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Abstract
The classic stable set problem asks to find a maximum cardinality set of pairwise non-adjacent
vertices in an undirected graph G. This problem is NP-hard to approximate with factor n1−ε

for any constant ε > 0 [10, 24], where n is the number of vertices, and therefore there is no hope
for good approximations in the general case. We study the stable set problem when restricted to
graphs with bounded odd cycle packing number ocp(G), possibly by a function of n. This is the
largest number of vertex-disjoint odd cycles in G. Equivalently, it is the logarithm of the largest
absolute value of a sub-determinant of the edge-node incidence matrix AG of G. Hence, if AG is
totally unimodular, then ocp(G) = 0. Therefore, ocp(G) is a natural distance measure of AG to
the set of totally unimodular matrices on a scale from 1 to n/3.

When ocp(G) = 0, the graph is bipartite and it is well known that stable set can be solved in
polynomial time. Our results imply that the odd cycle packing number indeed strongly influences
the approximability of stable set. More precisely, we obtain a polynomial-time approximation
scheme for graphs with ocp(G) = o(n/ logn), and an α-approximation algorithm for any graph
where α smoothly increases from a constant to n as ocp(G) grows from O(n/ logn) to n/3. On
the hardness side, we show that, assuming the exponential-time hypothesis, stable set cannot
be solved in polynomial time if ocp(G) = Ω(log1+ε n) for some ε > 0. Finally, we generalize a
theorem by Györi et al. [9] and show that graphs without odd cycles of small weight can be made
bipartite by removing a small number of vertices. This allows us to extend some of our above
results to the weighted stable set problem.
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1 Introduction

The stable or independent set problem is fundamental in combinatorial optimization. It
is as follows: Given an undirected graph G = (V,E), find a subset S ⊆ V of maximum
cardinality such that no two vertices in S are adjacent. Stable sets occur naturally when
pairwise conflicts of choice have to be respected. It is among the very first combinatorial
optimization problems that were shown to be NP-hard [14], and a showcase for the field
of hardness of approximation. There is theoretical evidence that the stable set problem is
extremely hard to solve: A celebrated result of Håstad [10], derandomized by Zuckerman [24],
shows that unless P = NP , there does not exist a

(
n1−ε)-approximation for the stable set

problem, where n is the number of vertices of G and ε > 0 is any fixed constant (here and
throughout the paper, n denotes the number of vertices of the graph in analysis). From a
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188 Solving the Stable Set Problem in Terms of the Odd Cycle Packing Number

parameterized perspective, the stable set problem is W [1]-hard (see e.g. [4]), i.e., there is no
polynomial time algorithm even if the cardinality of the optimal solution is considered as a
fixed parameter.

When restricted to special graph classes the problem becomes more tractable. For
instance, it is polynomial time solvable in perfect graphs and claw-free graphs [5, 8, 19], while
it has a PTAS e.g. on planar graphs [2]. Foremost, it can be solved efficiently on bipartite
graphs. In this case, the edge-node incidence matrix

AG(e, u) =
{

1 if u is incident to e,
0 otherwise,

is totally unimodular, see, e.g. [20]. By the Hoffman-Kruskal theorem [12], all the vertices of
the natural linear programming relaxation for the stable set problem

max
{∑
v∈V

xv : AG x ≤ 1, x ≥ 0
}

are then integral, and one can resort to algorithms for linear programming to efficiently solve
the problem, also in its weighted variant. A 0/1-matrix is totally unimodular if the largest
absolute value of any of its sub-determinants is at most 1. The guiding questions of our
paper are:

How well can the stable set problem be approximated if AG is not totally unimodular?
Is it possible to parametrize the approximability by the largest absolute value ∆ of a
sub-determinant of AG?

Recall that ∆ = 1, i.e. the totally unimodular case, is equivalent to G having no odd
cycles. ∆ maintains a neat combinatorial interpretation also when it is greater than 1.
Define the odd cycle packing number of G to be the cardinality of a maximum family of
vertex-disjoint odd cycles of G. We denote it by ocp(G), omitting the dependence on G

when it is clear from the context. Note that ocp(G) ≤ n/3 for all graphs G. As observed
in [7], for a graph G with edge–node incidence matrix AG, the largest absolute value of a
sub-determinant is ∆ = 2ocp. Hence upper bounding ∆ is tantamount to upper bounding
the odd cycle packing number of G.

Our contribution. We show that the stable set problem can be very well approximated if
ocp(G) = o(n/ logn). Beyond this, the approximation guarantee smoothly approaches the
hardness result from [10] as ocp approaches n/3.

I Theorem 1. The stable set problem on a graph G admits the following approximation
algorithms:

Polynomial time approximation scheme (PTAS) if ocp(G) = o(n/ logn);
O
(
n1/p)-approximation if ocp(G) ≤ n

2δp−1 for p integer (possibly a function of n) and
any constant δ > 1.

Surprisingly, these approximation guarantees can be obtained using simple greedy algo-
rithms. Theorem 1 implies that stable set is fixed-parameter tractable (with the parameter
being the size of the maximum stable set) when ocp = o(n/ logn), see Corollary 12, and that
graphs where the hardness [10] is achieved can essentially be partitioned into triangles.

Before discussing each of the two algorithms of Theorem 1 separately, let us remark that
both can be executed and will output a certificate of the approximation guarantee even
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without the knowledge of the ocp of the input graph. The first algorithm runs in polynomial
time on graphs with ocp = o(n/ logn). However, it might run in super-polynomial time on
graphs with ocp = Ω(n/ logn). The second algorithm always runs in polynomial time.

In order to make the first algorithm robust against malicious input, it would be sufficient
to find the ocp of the input graph. Unfortunately, computing the odd cycle packing number
of a graph is NP-hard and inapproximable up to log1/2−ε n for all ε > 0 (see the discussion
in [3]). The best-known approximation algorithm has only ratio

√
n [15]. But, we can use the

following weak separation theorem to distinguish between graphs with ocp(G) = Ω(n/ logn)
and graphs with ocp(G) = o(n/ log2 n).

I Theorem 2 (Weak separation). Let G(V,E) be a graph and 1 ≤ c ≤ n = |V | with c

possibly depending on n. In time O(n4) we can conclude that ocp(G) <
√
cn, or that

ocp(G) ≥ c, and hence distinguish between graphs with ocp(G) = Ω(n/ logn) and graphs with
ocp(G) = o(n/ log2 n).

Thus, for most inputs to the algorithms from Theorem 1 we can efficiently check if they
satisfy the condition on the ocp. Theorem 2 follows from a careful analysis of a simple greedy
algorithm for ocp, see Theorem 3.

Considering hardness of approximation, we show that the stable set problem over G
cannot be solved in polynomial time when ocp = Ω(log1+ε n) for all ε > 0, unless the
exponential-time hypothesis is false (see Theorem 13). Hence, under the exponential-time
hypothesis, Theorem 1 is best possible for graphs with ocp ∈ Ω(log1+ε(n)) ∩ o(n/ logn) for
each ε > 0.

The stable set problem, parameterized by the odd cycle packing number, can also be
seen as a special case of integer programming parameterized by the absolute value of a sub-
determinant of the constraint matrix. In particular, our hardness result provides an example
of a non-polytime solvable (under the exponential-time hypothesis) integer program when
the absolute value of the maximum sub-determinants is assumed to be of order Ω

(
nlogε n

)
.

In the weighted version of the stable set problem, a non-negative integer weight is
associated to each vertex, and the goal is to find the set of non-adjacent vertices of maximum
total weight. Extending our PTAS for the unweighted case we show that the weighted stable
set problem on G admits a PTAS if ocp = O(

√
logn/ log logn) (see Theorem 15).

A key ingredient in all our algorithms is an idea of Györi et al. [9]. If a graph does not
have small odd cycles, it is possible to find a small set of vertices that can be removed from
the graph in order to make it bipartite. We extend the result of [9] to the vertex weighted
case which supplies the necessary machinery for the PTAS for the weighted variant. This
generalization is obtained by relating odd cycles of small weight with the number of vertices
to be removed to make the graph bipartite. One easily checks that a variant relating odd
cycles of small weight with the weight of vertices to be removed cannot exist.

Organization of the paper. We conclude this first section settling notation and highlighting
related work. Section 2 is devoted to an improved approximation of ocp and Theorem 2.
Section 3 is devoted to the proof of Theorem 1. We will first outline an easy algorithm
(Algorithm 2) that provides the basic ideas and yields a first approximation result. This
will prove the second part of Theorem 1. Then, we will discuss ideas on how to refine the
analysis to prove the first part of Theorem 1. Section 4 deals with the weighted version of
both Györi et al.’s theorem and the PTAS for the weighted stable set problem.

FSTTCS 2014
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1.1 Notation
Throughout this paper we consider an undirected graph G = (V (G), E(G)). When G is
clear from the context we will denote its vertex and edge sets by V and E respectively. For
each v ∈ V (G), let Ni(v) denote the i-th neighborhood in a breadth-first search from v.
For S ⊆ V , we denote by G[S] the subgraph of G induced by S. For a weighted graph G
and v ∈ V (G) we use w(v) to denote the weight of v and for a subset S ⊆ V define
w(S) =

∑
v∈S w(v). All weights are assumed to be non-negative integers. Most of the other

notation and definitions we employ are standard, and we refer the reader to textbooks for
details on graphs, approximation algorithms, fixed-parameter tractability, and big-O notation
(see for instance [21], [4], and [23]).

1.2 Related work
A dual concept to packing odd cycles is finding an odd cycle transversal, i.e., the minimum
number of vertices that have to be removed to bipartize the graph. We denote it by oct(G).
Clearly for each graph G we have ocp(G) ≤ oct(G), and there are examples of graphs, called
Escher walls [18], where ocp = 1 and oct =

√
n. In some special cases there are odd cycle

transversals of small size. For instance, in planar graphs, it is known that oct ≤ 6 ocp [16].
Györi et al. [9] showed that oct is also small when G does not have “short” odd cycles.
More formally, for each ε > 0 (possibly a function of n), if G has no odd cycle of length at
most εn, then oct(G) ≤ f(ε) for some function f only depending on ε. This result and our
new generalization are key components of our algorithms. Both computing ocp and oct is
NP-hard, even when the input graph is planar [15, 6]. However, the two problems admit a√
n [15] and

√
logn [1] approximation, respectively.

The exponential-time hypothesis (ETH) [13] states that, for each k ≥ 3, k−SAT cannot
be decided with a sub-exponential time algorithm. An algorithm runs in sub-exponential time
if it takes time 2o(n) where n is the size of the instance. Impagliazzo et al.[13] also show that
the ETH implies that there is no sub-exponential time algorithm for the stable set problem.

In the rest of the paper we will often use the fact that a shortest odd cycle in a graph
can be found in time O(n3). This is standard, and can be found e.g. in [17].

2 Odd cycle packing

In this section, we show that a simple greedy algorithm provides a min{ocp, n/ocp}-
approximation for the ocp. Hence, when ocp = Θ(

√
n), it matches the O(

√
n)-approximation

by Kawarabayashi and Reed [15], and in all other cases improves over it.

Algorithm 1: Greedy algorithm for ocp
Input: a graph G.
Output: a family C of vertex-disjoint odd cycles of G.

1. Set G′ = G, C = ∅.
2. WHILE G′ is not bipartite:

i) Find a shortest odd cycle C of G′.
ii) Set C = C ∪ {C} and G′ = G′ \ C.

3. Return C.
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I Theorem 3. In time O(n4) Algorithm 1 finds a min{ocp, n
ocp}-approximation for ocp.

Proof. Let ocp := ocp(G), |V | = n, O be the optimal solution, and C = {C1, . . . , Ct} be
the solution output by Greedy. As Algorithm 1 will find at least one odd cycle (if any), we
know it is an ocp-approximation. So we only need to prove that t n

ocp ≥ ocp or, equivalently,
ocp2 ≤ tn.

For i = 1, . . . , t, let |Ci| = ci and ki be the number of cycles from O that intersect Ci
but none of C1, . . . , Ci−1. Note that

∑t
i=1 ki = ocp. As all cycles from O contributing to ki

have length at least |Ci| = ci, and as cycles from O are vertex-disjoint, we deduce

t∑
i=1

kici ≤ n. (1)

As Ci can intersect at most |Ci| = ci vertex-disjoint odd cycles, we have

0 ≤ ki ≤ ci for all i. (2)

We conclude that

ocp2 = (
t∑
i=1

ki)2 ≤ t
t∑
i=1

k2
i ≤ t

t∑
i=1

kici ≤ tn,

where the first inequality follows from Cauchy-Schwarz, and the others from (2) and (1)
respectively. The complexity bound follows from the fact that we can find an odd cycle in a
graph in time O(|V |3). J

In order to prove Theorem 2, it is sufficient to observe that, if the greedy algorithm
outputs C of cardinality t < c, then we know ocp(G) ≤

√
tn <

√
cn. Otherwise, ocp(G) ≥

t ≥ c. The second part of the theorem follows by taking c = n/ log2 n.
It is easy to see that Theorem 3 is essentially tight for each value of ocp. We give

here the construction for ocp =
√
n: let G be a graph with odd cycles C0, C1 . . . , C√n

all of length
√
n, such that C0 intersects each of C1, . . . , C√n in exactly one vertex, and

C1 . . . , C√n are pairwise vertex-disjoint. Then the greedy algorithm may pick C0 only, while
ocp(G) =

√
n. One easily generalizes this construction to other values of ocp.

Now let C be the family of all odd cycles of the graph, and let f-ocp be the optimum
solution to the following natural LP relaxation of ocp:

max
∑
C∈C

yC (ocp-LP)∑
C:v∈C

yC ≤ 1 for all v ∈ V

yC ≥ 0 for all C ∈ C.

With arguments very close to those used in the proof of Theorem 3 one can show the following,
also improving over results from [15]. We defer details to the journal version of the paper.

I Theorem 4. The greedy algorithm is a min{ocp, |V |f-ocp} algorithm for the ocp and a
min{f-ocp, |V |f-ocp} for f-ocp. In particular, the integrality gap of the LP given by (ocp-LP) is
bounded by min{f-ocp, |V |f-ocp}.

FSTTCS 2014
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3 Stable set

The main idea of all subsequent algorithms is the following. In a first step, delete small odd
cycles. Due to the definition of small, this will only delete a small portion of the graph. If
the remaining graph is bipartite, we can solve the stable set problem to optimality on this
remainder. Otherwise, in a second step, we can leverage the fact that the remaining graph
does not contain small odd cycles and obtain a large stable set.

The precise implementation of this second step depends on the size of the ocp. We
will first show a general method that does not require to know the ocp of the input graph,
i.e., its runtime is independent of the ocp but the approximation guarantee depends on it
(Algorithm 2). Then, assuming that ocp = o(n/ logn) we will show how to improve this
second step to obtain a PTAS (Algorithm 3 and 4).

3.1 A first approximation algorithm
Now, assume that G does not have an odd cycle of size at most 2k + 1. Lemma 5 states
that G must have a large stable set (depending on k). We defer the proof to the journal
version. A similar result, though with slightly different dependencies, was also obtained
in [22].

I Lemma 5. Let k ∈ N and G be a graph with no odd cycles of cardinality less or equal to
2k + 1 (k ≥ 1). Then, there exists a stable set S of size |S| > 1

3n
k

k+1 which can be found in
time O(n5/2).

I Corollary 6. Let G be a graph without odd cycles of cardinality less or equal to 2k + 1
(k ≥ 1). Then Lemma 5 gives a

(
3 n1/(k+1))-approximation algorithm to the stable set

problem.

Now, given any graph G, Algorithm 2 iteratively removes odd cycles of length up to some
fixed value 2k+ 1, and then applies Lemma 5 to obtain a large stable set. The optimal k will
depend on the odd cycle packing number of the graph. Since we want to apply it to graphs
whose ocp is not known a priori, we run the algorithm for all possible values of k. Let us
remark that the approximation guarantee of Algorithm 2 is in terms of the ocp. However,
we can compute an upper bound on the effective guarantee without knowing the ocp. This
is because the bound on the approximation guarantee compares the obtained solution with
the size of the entire graph.

Algorithm 2: Approximation algorithm for general ocp
Input: a graph G.
Output: a stable set of G.

1. For k = 1, . . . ,
⌊
n−1

2
⌋
do:

i) G′ = G, Sk = ∅.
ii) While there exists an odd cycle of cardinality at most 2k + 1 in G′, delete it from G′.
iii) If G′ is empty, choose any vertex v in G and set Sk = {v}.
iv) Else apply Lemma 5 to G′ and obtain Sk.

2. Return the set Sk of maximum cardinality.
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I Theorem 7. Algorithm 2 has approximation guarantee{
n if ocp = n

3

3n(n− (2p+ 1)ocp)
1

p+1−1 if ocp < n
2p+1 for some p ∈ N

for the stable set problem and runs in time O
(
n5).

Proof. There are Θ(n) iterations. Finding a shortest odd cycle takes O(n3) time. Hence,
the deletion step in each iteration takes at most O(n4) time. The application of Lemma 5
takes O(n5/2) time. Overall, Algorithm 2 runs in time O(n5).

We now prove the approximation guarantee. If G′ is empty at the end of step ii), the
guarantee is clearly n. Otherwise, at most (2k + 1)ocp vertices have been deleted. Hence, if
(2k+ 1)ocp < n, then G′ has at least n− (2k+ 1)ocp vertices and no odd cycle of cardinality
at most 2k + 1. Therefore, the application of Lemma 5 yields a stable set of size at least
1
3 (n− (2k + 1)ocp)

k
k+1 . This implies an approximation guarantee of

n/

(
1
3 (n− (2k + 1)ocp)

k
k+1

)
= 3n (n− (2k + 1)ocp)

1
k+1−1

,

under the condition that (2k + 1)ocp < n. Given that ocp < n
2p+1 we obtain the claimed

result with k = p. J

Note that this provides a smooth transition when ocp approaches n/3. This is formally
stated in the next corollary and establishes the second part of Theorem 1 (the difference in
the exponent is due to the offset of p in the bound on the ocp).

I Corollary 8. Let G be a graph with ocp(G) ≤ n
2δp+1 for a strictly positive integer p (possibly

a function of n) and a constant δ > 1. Then, Algorithm 2 yields a O
(
n1/(p+1))-approximation.

Proof. Since δ > 1 we have

ocp ≤ n

2δp+ 1 <
n

2p+ 1 .

Thus, we can use the result from Theorem 7 and obtain a guarantee of

3n(n− (2p+ 1)ocp)−
p

p+1 ≤ 3n
(
n

(
1− 2p+ 1

2δp+ 1

))− p
p+1

= 3n1/(p+1)
(

2δp+ 1
2p(δ − 1)

) p
p+1

.

Now, observe that 1
2 ≤

p
p+1 ≤ 1 and

(
2δp+1

2p(δ−1)

)
≤ (δ+ 1

2p )
δ−1 ≤ δ+1

δ−1 . The claim immediately
follows. J

Let us remark that Corollary 8 gives a O(
√
n)-approximation for graphs that have

ocp ≤ n
3+δ for small constant δ > 0. Note that in particular triangle-free graphs fall into

this category and the best known approximation algorithm for these graphs has a guarantee
of O(

√
n) [11]. Further, if ocp = O

(
n

logn

)
we obtain a constant factor approximation. We

will see next that for smaller ocp we can even obtain an approximation scheme.

3.2 A PTAS for ocp = o (n/ log n)
We now restrict our attention to graphs G with ocp = o (n/ logn), i.e., we assume that there
exists a function f(n) ∈ o(1) such that the input graph G on n vertices has ocp(G) ≤ f(n) n

lnn .
We give a PTAS for the stable set problem in these graphs. Again, the algorithm does not

FSTTCS 2014
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require the knowledge of the ocp and hence can be run on any graph. However, the existence
of such a function f is required to prove polynomial runtime.

The main new ingredient in this algorithm is to find a small odd cycle transversal X, i.e.,
a small set of vertices whose removal bipartizes the graph. We use a result by Györi et al. [9]
that gives a bound on |X| that is, in a certain sense, independent of the size of the graph.
Given the right parameter settings, we can ensure that |X| is small and can therefore be
removed from the graph. Solving stable set to optimality on the remaining bipartite graph
then yields the solution.

We start by restating the theorem of Györi et al. [9]. The proof in [9] contains a minor,
non-fatal error. We restate a correct version in Theorem 9 with adapted constants. The
proof is constructive and can be turned into a polytime algorithm. We do not outline the
proof of Theorem 9 here since it follows (albeit with new constants) also from the weighted
version in Theorem 14.

I Theorem 9 (from [9]). Let 0 < ε ≤ 1 (possibly a function of n) and assume there exists
no odd cycle of cardinality smaller than εn in G. Then, there is an odd cycle transversal X
of G of size |X| ≤ 48

ε ln 5
ε that can be found in O(n4) time.

Note that the bound in Theorem 9 is only useful for ε = Ω (logn/n). It will turn out
later that this is the reason for the limitation of our PTAS to graphs with ocp = o (n/ logn).

Algorithm 3 is a technical routine that will guarantee the existence of stable sets of a
certain size, given an upper bound b on the ocp, and a parameter c that will depend on the
approximation factor of the PTAS.

Algorithm 3: Subroutine for computing a large stable set
Input: graph G, parameters b ≥ c > 0.
Output: a stable set of G.

1. Set ε = c
b , and let G′ = G.

2. While there exists an odd cycle of cardinality smaller than ε|V (G)| in G′, remove it
from G′.

3. If G′ is not bipartite, find an odd cycle transversal X (Theorem 9) and remove it from G′.
4. Solve the stable set problem in G′ and return the solution.

I Lemma 10. Let G be a graph, and b and c chosen such that b ≥ ocp(G) > 0 and 0 < c ≤ b.
Then, Algorithm 3 applied to G, b, and c finds in time O(n4) a stable set of size at least

1
2

(
(1− c)n− 48 b

c
ln 5 b

c

)
.

Proof. The algorithm removes at most ocp odd cycles of size at most εn in Step 2. Hence,
G′ has at least n− ocp εn ≥ n− b cbn = (1− c)n vertices. The claim now follows using the
bound on |X| from Theorem 9 and the fact that every bipartite graph admits a stable set on
at least half of its vertices.

Finding a shortest odd cycle in G′ takes O(|V (G′)|3) ⊆ O(n3) time. Since the removal
of an odd cycle means the removal of at least three vertices, this procedure is only needed
O(n) times. Hence, Step 2 takes O(n4) time. Step 3 takes O(n4) time (Theorem 9). Solving
maximum stable set in G′ takes O(n5/2) time [21, Cor. 19.3a]. In fact, the proof requires
only one side of the bipartition which can be found in O(n2). Concluding, the runtime of
Algorithm 3 is O(n4). J



A. Bock, Y. Faenza, C. Moldenhauer, and A. J. Ruiz-Vargas 195

Algorithm 4: PTAS for the unweighted case when ocp = o(n/ logn)
Input: graph G and a parameter δ > 0.
Output: a stable set of G.

1. Set c = δ
3+2δ and b = c2n

50 lnn .
2. Run Algorithm 3 with b and c and obtain a solution S. Let C denote the union of the cycles

removed in Step 2 of Algorithm 3 and X denote the set found in Step 3 of Algorithm 3.
3. If 1

2 |C|+ |X| ≤ δ|S|, return S.
4. Otherwise, solve the maximum stable set problem by complete enumeration.

I Theorem 11 (Polynomial time approximation scheme). Let 1 ≥ δ > 0 and G be a graph
with ocp(G) = h(n), where h(n) = o

(
n

logn

)
. Algorithm 4 is a (1 + δ) approximation for

the maximum stable set problem on G and runs in time p(δ) + O(n4) for an appropriate
function p depending only on δ.

Proof. If Algorithm 4 returns a solution in Step 4, we obtain the optimal solution. Hence,
assume that Algorithm 4 returns a solution in Step 3. We derive an upper bound on the size
of the optimal solution OPT(G). Let G′ denote the bipartite graph after the application of
Step 3 of Algorithm 3. Recall that G = G′ ∪X ∪ C. In each cycle of C, the optimal solution
can take at most half of the vertices. Note that S is the optimal solution on the bipartite
graph G′ (Step 4 of Algorithm 3). Hence,

OPT(G) ≤ OPT(G′) + |X|+ 1
2 |C| = |S|+ |X|+

1
2 |C| ≤ (1 + δ)|S|.

Since ocp(G) = o(n/ logn) there exists a function f ∈ o(1) with ocp(G) ≤ f(n) n
lnn . Let

N be the constant

N = min
{
m ∈ N : c2m

50 lnm ≥ 1 and f(m′) ≤ c2

50 for all m′ ≥ m
}
.

We now prove that for n ≥ N the condition in Step 3 of Algorithm 4 will be satisfied. Hence,
the algorithm only uses complete enumeration for constant size graphs, where the constant
only depends on δ when we fix the function h in the statement of the theorem. Otherwise, it
relies on Algorithm 3 which runs in time O(n4). This concludes the analysis of the running
time.

Therefore, assume n ≥ N . By the definition of N and b we have b ≥ 1 and b = c2n
50 lnn ≥

f(n) n
lnn ≥ ocp(G). Thus, b is a valid upper bound for ocp. The size of each cycle in C is

upper bounded by εn. Therefore |C| ≤ ocp ε n ≤ b ε n = c n. Furthermore, we have from
Theorem 9 and the setting of b that

|X| ≤ 48b
c

ln
(

5b
c

)
≤ c n 1

lnn ln
( n

lnn

)
≤ c n.

Plugging this into the bound of Lemma 10 gives |S| = OPT(G′) ≥ 1
2 ((1− c)n− c n) =

1
2 (1− 2c)n. Finally, using c = δ

3+2δ we obtain

|X|+ 1
2 |C|

|S|
≤

cn+ 1
2cn

1
2 (1− 2c)n

= 3c
1− 2c = δ.

Thus, if n ≥ N , Algorithm 4 returns a solution in Step 3. J
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3.3 Fixed-parameter tractability
Algorithm 4 is in fact an efficient PTAS (see e.g. [4]), for its running time is at most
p(δ) +O(n4), for appropriate function p. Using standard arguments (see [4, Theorem 4.6])
we can use Algorithm 4 to conclude the following.

I Corollary 12. Let h : N→ N be a function such that h(n) = o(n/ logn). Then, the stable
set problem is FPT in the class of graphs with ocp = h(n). More precisely, for a graph G
in this class it can be solved in time f(OPT) + n4, where OPT is the maximum stable set
and f is an appropriate function depending only on OPT.

3.4 Hardness
I Theorem 13. If the ETH is true, then for each ε > 0, the maximum stable set problem
cannot be solved in polynomial time for graphs with ocp = Ω((logn)1+ε).

A sketch of the proof is as follows: given a graph G, we can “blow it up” in order to
obtain a new graph G′ with much more vertices, but the same ocp. In particular, the ocp
will be much smaller with respect to the number of vertices of the graph. Then, we show that
solving the stable set problem for G′ in polynomial time implies that we can solve the stable
set problem for G in sub-exponential time, contradicting the ETH. We defer the details to
the journal version.

4 Weighted stable set

4.1 Graphs without odd cycles of small weight are almost bipartite
In this section, we show that a graph without odd cycles of small weight has an odd cycle
transversal of small cardinality. This generalizes Theorem 9 by Györi et al. [9]. The proof of
Theorem 14 follows the same framework of the original: we iteratively find and delete “small”
neighborhoods of vertices from a “small” cycle. However, the presence of weights implies
some difficulties that are non-trivial to overcome. Let us mention two here: first, unlike
in the unweighted case, not all vertices from a “small” cycle are a suitable starting point
for this procedure. Second, it is not clear a priori how to define weighted neighborhoods
appropriately. We postpone the full proof to the journal version. The weighted version also
provides a proof of the unweighted case with different constants, but the same dependency
on ε.

I Theorem 14. Let G be a graph with n vertices and node weights w. Let 0 < ε ≤ 1 and
assume there exists no odd cycle C of G with w(C) < εw(V ). Then, there exists an odd cycle
transversal X of G of size |X| ≤ 96

ε ln 10
ε that can be found in O(n4 log(w(V ))) time.

4.2 A PTAS for ocp = O(
√

log n
log log n

)

In this section, we present a PTAS for the weighted stable set problem. Note that this time
we need to know the ocp of the graph in advance. We only sketch the proof here and defer it
to the journal version.

Similarly to the unweighted case, we iteratively remove odd cycles of small weight until
we can find an odd cycle transversal X of small cardinality, whose existence is guaranteed by
Theorem 14. There are two obstacles to overcome. First, the weight of the set X can be
very high, so we cannot afford to simply remove it as in the unweighted case. Second, the
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maximum weight of a stable set in the graph is not necessarily a constant fraction of the
total weight of the graph. Thus we have to ensure that the total weight of the odd cycles
that we remove is small with respect to the weight of the optimum solution.

We overcome the first obstacle by enumerating all possible stable sets on X. The second
obstacle can be dealt with via the following observation. The input graph G = (V,E) can
be partitioned into ocp many odd cycles and one bipartite subgraph. By the pigeonhole
principle, one of these subgraphs has weight at least 1

ocp+1w(V ). Since the maximum stable
set of an odd cycle C is at least 1

3w(C), we conclude that the maximum weight stable set
of G has weight at least 1

3ocp+3w(V ) ≥ 1
6ocpw(V ). The combination of those two difficulties

limits the applicability of our PTAS to graphs with ocp = O(
√

logn/ log logn).

I Theorem 15. Algorithm 5 is a PTAS for the weighted stable set problem if ocp =
O
(√

logn
log logn

)
.

Algorithm 5: PTAS for the weighted stable set problem in graphs with ocp = O
(√

logn
log logn

)
Input: graph G, vertex weights w : V → N, a parameter δ > 0.
Output: a stable set of G of weight at least 1

1+δ times the optimal value.

1. Set ε = δ
6(1+δ)ocp2 for the remainder of the algorithm and use G′ = G as a copy.

2. While there exists an odd cycle of weight at most εw(G′) in G′, remove it from G′.
3. Apply Theorem 14 to find an odd cycle transversal X of G′.
4. Compute the maximum weight stable set in G′:

For each stable set S̄ ⊆ X, compute the maximum weighted stable set S′ in G′ \ (X ∪
N(S̄)).
Return S̄ ∪ S′ with maximum weight.
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