an incremental bipartite graph in amortized O(log2 n

ε4) update time.

5 MWM

In this section, we follow the algorithm in [1] that finds a (1 + ε)-MWM in a static weighted
graph. Consider the maximum weighted matching problem where each edge (u, v) has
weight wuv such that the weight of every edge in the graph is ≤ N . As before we use
the Multiplicative-Weight-Update procedure in Figure 1. If the procedure find-
admissible-solution returns an admissible solution in each of the T iterations, then the
procedure Multiplicative-Weight-Update finds a feasible solution. We reproduce the
procedure find-admissible-solution for weighted graphs from [1].

The procedure starts by partitioning the edges across logn levels. If an edge (i, j) has
weight between α/2k−1 and α/2k, then it is at level k where k ≤ dlog n

δ e. We ignore the
edges with weight ≤ α/2log n

δ . We find a maximal matching at all the k levels and let St be
the union of these matchings. Let ∆ be the sum of weight of all the edges in St. If ∆ < δα,

FSTTCS 2014

236 Maintaining Approximate Maximum Matching in an Incremental Bipartite Graph

then we report failure, else we find a matching S′ from St. This procedure adds the heaviest
edge (i, j) in St in S′ and remove all the edges adjacent to i and j from St. The procedure
then returns an admissible solution yt.

Ahn and Guha [1] proved the following:

I Lemma 15. [1] If ∆ > δα, then find-admissible-solution returns an admissible solution
with ρ = 5

δ and l = 1.

I Lemma 16. [1] If ∆ ≤ δα, then find-admissible-solution finds a feasible solution of
vertex cover with value (1 + 5δ)α and returns failure.

Now comes the crucial step of the algorithm. We never want find-admissible-solution
to fail. This implies that the weight of St found by our algorithm should always be greater
than equal to δα. Now we set a suitable value of α to achieve this. Let M be any matching
in the graph such that the weight of M , w(M) = β. Suppose that we set αi = (1 + ε)i for
i ≥ 0. Let αj be the smallest value above β. So αj ≥ β ≥ αj−1. We now prove the following
lemma:

I Lemma 17. If β ≥ αj−1 and if we set α = αj/(1 + ε)21, then find-admissible-solution
never fails

Proof. Suppose that find-admissible-solution fails. By Lemma 16, this implies that
there exists a feasible solution of vertex cover with value (1 + 5δ)α. Since δ = 4εl and l = 1,
this value is ≤ (1 + 20ε)α = (1 + 20ε)αj/(1 + ε)21 = (1 + 20ε)β/(1 + ε)20 < β. This leads
to a contradiction since the minimum weight of the vertex cover is ≥ β (as the weight of
maximum matching is ≥ β). This implies that the oracle find-admissible-solution never
fails. J

Using Lemma 7, if we set α = αj/(1 + ε)21, then after T iterations, we will find a feasible
solution y. In the multiplicative-weight-update procedure, we set y =

(1
1+4δ

) 1
T

∑
t yt.

Since find-admissible-solution returns an admissible solution of value = α in each
iteration, we have

∑
ytij =

(1
1+4δ

)
α. Since δ = 4εl and l = 1, δ = 4ε. So,∑

yij =
(

1
1+16ε

)
α

=
(

1
1+16ε

) αj
(1+ε)21

≥ 1
(1+16ε)(1+10000ε)αj

(
if ε ≤ 1/2, then 1

(1+ε)21 ≥ 1
1+10000ε

)
≥ 1

(1+160000ε)αj (2)
≥ 1

(1+160000ε)β
(
since β ≤ αj

)
We can state the following lemma:

I Lemma 18. If find-admissible-solution returns an admissible solution for T iterations
then the size of fractional matching return by our algorithm is ≥ 1

1+160000εαj ≥
1

(1+160000ε)β

If we set ε′ = 1/160000ε, we get a feasible solution y such that the size of this fractional
solution y is ≥ (1 − ε′)β. Also note that at each iteration t, find-admissible-solution
selects at most n edges and sets ytij > 0 for these n edges. Since there are at most T = 2ρ logn

δε

iterations, the total number of edges selected by find-admissible-solution with yij > 0
is ≤ 2ρ logn

δε n. Since ρ = 5/δ and δ = 4εl, we have the following lemma:

I Theorem 19. There exists an algorithm which finds a (O(ε), β)-sparsifier G′ of G of size
O(n logn/ε3). Moreover, the time taken to find such a graph is O(m logn/ε3).

Proof. The proof is identical to the proof of Theorem 12. J

M. Gupta 237

6 Incremental MWM

In this section, we show that we can find a (O(ε), β)-sparsifier in an incremental weighted
bipartite graph where the weight of any edge is ≤ N . This observation is then used to maintain
a (1 + ε)-MWM in the following way: We run many versions of algorithm in Theorem 19 in
parallel such that in the kth run, we set α = αk/(1 + ε)21 in the multiplicative-weight-
update where αk = (1 + ε)k and k ≥ 21. Since the size of maximum matching is ≤ nN ,
k ≤ log(nN)

log(1+ε) = O(log(nN)
ε). In the kth run, we want to find a (O(ε), αk)-sparsifier. Note that

initially a (O(ε), αk)-sparsifier may not exist as the size of maximum weighted matching
itself may be < αk. So our algorithm returns failure till the size of maximum matching is
approximately equal to αk. At any given update step, say l, let i be the highest numbered
version for which multiplicative-weight-update has not failed. We find a (1 + ε)-MWM
Mi in the (O(ε), αi)-sparsifier found in the ith run. We will show that the ratio between the
weight of Mi and the weight of maximum matching at the lth update step is 1 +O(ε).

Consider an incremental weighted graph where at the update step l, an edge el = (i, j)
with weight wij is added to the graph, i.e., the graph at lth update step Gl = Gl−1 ∪ el.
We use the incremental version of multiplicative-weight-update in Figure 3. Now, we
design an incremental version of find-admissible-solution (see Figure 6).

Fix a value of k. We describe our adaptation of the algorithm in the previous section for
kth run of the algorithm when α = αk/(1+ε)21. If procedure incremental-multiplicative-
weight-update calls procedure incremental-find-admissible-solution for the first
time in the iteration t, we initialize all xtu’s and find a maximal matching St as in procedure
find-admissible-solution. Else we need to update St with respect to this newly added
edge el = (u, v). If (u, v) ∈ Eviolated,k and u and v are free with respect to maximal matching
in Eviolated,k, edge el is added to St. If St < δα, then the oracle was unable to find an
admissible solution and returns failure. Else we return an admissible solution yt (this part is
same as in find-admissible-solution). Again note that we return an admissible solution
as soon as |St| is equal to δα.

We now prove the following lemma:

I Lemma 20. If the size of maximum matching crosses αk−1 at update step l, then the kth
run of incremental-multiplicative-weight-update stops before or at update step l.

Proof. Similar to the proof of Lemma 13. J

Similar to our analysis in Section 4, we claim that our algorithm maintains a (1+ε)-MWM
at every update step.

Now we analyze the running time of our algorithm. Consider the ith run of the algorithm.
The running time of the algorithm is dominated by the procedure incremental-find-
admissible-solution. We claim that the running time of this procedure at the tth iteration
is at most O(m) where m is the number of edges at the end of all updates. This is true
because the initialization step takes at most O(m) time and processing each update el takes
O(1) time. Since there are T = O(logn

ε3) iterations, the total running time for the ith run
of our algorithm is O(m logn/ε3). Since there are O(log(nN)/ε) version of our algorithm,
the total time taken by the algorithm is O(m logn log(nN)/ε4). This implies an amortized
update time of O(logn log(nN)/ε4).

We claim the following theorem:

I Theorem 21. For any ε ≤ 1/2, there exists an algorithm that maintains a (1 + ε)-MWM
in an incremental weighted bipartite graph in amortized O(logn log(nN)

ε4) update time where
each edge has weight in the range [1, N].

FSTTCS 2014

238 Maintaining Approximate Maximum Matching in an Incremental Bipartite Graph

if this is the first call to incremental-find-admissible-solution in iteration t then
∀i, let xti = αuti∑

j
ut
j

;

Let Etviolated,k = {(i, j) : xti + xtj < wij , α/2k ≤ wij ≤ α/2k−1}
Find a maximal matching Skt in Etviolated,k for each k = 1, 2, . . . , dlog n

δ e = O(logn).
Let St = ∪kSk, ∆ = w(St)

else
if (u, v) ∈ Etviolated,k and u and v are free with respect to the maximal matching in
Etviolated,k then

St ← St ∪ el
if |St| < δα then

return failure
else

S′ ← ∅
while St 6= ∅ do

Pick the heaviest edge (i, j) from S and add it to S′
Remove all the edges adjacent to i and j from St

Return ytij = α
w(S′) for (i, j) ∈ S′ and 0 otherwise

Figure 6 incremental-find-admissible-solution(el, t): The incremental version of the oracle
that finds an admissible solution.

References

1 Kook Jin Ahn and Sudipto Guha. Linear programming in the semi-streaming model with
application to the maximum matching problem. Inf. Comput., 222:59–79, 2013.

2 Abhash Anand, Surender Baswana, Manoj Gupta, and Sandeep Sen. Maintaining Approx-
imate Maximum Weighted Matching in Fully Dynamic Graphs. In IARCS Annual Confer-
ence on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2012), volume 18 of Leibniz International Proceedings in Informatics (LIPIcs), pages 257–
266, Dagstuhl, Germany, 2012. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

3 Abhash Anand, Surender Baswana, Manoj Gupta, and Sandeep Sen. Maintaining approx-
imate maximum weighted matching in fully dynamic graphs. CoRR, abs/1207.3976, 2012.

4 Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method:
a meta-algorithm and applications. Theory of Computing, 8(1):121–164, 2012.

5 S. Baswana, M. Gupta, and S. Sen. Fully dynamic maximal matching in O(logn) update
time. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium
on, pages 383–392. IEEE, 2011.

6 Ran Duan and Seth Pettie. Linear-time approximation for maximum weight matching. J.
ACM, 61(1):1:1–1:23, January 2014.

7 Ran Duan, Seth Pettie, and Hsin-Hao Su. Scaling algorithms for approximate and exact
maximum weight matching. CoRR, abs/1112.0790, 2011.

8 Sebastian Eggert, Lasse Kliemann, Peter Munstermann, and Anand Srivastav. Bipartite
matching in the semi-streaming model. Algorithmica, 63(1-2):490–508, June 2012.

9 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2):207–216,
December 2005.

M. Gupta 239

10 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
Graph distances in the data-stream model. SIAM J. Comput., 38(5):1709–1727, December
2008.

11 Manoj Gupta and Richard Peng. Fully dynamic (1 + ε)-approximate matchings. In 54th
Annual IEEE Symposium on Foundations of Computer Science, 2013.

12 John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973.

13 Zoran Ivkovic and Errol L. Lloyd. Fully dynamic maintenance of vertex cover. In WG ’93:
Proceedings of the 19th International Workshop on Graph-Theoretic Concepts in Computer
Science, pages 99–111, London, UK, 1994. Springer-Verlag.

14 S. Micali and V.V. Vazirani. An O(
√
|V ||E|) algorithm for finding maximum matching in

general graphs. In Foundations of Computer Science, 1980., 21st Annual Symposium on,
pages 17–27. IEEE, 1980.

15 Ofer Neiman and Shay Solomon. Deterministic algorithms for fully dynamic maximal
matching. CoRR, abs/1207.1277, 2012.

16 Krzysztof Onak and Ronitt Rubinfeld. Maintaining a large matching and a small vertex
cover. In STOC, pages 457–464, 2010.

17 Piotr Sankowski. Faster dynamic matchings and vertex connectivity. In SODA, pages
118–126, 2007.

18 Vijay V. Vazirani. An improved definition of blossoms and a simpler proof of the MV
matching algorithm. CoRR, abs/1210.4594, 2012.

FSTTCS 2014

	Introduction
	Preliminaries
	Background
	MCM

	Incremental MCM
	MWM
	Incremental MWM

