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Abstract
We study integrality gap (IG) lower bounds on strong LP and SDP relaxations derived by the
Sherali-Adams (SA), Lovász-Schrijver-SDP (LS+), and Sherali-Adams-SDP (SA+) lift-and-project
(L&P) systems for the t-Partial-Vertex-Cover (t-PVC) problem, a variation of the classic Vertex-
Cover problem in which only t edges need to be covered. t-PVC admits a 2-approximation
using various algorithmic techniques, all relying on a natural LP relaxation. Starting from this
LP relaxation, our main results assert that for every ε > 0, level-Θ(n) LPs or SDPs derived by
all known L&P systems that have been used for positive algorithmic results (but the Lasserre
hierarchy) have IGs at least (1 − ε)n/t, where n is the number of vertices of the input graph.
Our lower bounds are nearly tight, in that level-n relaxations, even of the weakest systems, have
integrality gap 1.

As lift-and-project systems have given the best algorithms known for numerous combinatorial
optimization problems, our results show that restricted yet powerful models of computation
derived by many L&P systems fail to witness c-approximate solutions to t-PVC for any constant
c, and for t = O(n). This is one of the very few known examples of an intractable combinatorial
optimization problem for which LP-based algorithms induce a constant approximation ratio, still
lift-and-project LP and SDP tightenings of the same LP have unbounded IGs.

As further motivation for our results, we show that the SDP that has given the best algorithm
known for t-PVC has integrality gap n/t on instances that can be solved by the level-1 LP
relaxation derived by the LS system. This constitutes another rare phenomenon where (even in
specific instances) a static LP outperforms an SDP that has been used for the best approximation
guarantee for the problem at hand.

Finally, we believe our results are of independent interest as they are among the very few
known integrality gap lower bounds for LP and SDP 0-1 relaxations in which not all variables
possess the same semantics in the underlying combinatorial optimization problem. Most import-
antly, one of our main contributions is that we make explicit of a new and simple methodology
of constructing solutions to LP relaxations that almost trivially satisfy constraints derived by all
SDP L&P systems known to be useful for algorithmic positive results (except the La system).
The latter sheds some light as to why La tightenings seem strictly stronger than LS+ or SA+
tightenings.
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1 Introduction

Let G = (V,E) be a graph on n vertices and t ∈ N, with t ≤ |E|. A subset of vertices S
that are incident to at least t many edges is called a t-partial vertex cover. In the t-Partial-
Vertex-Cover (t-PVC) optimization problem, the goal is to find a t-partial vertex cover
S of minimum size. t-PVC is a tractable optimization problem whenever t = Θ(1). In
the other extreme, |E|-PVC is exactly the classic NP-hard problem known as minimum
Vertex-Cover (VC). As such, any hardness of approximation for VC translates to the same
hardness for |E|-PVC. In particular, |E|-PVC is 1.36 and (2− o(1)) hard to approximate
assuming P 6= NP [10] and the Unique Games Conjecture [18] respectively. Moreover, there
exists an approximation preserving reduction from t-PVC to VC as long as n/t = nΘ(1)

[4]. Unlike VC, t-PVC is also known to be hard in bipartite graphs [5]. On the positive
side, [16, 25, 31] have proposed 2-approximation algorithms even for the weighted version
of t-PVC (see [20] for a wider family of results concerning partial covering problems). The
common starting point of all these results is the standard 0-1 LP relaxation for t-PVC
(see (t-PVC-LP) in Section 2.1). The best (asymptotic) approximation known for t-PVC
relies on a SDP relaxation and achieves a 2− Ω (log logn/ logn) ratio [15].

A standard performance measure for convex-programming (LP or SDP) relaxations is
the so-called integrality gap (IG), i.e. the worst possible ratio between the cost of the exact
optimal solution and the cost of the relaxation. As a measure of complexity, IG upper or
lower bounds are informative for two main reasons: (1) the majority of convex-programming
based approximation algorithms attain an approximation ratio equal to the best provable
upper bound on the IG. (2) Convex-programming relaxations can be seen as a restricted
and static model of computation that can immediately witness using fractional solutions the
existence of good integral and approximate solutions.

For a long series of combinatorial optimization problems, the best approximability known
agrees with the IG of natural convex-programming relaxations. In contrast, all analyses
for convex-programming relaxations for t-PVC [16, 25, 15] witness some integral solution
with cost sol to the relaxation satisfying sol ≤ 2 · rel + Θ(1), where rel is the value of the
relaxation. This leaves open the possibility that the IG of these relaxations is unbounded
when the optimal solution has small enough cost. In fact, it was already known that the
standard 0-1 relaxation (t-PVC-LP) has IG at least n/t. We establish the same IG for the
SDP of [15].

However, the power of convex-programming for combinatorial optimization problems is
not limited by the performance of the natural and static relaxations. A number of systematic
procedures, known as lift-and-project (L&P) systems, have been proposed in order to reduce
the IG of 0-1 LP relaxations P ⊆ [0, 1]m (the reader should think of P as the feasible region of
a relaxation of some combinatorial problem). The seminal works of Lovász and Schrijver [23],
Sherali and Adams [28], and Lasserre [21] give such systematic methods (LS, LS+, SA, and
La respectively).1 Starting with the polytope P , each of the systems derives a sequence
(hierarchy) of relaxations P (r) for P ∩ {0, 1}m that are nested, preserve the integral solutions
of P , and P (m) is exactly the integral hull of P (hence the IG of the last relaxation is 1
independently of the underlying objective). For these reasons, these systems are also known
as hierarchies (of LP or SDP relaxations). More importantly, if P admits a (weak) separation
oracle, then one can optimize a linear objective over the so-called level−r relaxation P (r) of

1 LS+ and SA systems derive stronger relaxations than the LS system, while LS+, SA are incomparable.
La derives SDPs that are at least as srong than relaxations derived by any other system.
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all methods but the La system in time mO(r) (the same is true also for the La system if the
initial relaxation has polysize). In other words, all L&P systems constitute “parameterized”
models of computation for attacking intractable combinatorial optimization problems.

There are numerous combinatorial problems for which either L&P systems have given the
best approximation algorithms known (with no matching combinatorial algorithms known),
or with approximation guarantees matching the best combinatorial algorithms known. We
refer the reader to [8] for a relatively recent survey.

For this reason, a long line of research has been devoted in proving IG lower bounds for
relaxations derived by L&P systems, while any such result is understood as strong evidence
of the true inapproximability of the combinatorial problem at hand. At the same time, an α
IG for level-r relaxations derived by L&P systems implies that algorithms (for a restricted
yet powerful model of computation) that run in time mO(r) cannot witness the existence
of α-approximate solutions to the combinatorial problem. It is notable that examples of
integrality gaps for L&P systems that are way off from the best approximability known for a
combinatorial optimization problem are quite rare.

1.1 Our contributions and comparison to previous work
To the best of our knowledge, this is the first study of integrality gap lower bounds for
lift-and-project tightenings of the natural 0-1 relaxation of t-PVC. Our starting point is the
standard LP relaxation (t-PVC-LP) that has been used in all 2-approximation algorithms
for weighted instances. We aim to derive strong integrality gap lower bounds for level-r
relaxations derived by the LS+, SA and SA+ systems, where r is as large as possible, and
t = O(n) (where n is the number of vertices in the input graph). It is worthwhile noticing
that there is a number of very strong IG lower bounds known for VC in L&P systems,
including IG of 2 − ε, for every ε > 0, for level-Θ(n) LS LPs [27], level-nΘ(1) SA LPs [6],
level-Θ(

√
log / log logn) LS+ SDPs [14], level-5 SA+ SDPs [2], and IG of 7/6− ε and 1.36

for level-Θ(n) [26] and level-nΘ(1) [32] La SDPs. Each of the aforementioned lower bounds
imply directly the same IG lower bounds, for the same level relaxation and for the same
system for (t-PVC-LP) by a straightforward reduction. Nevertheless, for the magnitude of t
for t-PVC for which we establish our results (roughly speaking for t ≤ n/2), and in which
the problem makes the transition from tractable to intractable, our IG lower bounds are
superconstant.

The majority of our results are negative. Our motivating observations are that (a) a
simple graph instance is responsible for a n/t IG of the SDP of [15] (Proposition 2), on which
the best algorithm know for t-PVC is based and (b) the level-1 LP derived by the LS system
(which is strictly weaker than the LS+ and SA systems) solves the same instances exactly
(Proposition 5). This is a remarkable example of a simple LP that outperforms, even in
a specific instance, an SDP that has been used for the best algorithm for a combinatorial
problem (the authors are not aware of another similar example). It is natural then to ask
whether relaxations derived by L&P systems can witness existence of 2-approximate solutions
to t-PVC. We answer this question in the negative by proving strong IG lower bounds for
all L&P systems (but the La system) that have been used for positive algorithmic results.
For all these systems we show that as long as n ≥ 2r + 2t+ 2, the level-r relaxations have
integrality gap at least

(
n−2r

2
)
/t · n. As an immediate corollary, we see that the integrality

gap of the starting LP (which is at least n/t) remains (1− ε) n
t for level-Θ(n) LP and SDP

relaxations. Our results could have also been stated as rank lower bounds of a certain
knapsack-type inequality (the one certifying a good IG). Many similar results have appeared
in the literature, e.g. [9, 22, 7], but they are all for polytopes that are of different structure
than the partial vertex cover polytope.

FSTTCS 2014
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The above negative results bring up another rare phenomenon; for the family of tractable
combinatorial optimization problems t-PVC, for which t = Θ(1), L&P-relaxations have
unbounded discrepancy. The authors are aware only of one more similar result [24]. This is
in contrast to many combinatorial optimization problems, and in particular VC, for which
constant-level L&P-relaxations either have integrality gaps matching the best approximability
or they even solve tractable variations of the problems. Finally, due to the approximation
preserving reduction from VC to t-PVC [4], when t = nΘ(1), our results also imply that
L&P systems applied on the t-PVC standard polytope cannot yield new insights for the
NP-hardness inapproximability of VC.

We believe that our results are of independent interest also for two more reasons. The
first reason is that relaxation (t-PVC-LP), for which we establish strong IG L&P lower
bounds, is defined over two types of variables, i.e. vertex and edge variables corresponding
to different semantics. IG lower bounds for L&P relaxations of such polytopes are very rare
(the authors are aware only of one such result [19]). The second reason is that it is not well
understood under which conditions semidefinite programming delivers better algorithmic
properties than linear programming. Especially for LPs, the probabilistic interpretation of
SA system (deriving the strongest LPs known), on which we elaborate below, has unified our
understanding both for positive and negative results. When it comes to SDPs, one needs to
employ seemingly stronger arguments that enhances the probabilistic interpretation of the
systems with a geometric substance. Interestingly, with our technique for showing L&P lower
bounds, we make explicit that it is possible to devise solutions to LP relaxations that satisfy
many PSD conditions, almost trivially. For this we identify a generic and remarkably simple
condition of solutions to LP relaxations that can fool a large family of PSD constraints (for a
high level explanation of the condition see Section 1.2). We hope that this simple observation
can help towards bridging our understanding for LP and SDP relaxations.

1.2 Our techniques
For our main results we employ some standard and generic techniques for constructing vector
solutions for convex relaxations derived by the SA system. Then we identify a condition
special to our solution that allows us to argue that the same construction is robust against
SDP tightenings. Our IG instance is the unweighted clique on n vertices, which for all t,
admits an optimal solution of cost 1. This IG construction suffers a decay that is proportional
to
(

n−2r
2
)
. The decay with r is unavoidable, at a high level, due to that level-r relaxations

solve accurately local subinstances induced by r many elements corresponding to variables.
Since our LP relaxation has edge variables, the removal of r many edges induces a clique of
n− 2r vertices. Since we still have

(
n−2r

2
)
edges, each edge needs to be covered “on average”

t/
(

n−2r
2
)
fractional times. Due to the symmetry imposed in our solutions, this is also the

contribution of each vertex in the objective.

Establishing the SA IG lower bound: A common and generic approach for constructing
SA solutions is to use the probabilistic interpretation of the system, first introduced in [17],
and that is implicit in all our arguments of Section 3. At a high level, the curse and the
blessing of the SA system is that level-r solutions are convex combinations of (LP feasible)
vectors that are integral in any set of r many variable-indices. These convex combinations
can be interpreted as families of distributions of feasible integral solutions for subsets of
the input instance of size-r (hence subsets of variables as well), that additionally enjoy the
so-called local-consistency property: distributions over different subinstances should agree
on the solutions of the common sub-subinstance. Designing such probability distributions
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over sets of indices that also enclose the support of any constraint gives automatically a
solution to the level-r SA. Finding however such distributions is in general highly non trivial,
especially when aiming for a big integrality gap.

The previous recipe is not directly applicable to the t-PVC polytope, as it has a defining
facet that involves all edges of the input graph. This means that had we blindly tried to
find families of probability distributions as described above, then we would have unavoidably
defined distributions of feasible solutions in the integral hull. Our strategy is to deviate
from the generic probabilistic approach, and focus first on satisfying constraints of the SA
relaxation of relatively small support.

At a high level, the novelty of our approach is that we do not explicitly define locally
consistent distributions of local 0-1 assignments, one for each subset of variables of bounded
size, rather we achieve this implicitly. One of the advantages of our construction is that it is
surprisingly simple. Specifically, we define a global distribution of 0-1 assignments as follows:
each of the vertices is chosen in the solution independently at random, and with negligible
probability, and covered edges are those incident to at least one chosen vertex.

The locally consistent distributions, that we need to associate each subset of variables
A with, are obtained by restricting the global distribution onto the subinstance induced
by A. This trick can be thought as a vast generalization of the so-called correction-phase
(or expansion recovery) that is common to all SA lower bounds, although it is sometimes
hidden in the technicalities of the proofs ([13] is a good example where the correction phase
is made explicit). According to this trick, set A is effectively blown up (or “corrected”) to a
big enough superset A with certain structural properties. This allows for sampling almost
uniformly at random over local 0-1 assignments (of variables in A) that can be easily seen to
induce consistent local distributions, whereas the same task seems to be impossible to be
realized directly on A. Interestingly, A is the whole instance in our case.

Our global distribution has a special property that it always satisfies all linear constraints
of the t-PVC polytope but the one demand-constraint, i.e. the constraint that requires t
many edges to be covered. In particular, the proposed vector solution is a convex combination
of exponentially many solutions in the integral hull and of the outlier all-0 vector. In fact our
global distribution assigns probability 1− o(1) to the latter vector, which is also responsible
for the large integrality gap.

Notably, there is no generic reason to believe that such a vector solution satisfies the
almost global constraint of the t-PVC polytope that involves all edges. To that end, we take
advantage of the fact that we do not need to define feasible solutions of the whole instance
in every small subinstance. This means that if presented with a small subinstance of the
input graph, we are allowed in principle to cover zero edges in that subgraph with positive
probability, as long as we do cover t many edges in the complement. That said, constraints
of large support cannot be treated probabilistically with respect to the global distribution.
Instead, we deal with such constraints almost algebraically (in contrast to the majority of
SA constructions), as one would normally do for a standard LP. More specifically, we rely
on the fact that when we condition on covering zero edges in a subclique of size at most 2r,
edges that do not touch this subclique are covered independently at random with significant
probability compared to how many edges are left. Linearity of expectation then can prove
for us that the demand constraint is indeed satisfied.

Establishing IG lower bounds for SDP hierarchies: Showing that our SA vector solution
is robust against SDP tightenings is by construction very easy. The reason is that all SDP
hierarchies (that have been used for positive algorithmic results), except the La system,
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distinguish constraints between those imposed by the starting 0-1 relaxation, and that are
always linear, and PSD constraints that are valid for all 0-1 assignments (independently of
the starting relaxation). As a result, any IG lower bound for strong LP relaxations that is
based on a solution that comes from a global distribution of 0-1 assignments immediately
translates into the same IG for a series of SDP hierarhies. A natural question that is raised is
whether such global distributions of 0-1 assignments can be used to fool strong LP relaxations
(and we answer this in the positive as we explain above). The second question that we raise
is whether our solution is robust also against Lasserre tightenings. We answer this in the
negative in Section 4.2.

2 Preliminaries

We denote by 1n the all-1 vector of dimension n, and we drop the subscript, whenever the
dimension is clear from the context. Similarly, by all-α vector we mean the vector α1. For a
fixed set of indices [m] := {1, . . . ,m}, we denote by Pr all subsets of [m] of size at most r
(for the partial vertex cover polytope and for a graph G = (V,E), we will use [m] = V ∪ E).
For some y ∈ RPr+1 , we denote by Y the so-called moment matrix of y that is indexed by P1
in the rows and by Pr in the columns, with YA,B = yA∪B. In other words, Y ∈ R|P1|×|Pr|

whenever y ∈ RPr+1 , whereas Y is a square symmetric matrix if r = 1. Finally, we denote by
{eI}I∈Pr

the standard orthonormal basis of Pr, so that YeA is the column of Y indexed by
set A.

Note: In the interest of space, we have omitted some proofs from this version of the paper;
we refer the reader to [12] for a full presentation.

2.1 Problem Definition and a Natural LP Relaxation
Given an integer t, and a graph G = (V,E) with vertex weights wi ∈ R+ for each i ∈ V ,
t-PVC can be alternatively defined as the following optimization problem where variables
{xq}q∈V ∪E are further restricted to be integral.

min
∑
i∈V

wi xi (t-PVC-LP)

s.t. xi + xj ≥ xe, ∀e = {i, j} ∈ E (1)∑
e∈E

xe ≥ t (2)

0 ≤ xq ≤ 1 ∀q ∈ V ∪ E (3)

Below we focus on uniform instances, in which wi = 1, for all i ∈ V . We denote the set
of feasible solutions of the above LP as Pt(G), or much simpler as Pt when the underlying
graph is clear from the context, and we call it the t-partial vertex-cover polytope. For each
edge e, the reader should understand xe as the 0-1 indicator variable that says whether e will
be among the (at least) t many that will be covered by some vertex, while for each vertex i,
the 0-1 variables xi indicate whether vertex i is chosen in the solution.

(t-PVC-LP) is the starting point for the 2-approximation algorithm for t-PVC in [4], and
a 2−Θ(1/d) approximation for unweighted instances, where d the maximum degree of the
input graph, in [29, 11]. Strictly speaking, the analysis that guarantees the 2-approximability
is not relative to the performance of the LP for all instances, as in fact (t-PVC-LP) has an
unbounded integrality gap.
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I Observation 1 (Star-graph fools (t-PVC-LP) [25]). Consider the unweighted star-graph
G = (V,E) with V = 1, . . . , n, n+ 1, and edges {n + 1, i} ∈ E, for i = 1, . . . , n. The
optimal solution to t-PVC is 1, for every t ∈ N. In contrast, consider the feasible solution
to (t-PVC-LP) that sets xe = xn+1 = t/n for all e ∈ E, and the rest of variables equal to 0.
This gives a solution of cost t/n, hence the integrality gap of (t-PVC-LP) is at least n/t.

This is also true for the SDP relaxation of t-PVC that gives the best known approximation
algorithm.

I Proposition 2. For all t ≤ n/2, the SDP of [15] has integrality gap at least n/t when the
input is the star-graph of Observation 1.

2.2 Hierarchies of LP and SDP relaxations
In this section we introduce families of LPs and SDPs derived by the so-called LS, LS+ [23]
and SA [28] systems. Starting with a polytope P ⊆ [0, 1]m, each of the LS+ and SA systems
derives a nested sequence of relaxations {P (r)}r=1,...,m, such that P (m) = conv (P ∩ {0, 1}m),
while under mild assumptions one can optimize over P (r) in time mO(r). For an instance
G = (V,E) of t-PVC, our intention is to derive and study this sequence of relaxations
starting with P = Pt(G), i.e. the feasible region of the standard LP relaxation (t-PVC-LP),
hence setting |m| = |V |+ |E|. For the sake of simplicity, we adopt a unified exposition of
the systems (see [22] for a more abstract exposition of lift-and-project systems).

For technical reasons, it is convenient to apply a standard homogenization to polytope
P as follows: variables xp are replaced by x{p} and each constraint aTx ≥ b is replaced by
aTx ≥ bx∅. Adding the constraint x∅ ≥ 0 along with the previous constraints define a cone
that we denote by K. Clearly K ∩{x∅ = 1} is exactly polytope P . Next we define a sequence
of SDP refinements of an arbitrary 0-1 polytope, proposed by Lovász and Schrijver [23], and
that is commonly known in the literature as the LS+-hierarchy (of SDPs).

I Definition 3 (The LS+ system). Let K(0) := K be a conified polytope P ⊆ [0, 1]m. The
level-r LS+tightening of K(0) is defined as the cone

K(r) =
{
x ∈ RP1 : ∃y ∈ RP2 : Y � 0, Ye∅ = x and

∀i ∈ [m], Ye{i},Y
(
e∅ − e{i}

)
∈ K(r−1)

}
The level-r LS+ refinements (tightenings) N (r)

+ (P ) of P is obtained by projecting K(r)
+ onto

x∅ = 1, i.e. N (r)
+ (P ) = K

(r)
+ ∩ {x ∈ RP1 : x∅ = 1}.

Next we introduce the SA system defined by Sherali and Adams [28], and that derives a
sequence of LP relaxations (and not SDP relaxations).

I Definition 4 (The SA system). Let K be a conified polytope P ⊆ [0, 1]m. The level-r SA
tightening of K is defined as the cone

M (r) =
{
x ∈ RP1 : ∃y ∈ RPr+1 : Ye∅ = x, and

∀Y,N with Y ∪N ∈Pr, Y
∑
∅⊆T⊆N (−1)|T |eY ∪T ∈ K

}
The level-r SA refinement (tightening) S(r)(P ) of P is obtained by projecting M (r) onto
x∅ = 1, i.e. S(r)(P ) = M (r) ∩ {x ∈ RP1 : x∅ = 1}.

Occasionally we abuse notation and we treat N (r)
+ (P ),S(r)(P ) as subsets of [0, 1]m, instead

of {x ∈ [0, 1]m+1 : x∅ = 1}. Also, relaxations derived by LS+ and SA are in principle
incomparable.
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We observe that level-1 SA tightening coincides with the level-1 Lovász-Schrijver-LP
tightening (N (1)

+ (P ) without the PSD constraint). This seemingly weak LP solves the
problematic star graph.

I Proposition 5. Let G be the star graph of Observation 1. Then the level-1 SA tightening
of Pt(G) has integrality gap 1.

Proof. Let x be a vector in the level-1 SA tightening of Pt(G), and let y be its moment
matrix Y as in Definition 4. Suppose now that for some b,b,d,d ∈ Rn and a ∈ R we have
YeT
∅ =

(
1,bT , a,dT

)
and YeT

{n+1} =
(
a,bT

, a,dT
)
, where we explicitly assume that the list

of indices has first all vertices (with the center being last), followed by all edges. Note that
with this terminology, the value of the objective for such a solution is a+ 1T

n b, which we
need to compare to opt = 1.

Next we focus on Y(e∅ − e{n+1}) that satisfies all homogenized constraints of Pt(G), and
in particular constraints (1) of edges {n+1, i}, i = 1, . . . , n, which require that b−b ≥ d−d.
Similarly, constraint (2) of Pt(G) implies that 1T

n (d− d) ≥ (1− a)t. Therefore a+ 1T
n b ≥

a+ 1T
n (d− d) ≥ a+ (1− a)t ≥ 1 = opt. J

Recall that by Proposition 2 the star graph is also responsible for a n/t integrality gap
for the SDP of [15], i.e. the relaxation which the best algorithm known for t-PVC is based
on. The surprising conclusion from Proposition 5 is that a simple LP that one can derive
systematically from Pt(G) outperforms that particular SDP for a specific instance. This is
in contrast to other known examples of level-Θ(m) LS tightenings that are strictly weaker
than natural and static SDP relaxations. Finally, it is worthwhile mentioning that we do not
know whether constant-level L&P tightenings of (t-PVC-LP) derive the SDP of [15].

For algorithmic purposes, a number of SA variants have been proposed that give rise to
hierarchies of SDPs (see [1] for a list of them). The simplest variation, and the one that has
resulted surprisingly strong positive results, is usually referred as the mixed hierarchy. This
system, that we denote here by SA+ imposes an additional PSD constraint.

I Definition 6 (The SA+ system). Let K be a conified polytope P ⊆ [0, 1]m. The level-r
SA+ tightening of K is defined as the refinement of cone M (r), as in Definition 4, where the
(m+ 1)-leading principal minor of the moment matrix Y, i.e. the principal minor of Y that
is indexed by sets of variables of size at most 1, is PSD.

Level-r SDPs derived by the SA+ and LS+ systems are not comparable. In Section 4 we
introduce a further refinement of SA+ that is strictly tighter than LS+, and for which we
actually derive the same IG lower bounds as in SA. We postpone its definition due to its
technicality.

By the generic algorithmic properties common to LS+, SA and SA+ systems, and for
the t-PVC polytope, it is immediate that for any graph G = (V,E) the level-(|V | + |E|)
relaxations have integrality gap 1. However, from the proof of convergence from all systems,
it easily follows that vectors in level-r relaxations satisfy any constraint that is valid for
the integral hull of Pt(G) and that has support at most r. If opt denotes the optimal value
for G = (V,E) then

∑
i∈V xi ≥ opt is a constraint valid for every integral solution with

support |V |. Hence, level-|V | LPs or SDPs derived by SA, LS+ and SA+ systems can solve
any t-PVC instance exactly. Can level-r relaxations close the unbounded integrality gap
of Pt(G) as exhibited in Observation 1, for r = o(|V |)? We answer this question in the
negative in the next sections by proving strong integrality gaps for superconstant level LP
and SDP relaxations. As a byproduct, we show this way that LPs and SDPs that give rise
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to algorithms that run in superpolynomial time cannot solve to any good proximity even the
tractable combinatorial problem t-PVC where t = Θ(1).

3 IG lower bounds for the Sherali-Adams LP system

This section is devoted in proving one of our main results.

I Theorem 7. Let n, r, t be integers with n ≥ 2r + 2t+ 2. Then the integrality gap of the
level-r SA-tightening of (t-PVC-LP) on graphs with n vertices is at least

(
n−2r

2
)
/t · n.

For this we fix a clique G = (V,E) on n vertices, along with r, t such that n ≥ 2r + 2t+ 2.
We start by presenting Random Process 1, that defines a distribution of 0-1 assignments for
variables of the polytope Pt(G).

Random Process 1 (Definition of distribution Dp)
Require: A fixed p ∈ [0, 1].

1: for i ∈ V do
2: Independently at random, set xi = 1 with probability p
3: end for
4: for e ∈ E do
5: Set xe equal to 1 as long as e is incident to some i for which xi = 1, and otherwise to

0.
6: end for

Output: Distribution Dp induced by the experiment above.

We are ready to propose a vector solution y ∈ RPr+1 to the level-r SA tightening of Pt(G).
For A ∈ Pr+1 (with ground set V ∪ E), and for each q ∈ A, let Xq be the random variable
which equals 1 if xq = 1 in the random experiment of Dp, and 0 otherwise. For all such
A ⊆ V ∪ E, we define

yA := E
Dp

∏
q∈A

Xq

 = P
Dp

[∀q ∈ A, xq = 1] (4)

where the last equality is due to that Xq are 0-1 variables. In particular, this means that for
all i ∈ V and f ∈ E we have y{i} = p, y{f} = 2p− p2.

We use the following technical lemma; it is a standard observation used in many SA lower
bounds.

I Lemma 8. For Y ∪N ∈ Pr+1, let wY,N :=
∑
∅⊆T⊆N (−1)|T |yY ∪T . Then

wY,N = PDp(Y ∪N) [∀q ∈ Y,Xq = 1, & ∀q′ ∈ N,Xq′ = 0] .

We can now prove that y is solution to the level-r SA polytope of t-PVC, for a proper
choice of p.

I Lemma 9. For the complete graph G = (V,E) on n vertices, and for all r, t with n ≥
2r + 2t+ 2, let y ∈ RPr+1 be as in (4), where p = t/

(
n−2r

2
)
. Then y ∈ S(r)(Pt(G)).

Proof. Let Y,N ∈ Pr with |Y ∪N | ≤ t. We need to show that y := Y
∑
∅⊆T⊆N (−1)|T |eY ∪T ∈

RP1 satisfies all constraints of Pt(G) (after they are homogenized).
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Asking that y satisfies the constraint (1) for an edge e = {i, j} is the same as asking that
wY ∪{i},N +wY ∪{j},N −wY ∪{e},N ≥ 0. Note that |Y ∪N ∪{i, j}| ≤ r+ 2. Due to Lemma (8)
and by linearity of expectation we have

wY ∪{i},N + wY ∪{j},N − wY ∪{e},N = E
Dp(Y ∪N∪{i,j})

∏
q∈Y

Xq

∏
p∈N

(1−Xp) (Xi +Xj −Xe)

 .
Recall in Random Process 1 we set xe = 1 only when at least one among xi, xj is already set
to 1. Therefore the previous expected value is always non negative.

In a similar manner we can show that box constraints (3) are satisfied. First, constraints
of the form xq ≥ 0, q ∈ V ∪ E are satisfied for y, since by Lemma 8, wY ∪{q},N represents a
probability of an event. As for constraints xq ≤ 1, we need to prove that wY ∪{q},N ≤ wY,N .
This is true again due to Lemma 8, and because the event associated with wY,N is logically
implied by that of wY ∪{q},N .

Finally we need to show that y satisfies constraint (2), i.e. constraint
∑

e∈E wY ∪{e},N ≥
t · wY,N . For this we recall that |Y ∪ N | ≤ r, and so in the original clique on n vertices,
there is a subclique G′ = (U,F ) on at least n− 2r ≥ 4 vertices, such that no edge in F is
incident to any element (vertex or edge) in Y ∪N , and |F | ≥

(
n−2r

2
)
> 0. This means that

for every f ∈ F the event that Xf = 1 is independent to any 0-1 assignment on variables
in Y ∪N , while PDp [Xf = 1] = 2p− p2 ≥ p, since p = t/

(
n−2r

2
)
≤ t/

(2t+2
2
)
< 1/2. Since we

also have |F | · p = |F | · t/
(

n−2r
2
)
≥ t, we conclude that

∑
e∈E wY ∪{e},N ≥

∑
e∈F wY ∪{e},N =

|F | · p · wY,N ≥ t · wY,N , as promised. J

The objective of the level-r SA LP is no more than n · p = t · n/
(

n−2r
2
)
, while the optimal

solution of the input graph has cost 1, concluding the proof of Theorem 7.
It is worthwhile noticing that our superconstant integrality gaps lower bounds hold only

for values of parameter t = o(n). The reader can easily verify that when the input is the
n-clique, then the optimal solution to (t-PVC-LP) is exactly t/(n− 1) (e.g. using the dual
of (t-PVC-LP)). Therefore, for any constant c and when n/c ≤ t ≤ n − 1, for which the
optimal solution to t-PVC is still 1, the integrality gap of (t-PVC-LP) is strictly less than c.

4 IG lower bounds for various SDP hierarchies

4.1 SDPs derived by the SA+ and LS+ systems
In this section we argue that the moment matrix Y of solution y that we proposed in Lemma 9
satisfies very strong PSD conditions. This will immediately imply the same IG lower bounds
of Theorem 7 also for stronger SDP systems, as summarized in the next theorem.

I Theorem 10. Let n, r, t be integers with n ≥ 2r + 2t + 2. Then the integrality gap of
the level-r LS+ and SA+ tightenings of (t-PVC-LP) on graphs with n vertices is at least(

n−2r
2
)
/t · n.

For proving Theorem 10, we fix the clique G = (V,E) on n vertices, together with r, t
such that n ≥ 2r + 2t+ 2. In all our arguments below we use y ∈ RPr+1 as defined in (4),
as well as vector w (indexed by pairs of sets of variables) as it appears in Lemma 8. We
also define the matrix X Y,N ∈ RP1×P1 , which at entry A,B (i.e. any two sets of size at
most 1) equals wY ∪A∪B,N . Note that matrix X Y,N is exactly the moment matrix of random
variables {Xq}q∈V ∪E condition on Xq = 1 for all q ∈ Y , and Xq′ = 0 for all q′ ∈ N , scaled
by the constant PDp [∀q ∈ Y,Xq = 1 & ∀q′ ∈ N,Xq′ = 0]. In particular, for each q ∈ V ∪ E
we have that vectors X Y,N eq,X Y,N (e∅ − eq) satisfy all constraints of Pt(G).
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Now recall that y ∈ RPr+1 is obtained by the global distribution Dp that associates any
0-1 assignment of variables of Pt(G) with some probability. In particular, if x ∈ {0, 1}P1 ,
with x∅ = 1, is such a 0-1 assignment, then xxT is a rank 1 PSD matrix. Clearly, matrix
X Y,N is a convex combination of such rank-1 PSD matrices, hence it is PSD as well. We
conclude with an Observation.

I Observation 11. Let Y,N be any subsets of V ∪E such that |Y ∪N | ≤ r− 1. Then X Y,N

is positive semidefinite.

It is now immediate that our SA solution y satisfies also the extra PSD constraint imposed
by SA+. What we only need to observe is that the leading principal minor of Y indexed by
sets of size at most 1 is exactly X ∅,∅, which is PSD by Observation 11. Hence, Theorem 7
also holds when SA tightenings are replaced by SA+ tightenings.

Next we argue that our SA solution is robust against much stronger SDP refinements.
Note that vector w is well defined for all level-r SA solutions y. Especially when y is obtained
as a convex combination of integral vectors, all matrices X Y,N are PSD, for all |Y ∪N | ≤ r−1.
That is, the latter constraints constitute a further refinement of the SA+ system. Again by
Observation 11 it is immediate that our level-r SA solution fools also these exponentially
many (in r) PSD conditions. These new PSD refinements are stronger than the constraints
derived by the level-(r − 1) LS+ system (see [30]); this concludes the proof of Theorem 10.

4.2 On SDPs derived by the Lasserre system
A natural question to ask is whether our SA solution fools SDPs derived by the so-called
Lasserre (La) system [21]. The level-r La-SDP is defined as follows. For y ∈ R2r+2, the
La-moment matrix Z is a matrix indexed by Pr+1 with ZA,B = yA∪B. For each constraint∑

i α
(l)
i xi − β(l) ≥ 0 of P , the La-slack moment matrix Z(l) is a matrix indexed by Pr with

Z(l)
A,B =

∑
i α

(l)
i yA∪B∪{i} − β(l)yA∪B. The level-r La SDP requires that all matrices Z and

{Z(l)}l are PSD. Notably, the PSDness of proper principal minors of matrices Z and {Z(l)}l

imply the level-r SA linear constraints [22]. As such, the level-r La SDP is at least as strong
as the level-r SA LP. Unfortunately, we show that the level-1 La SDP is not fooled by our SA
solution.

I Lemma 12. For any constant r, the level-1 La SDP eliminates the level-r solution proposed
in Lemma 9.

Proof. Fix n, t, p, and let y be the solution to the level-(r) SA-tightening as described in
Lemma 9. Consider the level-1 slack matrix for (2). In order to prove that this matrix is
not PSD, it suffices to focus on its principal minor Z that is indexed only by subsets of
vertices. To that end, let yA ∈ RP1 be the indicator vector of set A ⊆ V . Let also Sn denote
the expected slack we have in constraint (2) when each vertex is chosen with probability
p in the n-clique, and Cn,a be the number of edges that are covered by choosing a many
vertices in the same graph. Then, it is easy to verify by definition that Z has the form(
Z
)

I,J
= p|I∪J| (Sn−|I∪J| + Cn,|I∪J|

)
. Applying the Schur complement on Z with respect

to the entry
(
Z
)
∅,∅ = Sn, and given that Sn > 0, we have that Z is PSD if and only if

M − (p(Sn−1+Cn,1))2

Sn
Jn is PSD, where M is the minor of Z indexed by sets of vertices of

size 1, and Jn is the all-one n × n matrix. By symmetry, all rows of M have the same
sum, i.e. the all-one vector 1 is an eigenvector for the Schur complement. Elementary
calculations then show that the leading term of the corresponding eigenvalue, when p = c/n2,
is
(
−2c4 − 15c3

2 − 2c2
)

1
n < 0 (the rest of the summands are of order o(1/n)). J
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5 Discussion / Open Problems

The algorithmic significance of our results pose a natural (and classic) open problem, related
also to questions on extended formulations; Does t-PVC admit a polysize (or tractable)
LP or SDP relaxation that has integrality gap no more than 2, even when t = O(n)? It is
notable that this question has been studied in [3] for a generalization of t-PVC but with no
implications to our problem. Note also that our strongest IG lower bounds are valid only
when t/n = ε, for small enough ε > 0, where n is the number of vertices of the input graph.
As a result, another interesting open question is, given t and n, find the smallest r = r(n, t)
for which the level-r LP or SDP derived by some L&P system has integrality gap no more
than 2. In particular, can it be that r = ω(1) when t ≥ n?

Finally, our SDP IG lower bounds make explicit that global distributions of 0-1 assignments
can be used to witness solutions to SA LP tightenings of superconstant integrality gaps. We
also demonstrate that it is almost straightforward to show that the same solutions are robust
against SDP tightenings of many L&P systems except the La system. Can the same family
of global distributions fool La SDPs when it is also enriched with intuitive and stronger
conditions? A generic positive or negative answer would give new insights in understanding
the power of the various SDP hierarchies.

Acknowledgments. We would like to thank the anonymous referees for their valuable
comments.
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