Replica Placement on Directed Acyclic Graphs

Sonika Arora!, Venkatesan T. Chakaravarthy?, Kanika Guptal,
Neelima Gupta!, and Yogish Sabharwal?

1 Department of Computer Science, University of Delhi, India
sonika.ta@gmail.com,kanika.g.mcs.du.2012@gmail.com,ngupta@cs.du.ac.in

2 IBM India Research Lab, New Delhi, India
{vechakra,ysabharwal}@in.ibm.com

—— Abstract
The replica placement problem has been well studied on trees. In this paper, we study this
problem on directed acyclic graphs. The replica placement problem on general DAGs generalizes
the set cover problem. We present a constant factor approximation algorithm for the special
case of DAGs having bounded degree and bounded tree-width (BDBT-DAGs). We also present a
constant factor approximation algorithm for DAGs composed of local BDBT-DAGs connected in a
tree like manner (TBDBT-DAGs). The latter class of DAGs generalizes trees as well; we improve
upon the previously best known approximation ratio for the problem on trees. Our algorithms are
based on the LP rounding technique; the core component of our algorithm exploits the structural
properties of tree-decompositions to massage the LP solution into an integral solution.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems
Keywords and phrases Approximation Algorithms, LP Rounding

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.213

1 Introduction

The replica placement problem is an important problem that finds applications in a variety of
domains such as internet and video on demand service delivery (see [8, 10, 5]). We refer to [13]
for additional applications. This problem is concerned with the optimal placement of copies
(replicas) of a database on the nodes of a network in order to serve periodic requests from a
set of clients under the setting wherein each replica can serve a limited number of requests
and a client can only be served by a replica within a specified distance (QOS requirement).
Prior work has studied the problem for the case of tree networks [5, 13, 3, 9, 2, 1]. The goal
of this paper is to address the problem on more general DAG networks.

Replica Placement Problem. The input consists of a DAG G = (V, E). Each leaf node
(having no in-edges) represents a client. Let A be the set of all the clients and let |A] = m.
The input specifies a request r(a) for each client a € A. The input also includes a capacity
W. For each edge (u,v) in E, the input specifies a distance d(u,v). For a node u and a client
a such that there is a path from a to w in the graph, let d(a,u) be the shortest distance from
a to u. Each client a is associated with a quantity dmax(a), the maximum distance it can
travel.

A feasible solution selects a subset of nodes and places replicas on them in order to service
the requests of the clients. The solution must assign the request of each client a to some
(unique) replica u such that there is a path from a to u in the graph and d(a,u) < dpax(a);
we call this latter condition the distance constraint. Furthermore, the total requests assigned

© Sonika Arora, Venkatesan T. Chakaravarty, Kanika Gupta, Neelima Gupta, and Yogish Sabharwal;
37 licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).

Editors: Venkatesh Raman and S.P. Suresh; pp. 213-225

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.213
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

214

Replica Placement on Directed Acyclic Graphs

to any replica must not exceed the capacity W. A client can be serviced by opening a replica
at the client node itself. Our goal is to minimize the number of replicas placed.

We assume that the capacity W and the requests r(-) are integral and that W is
polynomially bounded in the number of nodes. Furthermore, without loss of generality, we
assume that r(a) < W for all clients a € A.

Prior Work. The above problem and its variants have been well-studied for tree networks
in the existing literature [5, 13, 3, 9, 2, 1], from both practical and algorithmic perspectives.
Benoit et al. [3] studied the the replica placement problem on trees. They showed
that the problem is NP-hard to approximate within a factor of 3/2 even without distance
constraints (i. e., dmax(a) = 00, for all clients a) and when the network is a binary tree. They
obtained the above result by showing that the above problem generalizes the bin-packing
problem. Benoit et al. [2] presented a 2-approximation for the replica placement problem
without distances. For the case with distances, they designed a greedy algorithm with an
approximation ratio of (1 4+ A), where A is the maximum number of children of any node.

Arora et al.[1] presented an algorithm for tree networks with a constant approximation
ratio (independent of A). Their result also applies to the partial cover version, wherein the
input additionally specifies a number K and only K clients need to be serviced by a solution.

The replica placement problem can easily be seen to be a special case of the capacitated
set cover problem. The latter problem admits an algorithm with an approximation ratio of
O(logn) [12]; up to constant factors, the ratio is the best possible, unless NP = P [6]. For
the case of vertex cover, Chuzhoy and Naor [4] and Gandhi et al. [7] presented algorithms
for the capacitated vertex cover problem with approximation ratio of 3 and 2, respectively.
However, their algorithms can handle only the case of simple graphs. Saha and Khuller [11]
presented a 34-approximation algorithm for the more general case of multi-graphs.

The capacitated vertex cover problem plays an important role in the constant factor
approximation algorithm for the replica placement problem on tree networks, due to Arora
et al. [1], mentioned earlier. The above algorithm is based on the LP rounding technique. It
works by reducing the issue of rounding an LP solution for the replica placement problem to
an issue of rounding LP solutions of a suitably construed capacitated vertex cover instance.
The algorithms presented in the current paper also make use of the above strategy.

Our Results. Prior work has primarily dealt with the replica placement problem on tree
networks. In this paper, we study the problem on directed acyclic graphs. On DAGs, the
replica placement problem is as hard as the capacitated set cover problem. We therefore
focus on special classes of DAGs and provide constant factor approximation algorithms.
The first class of DAGs that we address are rooted DAGs that have bounded degree
and bounded tree-width; we call these BDBT-DAGs. Tree-width is a notion traditionally
associated with undirected graphs. A graph with bounded tree-width can be decomposed
into disconnected pieces by removing a small number of nodes. By tree-width of a DAG, we
shall mean the tree-width of the graph obtained by ignoring the direction on the edges.
Our first result is a constant factor approximation algorithm for BDBT-DAGs.
There exists a polynomial time algorithm for the replica placement problem on BDBT-
DAGs having an approximation ratio of 2 - (d + ¢t 4 2), where d and t¢ are respectively the
degree bound and tree-width bound. of the input BDBT-DAG.

Our second result deals with a generalization of BDBT-DAGs, which we call TBDBT-
DAGs (tree of BDBT-DAGs). Intuitively, a TBDBT-DAG is composed of BDBT-DAGs
connected in a tree-like manner. A TBDBT-DAG is constructed by starting with a skeletal

S. Arora, V. T. Chakaravarty, K. Gupta, N. Gupta, and Y. Sabharwal

Figure 1 Example of TBDBT-DAG. The figure also shows the root of one of the component
BDBT-DAGs and the pivot that it connects to in another BDBT-DAG.

tree T, whose vertices are referred to as proxies. Then, each proxy is substituted with
a BDBT-DAG. For each proxy ¢ in 7T, the root vertex of the associated BDBT-DAG is
connected to some vertex (called pivot) in the BDBT-DAG associated with the parent proxy
of ¢ (see Figure 1).
The overall DAG has bounded tree-width, but may not have bounded degree. Our main
result is a constant factor approximation algorithm for TBDBT-DAGs.
There exists a polynomial time algorithm for the replica placement problem on TBDBT-
DAGs having an approximation ratio of O(d + t), where d and ¢ are respectively the
maximum degree bound and maximum tree-width bound of any component BDBT-DAG
of the input TBDBT-DAG.
The class of TBDBT-DAGs clearly generalizes trees (wherein each component BDBT-DAG
consists of a single vertex). Therefore the above result generalizes the constant factor
approximation algorithm for the case of trees given in the prior work [1]. In fact, our analysis
is more refined and leads to an improved constant factor.

Discussion. Tree networks, considered in prior work, have a simpler structure wherein each
node has only one out-neighbor (i.e., parent). If we ignore the distance constraints, replica
placement on such networks reduces to a capacitated set cover scenario over a set system
consisting of a laminar family of sets. The classical set cover problem on such laminar familes
can easily be handled. Thus, the distance and the capacity constraints are the only critical
issue in the case of tree networks. On the the other hand, networks considered by us are
DAGs, wherein a node can have multiple (but, bounded) number of out-neighbors leading to
more complex set systems. In fact, any arbitrary set system can be encoded as an instance
of the replica placement problem if we allow general DAGs, or even bounded degree DAGs.
One of the important technical contributions of this paper is to show that the issue can
be addressed, if the DAGs additionally have bounded tree-width (namely, BDBT-DAGs).
However, the family of BDBT-DAGs do not encompass trees. Our main result deals with
the larger class of TBDBT-DAGs, which generalizes both BDBT-DAGs and trees.

2 Preliminaries

In this section we describe a natural LP for our problem and setup terminology that we will
use. We then formally define the specific class of DAGs that we address in this paper.

215

FSTTCS 2014

216

Replica Placement on Directed Acyclic Graphs

LP Formulation. We consider a natural LP formulation. We say that a solution opens node
u, if it places a replica on it. We say that a client a is attachable to a node u, if there exists a
path from a to v and d(a,u) < dmax(a). For a client a, let Att(a) denote the set of all nodes
to which client a can be attached. For a node u, let Att(u) denote the set of all clients that
can be attached to node u. For a set of nodes U, let Att(U) = UycpAtt(u).

For each node u € V, we introduce a variable y(u) that specifies the extent to which u
is open. For each client a € A and each node u € Att(a), we introduce a variable x(a, u)
that specifies the extent to which a is assigned to u. A node u is said to service a client a, if
z(a,u) > 0; we also say that a is assigned to u if u services a.

min Z y(u)

ueV
Z z(a,u) -r(a) < ylu) - W VueV) (1)
a€Att(u)
z(a,u) < y(u) (Va € A,u € Att(a)) (2)
Z z(a,u) = 1 (Va € A) (3)
u€Att(a)
ylu) < 1 MueV) (4)

Further, we add non-negativity constraints for all the variables. Constraint (1) (called
the capacity constraint) enforces that at any node the total request assigned does not exceed
the capacity W. Constraint (2) ensures that a client can be assigned to a node only to an
extent to which the node is open; without this constraint, it can be shown that the LP has
an unbounded integrality gap. Constraint (3) enforces that every client is serviced to an
extent of exactly one, i.e. every client is fully served. Constraint (4) requires that a node
can be opened to an extent of at most one.

For an LP solution o, we shall denote the variables of the solution by z, and y, unless
stated otherwise. We shall also use x and y to denote the variables when the solution is clear
from the context of the discussion. Consider an LP solution . The cost of an LP solution is
given by the objective function: cost(o) = > .y ¥o(u). For a set X C V, the cost of the
set X in the solution o is given by cost,(X) = >, cx Yo(u).

» Definition 1 (Fully-open, fully-closed and partially-open nodes). We call a node u fully-open,
if yo(u) = 1; fully-closed, if y,(u) = 0; and partially open, if 0 < yo(u) < 1. <

» Definition 2 (Load and Fully Loaded nodes). For a set of clients B C A and set of
nodes U C V, by load,(B,U) we mean the total assignments of B to nodes in U, i.e.,
loads(B,U) = > ,c5 Y vev Tola,v) - 7(a).

For a node u € V, By load, (u) we mean the total assignments to node u, i.e., load,(u) =
2 aeats(u) Tola,u) - r(a). A node u is said to fully loaded if load, (u) = W. <

» Definition 3 (Integrally Open and Integral Solutions). A solution o is said to be integrally
open, if every node is either fully-open or fully-closed and an integrally open solution is said
to be an integral solution if every client is serviced by exactly one node. |

DAGs of interest. In this paper we shall address two types of DAGs; these DAGs have
bounded tree-width. We recollect the concept of tree-width and then formally define the
DAGs that we address in this paper.

» Definition 4 (Tree-decomposition and tree-width). A tree-decomposition of graph G = (V, E)
is a pair ({V;|i € I},T) where Vi,...,V}, are subsets of V called pieces, I = [1,h], and T is a
tree with elements of I as nodes. A tree-decomposition must satisfy the following properties:

S. Arora, V. T. Chakaravarty, K. Gupta, N. Gupta, and Y. Sabharwal

1. Node coverage: every node of G belongs to at least one piece V;, i.e., UjeV; =V

2. Edge coverage: for every edge e = (u,v) € E, there is some piece V; containing both ends
of e, i.e., 3i € I such that {u,v} CV;

3. Coherence: for every graph vertex v , all pieces containing v form a connected component,
i.e.,Vi,j,k € I, if j lies on the path between ¢ and k in T', then V; NV, C V;

The width of ({V;]i € I},T) equals max{|V;| : i € I} — 1. The tree-width of G is the
minimum k such that G has a tree-decomposition of width k. |

We will use the following property of tree-decompositions for designing our algorithm.

» Property 1 (Separation Property). Let p be any piece of T. Suppose that T — p has
components Ty, Ty.... Ty. Then the subgraphs G[Th — V,],G[T2 — V,), ..., G[Tq — V}] have no
nodes in common, and there are no edges between them.

The first type of DAGs that we address have bounded degree and tree-width.

» Definition 5 (Bounded Degree Bounded Tree-width DAG (BDBT-DAG)). We say that a
rooted DAG is a bounded degree bounded tree-width DAG if the undirected graph obtained
by ignoring directions on the edges has bounded degree and bounded tree-width.

We denote the root node of a BDBT-DAG, G, by Rt(G). <

The second type of DAGs that we consider generalize BDBT-DAGs as well as trees.

» Definition 6 (Tree of BDBT-DAGs (TBDBT-DAG)). A TBDBT-DAG G is a pair ({D;|j €

J}, T) where Dy, Do, ..., Dy are BDBT-DAGs, J = [1,h] and T is a tree with the elements

of J as nodes and labeled edges satisfying the following properties:
The vertices of the BDBT-DAGs are disjoint, i.e., V(D;) NV (D;) = ¢ Vi,j € J, i # j.
The vertex set of G is the union of the vertices of BDBT-DAGs, i.e., V(G) = U;c V(D).
The edges of all the BDBT-DAGs are contained in G, i.e., E(D;) C E(G) for all j € J.
For every edge e = (D;, D;) in T, there is an edge (Rt(D;),#(e)) in G that links the two
BDBT-DAGs by connecting the root of D; to a node of V(D,) determined by the label
¢(e) on the edge; £(e) € V(D;) is said to be a pivot node.

Let Roots(G) be the roots of all BDBT-DAGs of G, i.e., Roots(G) = {Rt(D;) : j € J}. <«
We make the following observation regarding the tree-width of TBDBT-DAGs.

» Observation 1. If the mazimum tree-width of any component BDBT-DAG is t, then the
TBDBT-DAG has tree-width max{t,1}.

3 Algorithm for BDBT-DAGs via Stable Solutions

For the ease of exposition, we first consider the simpler case of BDBT-DAGs and present a
constant factor approximation algorithm. The components developed as part of the algorithm
will also be useful in handling the more generic TBDBT-DAGs.

The algorithm is based on the LP rounding technique. Let o;, be an optimal solution to
the LP formulation. The algorithm works by applying a sequence of transformations until
an integral solution is obtained, wherein each transformation increases the cost by at most a
constant factor. The notion of stable solutions plays a key role in the above process.

» Definition 7 (Stable solution). A solution o is said to be stable if the nodes can be
partitioned into two sets R and P called rich and poor nodes respectively such that the
following properties are satisfied:

217

FSTTCS 2014

218

Replica Placement on Directed Acyclic Graphs

1. The rich nodes, R, are fully open.

2. For any poor node u € P, the total extent to which the poor nodes service the clients
attachable to w is less than W, i.e., load, (Att(u), P) < W.

3. Every client is either serviced by only nodes in R or only nodes in P but not both. <«

Intuitively, a stable solution segregates the input instance into two parts, the first part
comprising of the rich nodes and the clients serviced by them, and the second part comprising
of the poor nodes and the clients serviced by them. It is easy to handle the first part, since
all the nodes in the instance are fully open. The second part has the useful feature that it is
uncapacitated in essence; meaning, no matter how we assign the clients, the capacity W at a
node can never be exceeded and hence, the capacity constraints can safely be ignored.

We next present two procedures. The first procedure works on any bounded degree DAG
and transforms an arbitrary LP solution o, into a stable solution o, with only a (d + 2)
factor increase in cost, where d is the degree bound. The second procedure works on any
bounded tree-width DAG and transforms any stable solution o4 into an integrally open
solution o;, with only a (t 4+ 1) factor increase in cost, where ¢ is the tree-width bound.
Combining the two procedures, we can handle any BDBT-DAG and transform an arbitrary
LP solution ¢;, into an integrally open solution ¢;, with only a constant factor increase in
cost. Finally, the integrally open solution can be transformed into an integral solution using
a cycle cancellation based method proposed in prior work [1].

The above procedures make use of a subroutine called pulling procedure, described next.
This subroutine is also employed by other algorithms in the paper to reassign the clients.

Pulling Procedure. Given a node u and a set of nodes X such that u ¢ X, by performing
the pulling procedure from X on to u, we mean reassigning the clients that are attachable to
u from X on to u while it has remaining capacity.

Formally, let oy, be the input solution. We process each client-node pair (a,v) iteratively
where a € Att(u) and v € X. Let 7,4 be the LP solution at the start of the current iteration.
We construct a new solution 7y, as follows. We set =, . (a,u) = zx,,(a,u) + § and
Trpon (V) = 2p,, (a,v) — 0 where

§ = min {xwold(aw% W_w“d”old(“)} _

r(a)

All other values of z, . (.,.) and y,, ., (.) are retained as in Tyq. Tnew is taken as the input
solution 7,4 for the next iteration. At the end of processing all client-node pairs, the solution
Tnew Of the last iteration is taken as the final solution o, output by this procedure.

Note that if load,,, (u) + load,,, (Att(u), X) < W (before the pulling procedure), then
load,,,, (Att(u), X) = 0, otherwise load,,,, (u) = W (after the pulling procedure).

Tout

3.1 Constructing Stable Solutions for Bounded Degree DAGs

In this section, we show how to transform any feasible solution o;, for a bounded degree
DAG into a stable solution o as stated in the following Lemma.

» Lemma 8. Any LP solution o;;, for a bounded degree DAG can be converted into a stable
solution o such that cost, (R) < (d+1) - cost(oi,) and cost,, (P) < cost(oy,) where R
and P are respectively the rich and poor nodes of the stable solution .

Proof Sketch. The transformation is divided into the reddening phase and browning phase.

S. Arora, V. T. Chakaravarty, K. Gupta, N. Gupta, and Y. Sabharwal

Reddening Phase. In this phase, the algorithm tries to make as many nodes fully loaded
as possible. We shall color all fully loaded nodes red. For this, the algorithm processes the
nodes iteratively in an arbitrary order. For every node, it checks if the node can become fully
loaded by performing the pulling procedure from non-red nodes. If so, we actually perform
the pulling procedure, open this node and color it red. The reddening phase completes when
all the nodes are processed. Hereafter, no node becomes fully loaded (red).

Browning Phase. In this phase, we process all the neighbors of red nodes that are not
already red. For each such node, u, we open the node, perform the pulling procedure on
u from non-red nodes and color it brown. Note that the total load on u, even after the

reassignments, will be less than W (otherwise u would have become red in the first step).

This completes the processing of the browning phase (and stage 1).

It can be shown that the solution at this stage is a stable solution taking the set of red
and brown nodes to be rich and the remaining nodes to be poor. The first two properties
are easy to check. The third property follows from the fact that if a client is attachable to a
rich node and is assigned to a poor node, then it must be attachable to a brown node; but
then the brown node would have pulled the assignments of this client from the nodes in P.

We now analyse the cost. Note that the cost of any feasible LP solution must be at
least [Y ,c47(a)/W]. Moreover, each of the red nodes is fully loaded. Therefore the
number of red nodes is no more than cost(c;,). There are at most d neighbours of a
red node; thus the total number of brown nodes is at most d - cost(o;,). This implies
that cost,, (R) < (d+1) - cost(c;,). As the extent of openness of the remaining nodes is
untouched, it follows that cost, (P) < cost(oip). <

3.2 Bounded Tree-width DAGs: Stable to Integrally Open Solutions

In this section, we show how to transform any stable solution o4 for a bounded tree-width
DAG into an integrally open solution o;, as captured in the following Lemma.

» Lemma 9. Let R and P respectively be the rich and poor nodes of a stable solution os of
a DAG, G, of constant tree-width t. Then o5 can be converted to an integrally open solution
Oio such that the nodes of R remain untouched, i.e., Yo, (1) = Yo, (u) for all u € R and
To,,(a,u) = T4, (a,u) for all clients a € A and nodes uw € R. Thus, cost,,, (R) = cost,, (R).
Moreover, if Zy is the set of of fully-opened nodes of P in 0;, then cost,, (Z1) < (t+1)-
cost,, (P). The remaining nodes of P are fully closed.

Proof Sketch. Our procedure shall color poor nodes yellow and white during its course of
execution; the yellow nodes will be opened and the white nodes will be closed. At the end
of the procedure all the poor nodes will be colored yellow or white thereby obtaining an
integrally open solution. We shall call a node resolved if it is either rich or colored (yellow or
white) and unresolved otherwise. Recall that rich nodes are already open. We shall maintain
two sets, Res and Unres of the resolved and unresolved nodes respectively. Every node of
the graph will either be in Res or in Unres. Initially we set Res = R and Unres = P. These
sets will be modified as we color the nodes and resolve them. We shall also say that a client
is resolved if it is only assigned to resolved nodes; we shall call it unresolved otherwise.

Consider a tree decomposition, ({V;|i € I'},T), of the DAG G having tree-width ¢. Fix
some piece p, containing Rt(G) to be the root of the tree decomposition and assume all
edges to be directed towards p,. We say that a client a is critical at piece p € I if p is the
highest piece along the path to p, such that a can be assigned to some node of V},. We call a
piece critical if it is critical for some client.

219

FSTTCS 2014

220

Replica Placement on Directed Acyclic Graphs

We process the pieces of the tree decomposition in any topological order (bottom-up); let
p be the piece being processed in the current iteration. We check if there is any client, a, that
is critical at p. If not, we do nothing. Otherwise, consider the partitioning of the set Unres
based on whether a node appears in p or not; let Y = UnresNV, and Y = Unres\V,,. Further,
let X be the nodes of Y that appear in some piece ¢ below p in the tree decomposition, i.e.,
X={ueY: :ue V, and 3 a path from ¢ to p in the tree decomposition}. We can show
that (i) the extent to which the nodes in X and Y are open collectively is at least 1, i.e.,
> wexuy Ys(v) > 1; and (ii) all the clients assigned to nodes in X are attachable to some
node of Y. We open up the nodes of Y and color them yellow. We account for the cost of
fully opening these nodes of Y by charging them to the extent to which the nodes of X UY
are open in the solution os. We perform the pulling procedure on all the nodes of Y by
pulling all the attachable clients from all nodes in Y. Note that the pulling on nodes of Y’
will ensure that no clients remain assigned to the nodes in X any more. We therefore close
all these nodes in X and color them white. We incur a factor (¢t + 1) loss in the process as
the tree-width is . Now, the nodes of Y are opened and the nodes of X are closed - we
therefore move them from the set Unres to Res. Note that any poor node is charged at most
once as it must be in Unres to be charged and it is moved to the set Res immediately after
being charged. This completes the processing of the piece p. We now outline why (i) and (ii)
must hold. For (i), since client a critical at p is unresolved, it can only be assigned to nodes
in X UY. Moreover » .y Tr,,(a,v) =1 and zr,,(a,v) < yr,,(v) on any node v. Hence
> vexuy Yroa(v) = 1. For (i), consider any client, b, serviced by some u € X. Now b could
not have become critical at any piece below p otherwise it would have been pulled to the
node it became critical on. Thus b must be attachable to some node of Y in p.

We close any unresolved nodes left at the end as no clients can be assigned to them (every
client has to be critical on some node). Hence we obtain an integrally open solution. |

3.3 BDBT-DAGs: Constant Factor Approximation Algorithm

In this section, we consider BDBT-DAGs and present a constant factor approximation
algorithm. Combining Lemma 8 and 9, we can convert the optimal LP solution ¢;, into an
integrally open solution o;,. The only issue with oy, is that the request r(a) of a client a
may be split and assigned to multiple nodes. On the other hand, our problem definition
requires that the request must be wholly assigned to a single node. We can address the issue
using a cycle cancellation procedure described in prior work[1].

» Lemma 10. Any integrally open solution o;, can be converted into an integral solution
Oout Such that cost(oout) < 2 - cost(oj,).

Using the cost analysis as stated in the lemmas, we see that cost(oou:) < 2- cost(o,) <
2 (costy, (R) + (t+ 1) - costy, (P)) < 2-((d+1)-cost(ow) + (t+ 1) cost(owm)) =
2-(d4+t+2)-cost(oin).

We have thus established the following theorem.

» Theorem 11. Any LP solution o;, for a BDBT-DAG instance can be transformed into
an integral solution oy such that cost(ouy) < 2-(d+t+2) - cost(oy,), where d and t are
respectively the degree bound and tree-width bound of the DAG.

4 Replica Placement Problem on TBDBT-DAGs

The goal of this section is to design a constant factor approximation algorithm for the replica
placement problem on TBDBT-DAGs. The algorithm builds on the procedure for handling

S. Arora, V. T. Chakaravarty, K. Gupta, N. Gupta, and Y. Sabharwal 221

BDBT-DAGs presented earlier. Recall that the procedure for BDBT-DAGs works in two
stages, wherein the first stage transforms an LP solution o, into a stable solution o5 and
the second stage transforms o, into an integrally open solution o;,. Finally, the solution o;,
is converted into an integral solution using techniques from prior work. In the context of
TBDBT-DAGsS, it is difficult to obtain a stable solution, because these DAGs do not have
bounded degree. Instead, our algorithm goes via a similar, but weaker notion of pseudo-stable
solutions. The process of converting pseudo-stable solutions to integrally open solutions
is also more involved and utilizes the concept of hierarchical solutions, which generalize
integrally open solutions. It suffices to get hierarchical solutions, since prior work has shown
how to transform such solutions to integral solutions. We next define pseudo-stable and
hierarchical solutions, and outline our two transformations.

» Definition 12 (Pseudo-stable solution). An LP solution o is said to be pseudo-stable, if
the nodes can be partitioned into two sets R and P called rich and poor nodes respectively
satisfying the following properties:

1. The rich nodes, R, are fully open.

2. For any poor node u € P, the total extent to which the poor nodes service the clients
attachable to u is less than W, i.e., load, (Att(u), P) < W.

3. Every client is either serviced by

a. only nodes in R.

b. only nodes in P.

c. nodes in both R and P. Any client a in this category should be attachable to exactly
one node in S, where S is the set of all poor roots having a rich pivot as their out-
neighbor, i.e., S = {u € Roots(G) NP : out-neighbor of w is a rich pivot}. The lone
node in S to which a is attachable is called the special root of a.

The clients in the first two categories are said to be settled, whereas those in the third
category are said to be unsettled. |

We transform any given LP solution to a pseudo-stable solution using a procedure similar
to the one used for obtaining stable solutions in the context of bounded degree DAGs; the
transformation is discussed in Section 4.1. The next (and more sophisticated) stage of the
algorithm converts a pseudo-stable solution into a hierarchical solution, defined below.

» Definition 13 (Hierarchical solutions). An LP solution o is said to be hierarchical if every
client is assigned to at most one partially-open node. |

Hierarchical solutions generalize the notion of integrally open solutions. In the context of
designing constant factor approximation algorithm for the case of trees, prior work presented
a procedure for transforming an LP solution into a hierarchical solution. For the case
of TBDBT-DAGs, we present a procedure for transforming pseudo-stable solutions into
hierarchical solutions. Given a pseudo-stable solution oy, our procedure works by segregating
0ps into two parts oy and oy with the following properties:

o1 is a stable solution for a subset of clients. We can transform this partial solution into

an integrally open solution ¢ using the procedure in Lemma 9, since TBDBT-DAGs

have bounded tree-width.

09 is a feasible solution for the remaining set of clients and has certain nice properties

that allow us to transform it into a hierarchical solution ¢%. This transformation is based

on the intuition that a TBDBT-DAG consists of a skeletal tree T, where each node is
in turn a BDBT-DAG. The skeletal tree structure allows us to use ideas from the prior

work[1] in obtaining the hierarchical solution .

FSTTCS 2014

222

Replica Placement on Directed Acyclic Graphs

We finally merge o} and o) into a single hierarchical solution o}, servicing all the clients.
The rest of the section is devoted to describing the different transformations.

4.1 Obtaining a Pseudo-stable Solution

In this section, we show how to transform any feasible solution o;, for a TBDBT-DAG into
a pseudo-stable solution ops. The following Lemma formally captures the transformation.

» Lemma 14. Any LP solution o;, can be converted into a pseudo-stable solution ops such
that cost,,, (R) < (d 4 2) - cost(os,) and cost,,, (P) < cost(osy,) where R and P are
respectively the rich and poor nodes of the stable solution ops.

Proof Sketch. This transformation is a minor modification from that used in Lemma 8 for
BDBT-DAGs. The transformation is divided into the reddening and browning phases.

The reddening phase is same as before. We make as many nodes fully loaded (red) as
possible, and open them. We perform the browning phase with slight modifications. For
every red node we color all its non-red neighbors brown except for the in-neighbors that are
in Roots(G). Note that every node has bounded degree ignoring the in-neighbors in Roots(G);
a node may have an arbitrary number of in-neighbors from Roots(G).

We now show that the solution is pseudo-stable. We take the set of all red and brown
nodes as R and the remaining nodes as P. Consider any client, a, assigned to a node v; in
R as well as a node vy in P; we need to show that a is attachable to exactly one node in
S. We first observe that a cannot be attachable to any brown node since then the brown
node must have pulled the assignments of a from nodes in P and a would not be assigned
to vg. This also implies that vy is red. We now show that a is attachable to at least one
node in S. Consider the path from a to v;. The non-red node closest to v; on this path, say
v3, must either be brown or in Roots(G) NP. But since a is not attachable to any brown
node, vz € Roots(G) NP. Moreover, the out-neighbor of v3 is a red (and hence rich) pivot
and therefore vz € S. Next we show that a cannot be attachable to two nodes in S. Suppose
a is attachable to two nodes, u,us € S. Then there must be a path between them; w.l.o.g.
let there be a path from u; to us. The out-neighbor of u; is a rich pivot, say v. Then, either
v is itself brown or there exists a brown node on the path from v to us (as v is red, ug € P
and we color all non-red out-neighbors of red nodes brown). This contradicts our inference
that a cannot be attachable to a brown node. Hence the solution is pseudo-stable.

The cost analysis is similar to that in Lemma 8. The change in factor arises because
earlier we could color at most d neighbors brown, but now we may color brown one more
neighbour — the out-neighbor of a red root (which is a pivot not in the BDBT-DAG). <«

4.2 Obtaining a Hierarchical Solution

In this section, we show how transform a pseudo-stable solution o,s into a hierarchical
solution o, and prove the following lemma.

» Lemma 15. Let R and P respectively be the rich and poor nodes of a pseudo-stable
solution 0,5 of a TBDBT-DAG, G. Let t be the mazimum tree-width of any of its component
BDBT-DAGSs. Then ops can be converted to a hierarchical solution o, such that the nodes
of R remain untouched, i.e., Yo, (u) = Yo, (u) for allu € R and z,,(a,u) = o, (a,u)
for all clients a € A and nodes u € R. Thus, cost,,(R) = costy (R). Moreover,
costy, (P) < (max{t,1} + 2) - cost,_(P).

S. Arora, V. T. Chakaravarty, K. Gupta, N. Gupta, and Y. Sabharwal

Proof. Let A; and As be the set of settled and unsettled clients with respect to o,s. We
split the original problem instance into two instances focusing on the settled and unsettled
clients, respectively. This is achieved by taking two copies of the original DAG, denoted I
and Io; we set r(a) = 0 for all unsettled clients in I; and 7(a) = 0 for all settled clients in
I5. From o, we can get two feasible LP solutions o; and o9 for the instances I; and I,
respectively. The solutions o1 and o9 are copies of 0y, except that we set z,, (a,u) = 0 for
all unsettled clients a and x,,(a,u) = 0 for all settled clients a, for all nodes v € V.

Note that o7 is a stable solution for I;. Hence, the solution o; can be transformed into
an integrally open solution ¢} for the instance I, using the procedure given in Lemma 9
(since a TBDBT-DAG has tree width max{¢, 1}, where ¢ is the maximum tree-width of any
of its component BDBT-DAGs). Let Z; be the nodes of P opened by this algorithm.

We now focus on the second instance Iz, consisting of only unsettled clients, and transform
the solution o9 into a hierarchical solution ¢ using the following Lemma.

» Lemma 16. Let R and P respectively be the rich and poor nodes of a pseudo-stable solution
o9 of a TBDBT-DAG with constant tree-width t having only unsettled clients. Then oo can
be converted to a hierarchical solution oy, such that the nodes of R remain untouched, i. e.,
Yoo (1) = Yo, (u) for all u € R and x4 (a,u) = x,,(a,u) for all clients a and nodes u € R.
Thus, costgyy (R) = cost,, (R). Moreover if Zy is the set of fully or partially open nodes of
P in 03, then costyy(Z2) < cost,, (P).

Proof Sketch. Let U be the set of unsettled clients. We process the nodes that are special
roots for some client iteratively in topological order (bottom-up) of the DAG. Let u be the
node currently being processed. Let B be the set of clients for which w is a special root and
let X, be the set of nodes of P to which the clients of B are assigned (this may include u
itself). We shall argue that all the clients assigned to X, have the same special root, i.e.,
u. We shall perform the pulling procedure on u from X, \ {u}. Note that all the clients in
B will be reassigned to u and no clients will remain assigned to X, \ {u}. We shall close
down all the nodes of X,, and open w« to the extent min{cost,,(X,),1}; thus the solution
remains feasible. We shall account for the cost of opening u by charging the extent to which
the nodes of X, are open in the solution o5. This completes the processing of u. We now
outline why all the clients assigned to X, have u as their special root. Consider any client
b assigned to a node v in X,,. By definition of X, there must be a client, ¢, assigned to v
and having special root as u. It can be argued that clients attachable to the same node will
have the same special root (this follows from the fact that the roots of the BDBT-DAGs are
arranged in a tree-like manner in a TBDBT-DAG using a skeletal tree). Since ¢ and b are
both attachable to v, they must have the same special root; therefore the special root of b
must also be u. Hence, all the clients assigned to X, have u as the special root.

Note that the clients in B are not assigned to any poor node above u. Therefore v and
B will not participate in any further processing (of other nodes that are special roots). Thus
any node is charged at most once only. The special roots are taken as the set Z,. <

We shall now combine the solutions o7 and o} into a solution o}, for the original input
TBDBT-DAG as follows. Let Z; be the set of fully open nodes in o} and Zs be the nodes of P

that are fully or partially open in o4. The nodes of R remain untouched in both the solutions.

We construct o, by opening all the nodes of R and Z;. Then, we open all the nodes in
Zs \ Z1 to the extent that they were open in o). The assignments are retained from both the
solutions o7 and o3 (the client sets are disjoint). Formally: (i) set y,, (u) = Yo (u) (which is
1) for all u € RU Zy; (ii) set yo), (u) = yoy (u) for all u € Zo \ Z1; (iii) set 24, (a,u) = 24/ (a,u)
for all settled clients a and nodes u; (iv) set x4, (a,u) = 2, (a,u) for all unsettled clients a

223

FSTTCS 2014

224

Replica Placement on Directed Acyclic Graphs

and nodes u. Note that no node in Z; U Z5 can become fully loaded, because they belong to
the set P. Moreover, the nodes of Z \ Z; are also sufficiently open to service the clients
assigned to them as they are not assigned any clients in the solution of the instance I; and
the solution to the instance I5 is feasible. The solution o}, is hierarchical as the unsettled
clients are assigned to at most one partially-open node since o}, is hierarchical.

Using the cost analysis as stated in Lemmas 9 and 16, we see that cost,, (R) = costg,, (R)
and cost,, (P) < costy(Z1) + costyy(Z2) < (max{t,1} + 1) - coste, (P) + costy,(P)
< (max{t,1} 4 2) - costg,, (P) This completes the proof of Lemma 15. <

4.3 TBDBT-DAGs: Constant Factor Approximation Algorithm

We now put together the different transformations and establish a constant factor approxima-
tion algorithm for TBDBT DAGs. Combining Lemma 14 and 15, we can convert the optimal
LP solution ¢, into a hierarchical solution o,. A procedure for converting any hierarchical
solution into an integral solution is implicit in prior work [1].

» Lemma 17. Any hierarchical solution oy, can be converted into an integral solution oy,
such that cost(oyyt) < 136 - cost(op).

The above procedure works by reducing the task to an issue of rounding LP solutions of a
capacitated vertex cover instance, for which Saha and Khuller[11] present a 34-approximation.
The proof is omitted.

Using the cost analysis as stated in the lemmas, we see that cost(ooy:) < 136-cost(op) =
136 - (costy, (R) + cost,, (P)) < 136 - (cost,,, (R) + (max{t,1} 4+ 2) - cost,,, (P)) < 136 -
((d+2) - cost(oyp) + (max{t,1} 4+ 2) - cost(osy,)) = 136 - (d + max{t,1} +4) - cost(op)

We have thus established the following theorem.

» Theorem 18. Any LP solution o;, for a TBDBT-DAG instance can be transformed into
an integral solution ooy such that cost(ooyut) < 136 - (d + max{t,1} +4) - cost(oyy,), where
d and t are respectively the maximum degree bound and the maximum tree-width bound of
any component BDBT-DAG of the TBDBT-DAG.

This yields a factor 680 approximation algorithm for the case of trees (substituting d = 0
and t = 0), improving upon the approximation ratio obtained in prior work[1].

—— References

1 S. Arora, V.T. Chakaravarthy, N. Gupta, K. Mukherjee, and Y. Sabharwal. Replica place-
ment via capacitated vertex cover. FSTTCS, 2013.

2 A. Benoit, H. Larchevéque, and P. Renaud-Goud. Optimal algorithms and approximation
algorithms for replica placement with distance constraints in tree networks. In IPDPS,
pages 1022-1033, 2012.

3 A. Benoit, V. Rehn-Sonigo, and Y. Robert. Replica placement and access policies in tree
networks. IEEE Trans. on Parallel and Dist. Systems, 19:1614-1627, 2008.

4 J. Chuzhoy and J. Naor. Covering problems with hard capacities. STAM Journal Computing,
36(2):498-515, 2006.

5 I Cidon, S. Kutten, and R. Soffer. Optimal allocation of electronic content. Computer
Networks, 40:205-218, 2002.

6 U. Feige. A threshold of In n for approximating set cover. JACM, 45(4):634-652, 1998.

7 R. Gandhi, E. Halperin, S. Khuller, G. Kortsarz, and A. Srinivasan. An improved approx-
imation algorithm for vertex cover with hard capacities. JCSS, 72(1), 2006.

S. Arora, V. T. Chakaravarty, K. Gupta, N. Gupta, and Y. Sabharwal

10

11

12

13

K. Kalpakis, K. Dasgupta, and O. Wolfson. Optimal placement of replicas in trees with
read, write, and storage costs. IEEE Trans. on Parallel and Dist. Sys., 12:628-637, 2001.
M. J. Kao and C.S. Liao. Capacitated domination problem. Algorithmica, pages 1-27,
2009.

Y.F. Lin, P. Liu, and J.J. Wu. Optimal placement of replicas in data grid environments
with locality assurance. In ICPADS, 2006.

B. Saha and S. Khuller. Set cover revisited: Hypergraph cover with hard capacities. In
ICALP, 2012.

L. Wolsey. An analysis of the greedy algorithm for the submodular set covering problem.

Combinatorica, 2(4):385-393, 1982.
J.J. Wu, Y.F. Lin, and P. Liu. Optimal replica placement in hierarchical data grids with
locality assurance. J. of Parallel and Dist. Computing, 68:1517-1538, 2008.

225

FSTTCS 2014

	Introduction
	Preliminaries
	Algorithm for BDBT-DAGs via Stable Solutions
	Constructing Stable Solutions for Bounded Degree DAGs
	Bounded Tree-width DAGs: Stable to Integrally Open Solutions
	BDBT-DAGs: Constant Factor Approximation Algorithm

	Replica Placement Problem on TBDBT-DAGs
	Obtaining a Pseudo-stable Solution
	Obtaining a Hierarchical Solution
	TBDBT-DAGs: Constant Factor Approximation Algorithm

