
Finite-Valued Weighted Automata∗

Emmanuel Filiot1, Raffaella Gentilini2, and Jean-François Raskin1

1 Université Libre de Bruxelles
2 Universitá di Perugia

Abstract
Any weighted automaton (WA) defines a relation from finite words to values: given an input
word, its set of values is obtained as the set of values computed by each accepting run on that
word. A WA is k-valued if the relation it defines has degree at most k, i.e., every set of values
associated with an input word has cardinality at most k. We investigate the class of quantitative
languages defined by k-valued automata, for all parameters k. We consider several measures to
associate values with runs: sum, discounted-sum, and more generally values in groups.

We define a general procedure which decides, given a bound k and a WA over a group,
whether this automaton is k-valued. We also show that any k-valued WA over a group, under
some general conditions, can be decomposed as a union of k unambiguous WA. While inclusion
and equivalence are undecidable problems for arbitrary sum-automata, we show, based on this
decomposition, that they are decidable for k-valued sum-automata, and k-valued discounted sum-
automata over inverted integer discount factors. We finally show that the quantitative Church
problem is undecidable for k-valued sum-automata, even given as finite unions of deterministic
sum-automata.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases Nested word, Transducer, Streaming

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.133

1 Introduction

Finite-state acceptor machines have found many applications in computer science. One of
the most famous and studied example is the class of finite-state automata, which enjoys
good algorithmic and closure properties. For instance, the decision problems of inclusion and
equivalence, are decidable for finite-state automata. Finite-state automata and some of their
variants have been successfully applied, for instance, to the theory of model-checking [6].
Their behaviour is however purely Boolean (either they accept their input or not). In many
applications, this abstraction is not sufficient to accurately model systems where quantitative
aspects are important. Weighted automata (WA) have been introduced to overcome this
modelling weakness, as they can define quantitative languages, i.e. functions from words to
values in some arbitrary set. WA have been studied for long [9] but recently, applications
in computer-aided verification have been considered and new theoretical questions have
been addressed [3]. In contrast with finite-state automata, the inclusion problem is however
undecidable for some classes of WA, such as automata over the tropical semiring. One of the
main goal of this paper is to recover decidability for some expressive classes of WA.

∗ This work is partially supported by FNRS (Mobilité 2014) and by INdAM-GNCS (Project 2014). We
thank the anonymous reviewers for their careful reading of our manuscript and their many insightful
comments and suggestions.

© Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 133–145

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62919393?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.133
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

134 Finite-Valued Weighted Automata

Weighted automata (on finite words) extend finite-state automata with values which, in
general, are taken in a semiring (S,⊕,⊗). In this paper however, we focus on sum (weighted
automata over the tropical semiring) and discounted sum automata, but generalise our results
whenever it can be done. The value of an accepting run of a sum (resp. discounted sum)
automaton A on a finite word is the (left-to-right) sum (resp. discounted sum for a discount
factor λ ∈]0, 1[) of all the values occurring along that run. The value A(w) of a word w is
defined only if there exists an accepting run on w, as the maximum of all the values of the
accepting runs on w. As an example, consider the quantitative language L which associates
with each word w over the alphabet {a, b}, the value L(w) = max(#a(w),#b(w)), where
#x(w) is the number of occurrences of x in w. This language L can be defined by a sum
automaton A defined as the union of two disjoint deterministic WA Aa and Ab: For all
x ∈ {0, 1}, Ax has a single (accepting and initial) state with a 1-weighted loop on reading x,
and a 0-weighted loop on reading the other symbol.

The (quantitative) inclusion problem generalizes the classical inclusion problem for Boo-
lean languages. It is the problem of deciding, given two WA A and B, whether for all words
u, if u is accepted by A, then it is accepted by B and A(u) ≤ B(u). Even for the class of
sum automata, this problem is know to be undecidable [15]. In [10], we have introduced the
class of functional WA, i.e. WA such that every accepting runs on the same input word have
same value. We have shown, for several measures (sum, discounted sum, and ratio), that
this class is decidable, and has decidable inclusion problem.

Contributions. In this paper, we generalise the class of functional WA to k-valued WA
i.e., WA such that, for all input words w, the set of values computed by all the accepting
runs on w has cardinality at most k. For instance, the WA A defining the language L is
k-valued for all k ≥ 2. We show, for the measures sum and discounted sum (over inverted
integer discount factor 1/n), that they have decidable inclusion (and therefore decidable
equivalence). Given k ∈ N and a sum-automaton (resp. a discounted-sum automaton) A, we
prove that checking whether A is k-valued is decidable. We also show that if A is k-valued,
then it can be decomposed as finite union of functional (i.e. 1-valued) sum-automata (resp.
discounted-sum automata).

The last two results are more generally shown for group automata (GA). Group automata
extend finite state automata with weights over an infinitary group, i.e. a group (G,⊗) that
satisfies some condition called the infinitary condition. This condition implies that two
runs of a WA, on the same input, that synchronize on loop with different delays (i.e. the
difference between their output values before and after taking the loop are non equal), can
generate infinitely many different delays when iterating that loop. The semantics of a group
automaton is a function from finite words w to the set of values (in G) of all the accepting
runs on w. It is k-valued if any set of values associated with w has cardinality at most k. As
we show, sum- and discounted-sum automata can be treated as group automata, as far as the
max operation that combines the values of a word is not relevant. Real-time string-to-string
transducers are also group automata (over the free group generated by the output alphabet),
as they satisfy the infinitary condition. Therefore, our results (decidability of k-valuedness
and decomposition) do not only apply to sum- and discounted-sum automata, but more
generally to group automata, and as a particular case, we recover some results that were
already known for string transducers. We now detail our contributions:

k-valuedness problem. First, we show that given k ∈ N and a GA A, checking whether A
is k-valued is decidable. The proof of decidable k-valuedness for GA relies on a pumping
argument that allows us to bound the size of non k-valuedness witnesses. Applied to our

E. Filiot, R. Gentilini, and J.-F. Raskin 135

measures, this general procedure for testing k-valuedness is in PSpace for both sum and
discounted sum automata (seen as GA), when k is part of the input. The k-valuedness
problem is shown to be PSpace-hard for sum automata, when k is part of the input. When k is
fixed, we also show that testing k-valuedness can be done in PTime for sum automata, based
on PTime complexity result for checking the existence of a zero-circuit in a multi-weighted
graph [17]. Still for a fixed parameter k, we give another general k-valuedness checking
procedure for GA which, applied to discounted sum, provides us with a PTime complexity.
Applied to sum, this also yields PTime complexity with a worst constant than the ad-hoc
PTime procedure. This general procedure extends to GA a procedure that was defined in
[18] to decide k-valuedness of string-to-string transducers. Besides generalizing the procedure
of [18], we show here how to simplify it and provide a simpler correctness proof based on the
small witness property for non k-valuedness.

Decomposition of k-valued group automata. We show that any k-valued GA is equivalent
to a union of k functional GA. Our decomposition technique non-trivially extends to GA a
procedure that has been introduced for string-to-string transducers [19].

Inclusion, equivalence, and synthesis problems. Based on the decomposition result, we
give a general scheme to decide inclusion of two k-valued sum (resp. discounted sum) WA.
This scheme reduces the inclusion problem to checking the existence of a path with strictly
positive sum (resp. discounted sum) on all dimensions of a multi-weighted graph. We show
that this latter problem is decidable for sum (in PTime), and discounted sum (in PSpace)
with inverted discount factors 1/n, n ∈ N. Therefore, it yields decidable inclusion and
equivalence problems for these two classes of k-valued WA. If the two WA are given as unions
of deterministic automata and known to have included domains, this procedure is PTime
for sum automata, and PSpace for discounted sum automata. For general rational discount
factors, the problem is still open and related to other open problems identified in, e.g., [4]
and [2]. Finally, we consider the quantitative synthesis problem: the alphabet is partitioned
into two sets that are controlled respectively by two players. The winning objective of the
protagonist is given by a sum automaton A. The problem is to decide whether the protagonist
has a strategy to choose his letters such that whatever letters the opponent chooses, the
outcome of their interaction (which is a word) has strictly positive value by A. This problem
was shown to be undecidable for functional sum-automata and decidable for deterministic
sum-automata in [10]. Here, we show that it is undecidable for the union of p deterministic
sum-automata, for p ≥ 4.

Related Works. Comparisons with [10, 18, 19] have already been mentioned before. The
notion of k-valuedness originates from the theory of string-to-string transducers. For general
(non-deterministic) transducers, inclusion and equivalence are undecidable [11], but decidable
for k-valued transducers [12, 21, 7]. This latter result has then been extended to tree
transducers [20]. The k-valuedness problem for string-to-string transducers has been shown
to be decidable in several papers [12, 18, 21, 8], in PTime when k is fixed. Any sum automaton
A can be transformed into a string-to-string transducer TA over a unary output alphabet, by
adding m to all the weights of A (where m is the minimal weight occurring on the transitions
of A). Then A is k-valued iff TA is. While this encoding allows us to reuse existing results
on string-to-string transducers, the complexity results are not optimal, because the weights
of A are encoded in binary, and their translation into strings is unary. Moreover, there is no
such encoding for discounted sum automata and therefore we rather give general procedures
at the level of infinitary groups.

Sum-automata over N (called distance automata) have been considered in several papers,
and known results on the distance problem (deciding whether there exists an upper bound on

FSTTCS 2014

136 Finite-Valued Weighted Automata

the value of every input word) are nicely summarised in [22]. In particular in [22], the class
of finite-valued distance automata is considered. Finite-valuedness (deciding whether there
exists k such that the distance automaton is k-valued) is shown to be decidable by a direct
reduction to the string transducer case, and therefore the complexity bound is not optimal
when the weights are encoded in binary. The finite-valuedness problem is not adressed in
this paper. We leave it however as future work and it seems, again, that the technique of
[19] would nicely generalise to infinitary groups.

Finitely ambiguous sum automata are sum automata such that there exists a bound b on
the number of accepting runs on the same input word. They are known to be equivalent
to union of unambiguous sum automata [13, 14, 19, 22]. The best bound on the size of the
union (which matches exactly the degree of ambiguity of the automaton) is obtained in [19].
Our decomposition of k-valued WA as unions of unambiguous automata directly uses these
results as an intermediate step. In [13], it is shown that the equivalence problem for finitely
ambiguous sum-automata is decidable. There is however no precise complexity result.

Finally, let us mention that for the strictly positive discounted sum problem on multi-
weighted graphs, if one requires the discounted sum to be greater than or equal to 0 on all
the dimensions, then it corresponds to an open problem, which is at least as difficult as the
exact value (open) problem in 1-dimensional graph (i.e. decide in a weighted graph, whether
there exists a path with discounted sum exactly 0), as shown in [4].

2 Weighted Automata

Let W be a set (called weight-set) and Σ be a finite alphabet. An automaton over Σ and W
is a tuple A=(Q, qI , F, δ, γ) where Q is a finite set of states, F is a set of final states, qI ∈ Q
is the initial state, δ ⊆ Q×Σ×Q is the transition relation, and γ : δ →W is an edge-labelling
function, mapping δ onto a weight-set W . A run ρ of A over a word w = σ0 . . . σn ∈ Σ∗ is a
sequence ρ = q0σ0q1 . . . σnqn+1 such that q0 = qI and for all i ∈ {0, . . . , n}, (qi, σi, qi+1) ∈ δ.
We write ρ : q0

w|m−−−→ qn+1 to denote that ρ is a run on w starting at q0 and ending in
qn+1, where m = γ(q0, σ0, q1) · γ(q1, σ1, q2) · . . . · γ(qn, σn, qn+1). We write |ρ| to denote
the length of ρ, where |ρ| = n + 1. The run ρ is accepting if qn+1 ∈ F . A state q in
A = (Q, qI , F, δ, γ) is said co-accessible (resp. accessible) by some word w ∈ Σ∗ if there exists
some run ρ : q w|m−−−→ qf for some qf ∈ F (resp. some run ρ : qI

w|m−−−→ q). If such a word
exists, we say that q is co-accessible (resp. accessible). A is said to be trim if all its states
are both accessible and co-accessible. It is well-known that an automaton can be trimmed in
polynomial time [9].

A pair of states (q, q′) is co-accessible if there exists a word w such that q and q′ are
co-accessible by w. The domain of A, denoted by dom(A), is defined as the set of words
w ∈ Σ+ on which there exists some accepting run of A. Note that (Q, qI , F, δ) is a classical
finite state automaton over Σ. We say that A is deterministic if (Q, qI , F, δ) is deterministic.
We say that A is unambiguous if (Q, qI , F, δ) admits at most one accepting run for each word.

Give a run ρ = q0σ0 . . . σnqn+1 and 0 ≤ ` ≤ n + 1, we define ρ[`] = q`, ρ[:`] =
q0σ0 . . . σ`−1q` and ρ[`:] = q`σ` . . . qn+1. Given a run ρ′ = q′0σ0 . . . σnq

′
n+1 on the same input

as ρ, we define the synchronized product ρ⊗ ρ′ as the sequence (q0, q
′
0)σ0 . . . σn(qn+1, q

′
n+1).

A pair (`1, `2) such that 0 ≤ `1 < `2 ≤ n+ 1 is called a cycle (or loop) in ρ if ρ[`1] = ρ[`2].
The synchronized operator ⊗ can be inductively extended to sequences of runs as follows:
ρ1 ⊗ · · · ⊗ ρm = (ρ1 ⊗ · · · ⊗ ρm−1)⊗ ρm. A cycle (`1, `2) in ρ1 ⊗ · · · ⊗ ρm is sometimes called
a synchronizing cycle to emphasise that we consider product of runs.

If W is equipped with an operation ·, we define the value V (ρ) of a run ρ=q0σ0. . . σnqn+1

E. Filiot, R. Gentilini, and J.-F. Raskin 137

in A=(Q, qI , F, δ, γ) as: V (ρ) = γ(q0, σ0, q1) ·γ(q1, σ1, q2) · · · · ·γ(qn, σn, qn+1) if ρ is accepting
and V (ρ) = ⊥, otherwise1. The relation RA = {(w, V (ρ)) | w ∈ Σ+, ρ is a run of A on w}
is called2 the relation induced by A. For all k ∈ N, RA is k-valued if for all words w ∈ Σ+, we
have |{v | (w, v) ∈ RA, v 6= ⊥}| ≤ k. In this case we say that A is k-valued (and functional if
k = 1).

In this paper we consider weight sets having the algebraic structure of a group (W, ·,1).
Recall that a group is a structure (S, ·,1), where S is a set, · : S × S → S is an associative
operation, 1 ∈ S is a two sided identity element for · over S, and each element s ∈ S admits
an inverse s−1 ∈ S, such that s−1 · s = s · s−1 = 1 (the inverse is unique).

Functional automata over groups where studied in [10], where a polynomial functionality
test was given based on the notion of delay between two runs [5, 9] (cfr. Definition 1).
Moreover, [10] provided a determinization test for automata over infinitary groups, i.e.
groups satisfying the infinitary condition (c.f.r. Definition 2, below). Intuitively, the
infinitary condition ensures that iterating two runs on a parallel loop induces infinitely many
delays.

I Definition 1 (Delay). Let A = (Q, qI , F, δ, γ) be an automaton over a weight-set group
(W, ·,1). Given two elements d1, d2 ∈ W , the delay between d1 and d2 is defined by
delay(d1, d2) = d−1

1 · d2. Let p, q ∈ Q. A value d ∈ W is a delay for (p, q) if A admits two
runs ρ : qI

w−→ p, ρ′ : qI
w−→ q on some w ∈ Σ∗ s.t. delay(ρ, ρ′)=defdelay(V (ρ), V (ρ′)) = d.

I Definition 2 (Infinitary Condition). A group (W, ·,1) is said infinitary if it satisfies the
infinitary condition stating that for all v1, w1, v2, w2 ∈W , if v−1

1 w1 6= v−1
2 v−1

1 w1w2, then:

|{v−h2 v−1
1 w1w

h
2 | h ≥ 0}| =∞

A group automaton (GA) over Σ, is an automaton over Σ and an infinitary group. A
weighted automaton (WA) over Σ is an automaton over Σ and a semiring (we refer the reader
to [9] for a definition of semiring). If A is a weighted automaton over Σ and a semiring
(W,⊕, ·), the quantitative language LA defined by A is a mapping LA : Σ∗ → W ∪ {⊥},
where ⊥ 6∈W , defined for all w ∈ Σ∗ by LA(w) = ⊥ if w 6∈ dom(A), and LA(w) =

⊕
RA(w)

otherwise. Note that any weighted automaton over a semiring (W,⊕, ·) such that can be
seen as a group automaton, provided (W, ·,1) is an infinitary group, where 1 is the neutral
element for ·.

Remarkable subclasses of WA, such as e.g. Sum- and Dsum-automata [3], can be seen as
group automata, as outlined in the following remark (cfr. also Proposition 1).
I Remark (Sum- and Dsum-automata). Sum- (resp. Dsum-) automata are usually defined
as WA A = (Q, qI , F, δ, γ), where the weight set γ : δ → Z maps edges onto integers and
the value of a run ρ is simply the sum (resp. discounted sum) of the weights along its
edges. More precisely, given a run ρ = q0σ0q1 . . . σnqn+1 in a Sum-automaton A, V (ρ) is
defined by V (ρ) =

∑i=n
i=0 γ(qi, σi, qi+1) if ρ is accepting, and by V (ρ) =⊥ otherwise. If A is a

Dsum-automaton with discount factor λ ∈]0, 1[, then V (ρ) is defined by
∑i=n
i=0 λ

iγ(qi, σi, qi+1)
if ρ is accepting, and by ⊥ otherwise (we assume that ⊥< m for all m ∈ Z).

Clearly, Sum-automata can be seen as group automata over the group (Z,+, 0). For Dsum-
automata, consider the group (W, ·,1), where W = Q2, · is defined by (a, x) · (b, y) = (1

ya+

1 Here ⊥ /∈ W is a fresh symbol used to represent the fact that the value of ρ undefined.
2 As in [3], we do not consider the empty word as our weighted automata do not have initial and final
weight functions. This eases our presentation but all our results carry over to the more general setting
with initial and final weight function [9].

FSTTCS 2014

138 Finite-Valued Weighted Automata

b, xy), 1 = (0, 1), and given (a, x) ∈W , the inverse (a, x)−1 is given by (a, x)−1 = (−xa, x−1).
Given λ ∈ Q∩]0, 1[, a Dsum-automaton A on Σ can be seen as a group automaton over
(W, ·,1), by replacing each weight a in A with the pair (a, λ), a ∈ Z. Let w = w0 . . . wn ∈ Σ,
and consider a run ρ : q0

w−→ qn+1 on w in A. Then, ρ is valued by the pair (a, x) =
(1
λn γ(q0, w0, q1) + · · ·+ γ(qn, wn, qn+1), λn+1). Hence, (a, x) codes the value ax

λ = Dsum(ρ).
It can be shown that groups involved in the above definitions satisfy the infinitary condition.

I Proposition 1. Sum and Dsum automata can be coded as group automata (over an infinitary
group).

3 The k-Valuedness Problem

In this section, we consider the problem of determining whether a group automaton (for
fixed and unfixed k). As a first result, we provide a pumping argument that can be turned
into a simple k-valuedness test.

I Lemma 3 (Pumping). Let A = (Q, qI , F, δ, γ) be a group automaton over (W.·,1). A is
not k-valued iff there exists a word w ∈ Σ∗ having length |w| ≤ |Q|k+1 + |Q|k+1 · (k(k−1)

2)2

such that A admits k + 1 accepting runs with pairwise distinct values on w.

Lemma 3 yields immediately a decidability procedure for deciding if a given group automaton
is k-valued: It is sufficient to guess k + 1 runs of bounded length and check if they are
accepting and the outputs are pairwise distinct. Such a procedure turns out to be PSPACE
if the accumulated values along the guessed runs can be stored using polynomial space. In
particular, this is the case for the classes of Sum- and Dsum-automata. Therefore,

I Theorem 4. The k-valuedness problem is decidable for the class of group automata.
When k is part of the input, it is PSPACE-complete on the subclass of Sum-automata and
PSPACE-easy on the subclass of Dsum-automata.

I Remark. Lemma 3 can be put in parallel with Theorem 3 in [8], establishing that k-
valuedness for string to string transducers can be decided by analizing the image of a finite
set of words, namely those having length |Q|k+1F (k), where F (k) in [8] is an exponential
function expressed in terms of a recurrence relation.

3.1 The k-Valuedness Problem when k is a Fixed Constant
In this subsection, we study the k-valuedness problem on group automata assuming k as
a fixed constant. This assumption does not lower the complexity of the pumping based
procedure of the latter section (for both measures), however in this section we give other,
new procedures which provide better upper bounds for a fixed k. These new procedures, for
a non-fixed k, have worse complexities than the pumping based procedure (Exptime).

The Case of Sum-Automata. Theorem 6 below shows that Sum-automata can be tested
for k-valuedness in PTIME for fixed k. The polynomial k-valuedness algorithm designed
within Theorem 6 relies onto a reduction to the problem of finding a strictly positive path
(from the initial state to a final state) in a multi-weighted graph.

A k-weighted graph G = (Q, qI , E, F,w) is simply a weighted graph, where Q is the set
states, qI is the inital state, F is the set of final states, E ⊆ Q×Q is the edge relation and
w : E 7→ Zk assigns to each edge a vector of integers of dimension k. A path π = q0, . . . , qn
in G is strictly positive if and only if

∑n−1
i=0 w(qi, qi+1) > 0Zk . Lemma 5 below shows that

E. Filiot, R. Gentilini, and J.-F. Raskin 139

deciding whether a k-weighted graph G contains a strictly positive path to a final state can
be done in polynomial time.

I Lemma 5. Determining if a k-weighted graph contains a strictly positive path from the
inital state to a final state can be done in polynomial time.

Intuitively, the multi-weighted graph G built in Theorem 6 to decide if a given Sum-
automaton A is k-valued has dimension k. The vertices of G are (k + 1)-tuples of states of
A and G admits an edge e from (q1, . . . , qk+1) to (p1, . . . , pk+1) if and only if there exists
a ∈ Σ such that for all 1 ≤ i ≤ k+ 1 qi

a|ni−−−→ pi is an edge in A. Moreover the weight w(e) of
e is given by (n2 − n1, n3 − n2, . . . , nk+1 − nk). Therefore, A admits k + 1 accepting runs
qI

w|v1−−−→ p1, . . . , qI
w|vk+1−−−−→ pk+1 on w ∈ Σ∗ with pairwise distinct values v1 < v2 < · · · < vk+1

if and only if the associated multi-weighted graph G admits a strictly positive path to
(p1, . . . , pk+1).

I Theorem 6. The k-valuedness problem on Sum-automata can be solved in polynomial time,
when k is a fixed constant.

I Remark. Note that for string transducers the k-valuedness problem can be reduced in
polynomial time to the emptiness problem on one reversal nondeterministic multicounter
machines3 [12]. Although a similar reduction could be easily designed for Sum-automata, the
overall procedure for testing k-valuedness would be only pseudopolynomial, as it turns out
that emptiness of multicounter one-reversal machines where counters can be incremented by
arbitrary constants is NP-complete.

The Case of Group Automata. In this subsection we show that the whole class of group
automata can be tested for k-valuedness in polynomial time, assuming that k is an input
fixed constant. The main ingredients of the polynomial test designed are the same as the
ones used for the k-valuedness test on string transducers in [18], generalized from strings to
groups. However, the pumping result stated in the previous section allows to significatively
simplify the overall procedure of [18]. The first ingredient that we will use is the notion of
pairwise delays, that is a natural extension of the concept of delay between two runs at the
core of the functionality tests in [18]

I Definition 7 (k-Pairwise Delay). Let (W, ·,1) be an infinitary group, let k ∈ N. A k-pairwise
delay on W is a function δ : {〈i, j〉 | 1 ≤ i < j ≤ k} →W .

We denote by ∆k(G) the set of all k-pairwise delays on G = (W, ·,1) (omitting G and/or k
when the latter are clear from the context).

I Definition 8. A group automaton A = (Q, qI , F, δ, γ) on (W, ·,1) admits a k-pairwise delay
δ on (q1, . . . , qk) ∈ Qk iff there exists w ∈ Σ∗ such that for each pair 〈i, j〉, 1 ≤ i < j ≤ k, A
admits two runs qI

w|n−−→ qi, qI
w|m−−−→ qj such that n−1 ·m = δ(〈i, j〉). In this case, we say

that w witnesses δ on (q1, . . . , qk).

Given A = (Q, qI , F, δ, γ) on G = (W, ·,1), and k, i ∈ N, we define the function Di
k : Qk 7→

2∆k(G) where Di
k(q1, . . . , qk) is the set of k-pairwise delay on (q1, . . . , qk) witnessed by some

word w of length |w| ≤ i. Our pumping result ensures the existence of a bound b, polynomial
in |Q|, such that Db

k+1 retains enough information to decide whether A is k-valued:

3 The emptiness problem of reversal-bounded multicounter machines can be solved in polynomial time
[12].

FSTTCS 2014

140 Finite-Valued Weighted Automata

I Lemma 9. Let A = (Q, qI , F, δ, γ) be a group automaton over (W, ·,1), let b = |Q|k+1 +
|Q|k+1 · (k(k−1)

2)2. A is not k-valued iff it admits a tuple of final states (q1, . . . , qk+1) ∈ F k+1

such that Db
k+1(q1, . . . , qk+1) contains a (k + 1)-pairwise delay δ satisfying the following

condition: for all 0 ≤ i < j ≤ k + 1, δ(〈i, j〉) 6= 1.

Unfortunately, given (q1, . . . , qk+1) ∈ Qk+1, Db
k+1(q1, . . . , qk+1) could contain exponen-

tially many delays w.r.t. b, since each word w admits O(2|w|) runs on it. However, such delays
can be properly abstracted using a generalization from strings to groups of the very powerful
and elegant notion of minimal traverse, introduced in [18] to give a compact representation
of the delays generated by a k-valued string transducer. Formally,

I Definition 10 (k-Pairwise Partial Delay). Let (W, ·,1) be an infinitary group, let k ∈ N. A
k-pairwise partial delay on W is a function δ : {〈i, j〉 | 1 ≤ i < j ≤ k} →W ∪ ⊥.

We denote by ∆⊥k (G) the set of all k-pairwise partial delays on G = (W, ·,1). Given
τ, τ ′ ∈ ∆⊥k (G), we say that τ is smaller (i.e. “more abstract”) than τ ′ (τ v τ ′) if and only if
for all pairs 1 ≤ i < j ≤ k, if τ(〈i, j〉) 6= ⊥ then τ(〈i, j〉) = τ ′(〈i, j〉). Note that the lattice
defined by v on ∆⊥k (G) is not complete, namely τ, τ ′ admit a least upper bound if and only
if they are compatible on the defined components.

Definition 11, below, formally introduces the notion of minimal traverse for a set of
k-pairwise delays D. Intuitively, a minimal traverse τ for a set of k-pairwise delays D is so
called for two reasons. First, it is a k-pairwise partial delay τ that traverses i.e. intersects
each delay δ ∈ D on a pair of components (that is, τ(〈i, j〉) = δ(〈i, j〉) for some 1 ≤ i < j ≤ k).
Second, it is minimal w.r.t. v.

I Definition 11 (Minimal Traverse). Let D be a set of k-pairwise delays on (W, ·,1). A
traverse for D is a k-pairwise partial delay τ ∈ ∆⊥k (G) such that:

for each δ ∈ D, there exists a pair 〈i, j〉, 1 ≤ i < j ≤ k such that δ(〈i, j〉) = τ(〈i, j〉) 6= ⊥
for each pair 〈i, j〉, 1 ≤ i < j ≤ k, if τ(〈i, j〉) 6= ⊥, then there exists δ ∈ D such that
δ(〈i, j〉) = τ(〈i, j〉).

A minimal traverse for D is a traverse for D minimal w.r.t. v.

The set of minimal traverses for (a set of delays) D can obviously be empty, but more
importantly its maximum size depends only on k, as stated in Lemma 12 (i.e. it is a constant,
if k is assumed to be a constant). Given a set of delays D, we denote by α(D) the set of
minimal traverses for D.

I Lemma 12 ([18]). For each set of k-pairwise delays D on (W, ·,1), |α(D)| ≤ 2k4 .

We are now ready to present the announced abstraction for Di
k. Given Di

k : Qk 7→ 2∆k(G),
we denote by α(Di

k) : Qk 7→ 2∆⊥
k (G) the function that associates with each tuple of states

(q1, . . . , qk) ∈ Qk, the set of minimal traverses α(Di
k(q1, . . . , qk)) for Di

k(q1, . . . , qk).
Lemma 13 below states that the abstraction α retains enough information to decide

whether A is k-valued by inspecting α(Db
k+1), where b = |Q|k+1 + |Q|k+1 · (k(k−1)

2)2 is the
bound given by our pumping lemma.

I Lemma 13. Let A = (Q, qI , F, δ, γ) be a group automaton over (W, ·,1), let b = |Q|k+1 +
|Q|k+1 · (k(k−1)

2)2. A is not k-valued iff it admits a tuple of final states (q1, . . . , qk+1) ∈
F k+1 such that α(Db

k+1)(q1, . . . , qk+1) does not contain a minimal traverse τ satisfying the
following condition: τ is equal to one on each pair of components on which it is not ⊥, i.e.
τ v 1k+1.

Lemma 14 states that α(Di+1
k) can be computed from α(Di

k) (in PTIME).

E. Filiot, R. Gentilini, and J.-F. Raskin 141

I Lemma 14. Let A = (Q, qI , F, δ, γ) be a group automaton. For all i > 0, α(Di
k) can be

computed in polynomial time wrt |Q| and the size of α(Di−1
k).

We are finally ready to state our polynomial result for testing k-valuedness:

I Theorem 15. Let A be a group automaton over (W, ·,1). If the delays accumulated along
each polynomially bounded path of A can be computed in polynomial time, then k-valuedness
can be tested in polynomial time for A, when k is a fixed constant.

I Corollary 16. The k-valuedness problem on Dsum-automata can be solved in polynomial
time, when k is a fixed constant.

4 Decomposition of k-valued group automata

In this section, we show that any k-valued group automaton A (over an infinitary group)
is equivalent to a union of unambiguous group automata. Beside providing more insights
toward expressivity issues, the equivalence established throughout this section will be used
in Section 5 to provide positive results w.r.t. the decidability of the quantitative language
inclusion problem on k-valued WA. The proof of this equivalence goes in two steps. First, we
prove that A is equivalent to a k-ambiguous group automaton (for every input string, there
are at most k accepting runs). The construction generalizes to groups that of [19] established
for string-to-string transducers. Then, it is know that any k-ambiguous group automaton is
equivalent to a union of unambiguous ones. This result has been proved in [19] for string
transducers, based on a notion of lexicographic covering of k-ambiguous automata that can
be directly applied to group automata.

From k-valued to k-ambiguous group automata. We assume that G = (W, ·,1) is a group
that satisfies the infinitary condition. Recall that delay(u, v) = u−1 · v for all u, v ∈ W .
The construction we present in this section generalizes to groups the construction of [19],
proved for string-to-string transducers. In [19], the k-ambiguous equivalent transducer non-
deterministically guesses, when it reads an input string u, an output string v and a run ρ
that produces v such that all the runs on u that are strictly smaller than ρ (according to a
lexicographic order on runs) either (i) produce a different value, or (ii) have a delay that
exceeds some bound N on some prefix of u. For a sufficiently large N (that depends on the
transducer only), there are at most k such runs ρ if the transducer is k-valued.

In order to check properties (i) and (ii), it suffices to store the delays between the current
chosen run ρ with all the smaller runs. This is done by keeping track of all the states q
the smaller runs can reach, together with all the possible delays associated with q. If some
delay exceeds the bound N , it can safely be replaced by the value ∞, and therefore one
only needs to store delays of length N at most. The main difficulty, when generalising this
construction to groups, is that for groups, there is no notion of “long” delay since in general,
the group is not equipped with a metric. Instead, the bound N we consider is on the number
of different delays between the prefixes of the current chosen run ρ and the prefixes of the
smaller runs. Given two runs ρ, ρ′ on the same input word u ∈ Σ∗, we denote by lag(ρ, ρ′)
the set lag(ρ, ρ′) = {delay(ρ[:i], ρ′[:i]) | 0 ≤ i ≤ |u| + 1}. Our construction is based on the
following key lemma, that generalizes over group a similar lemma for strings proved in [19].

I Lemma 17. Let A be a trim group automaton over G with n states. If A is k-valued, then
for all tuples of runs (ρ1, . . . , ρk+1) on the same input, there exists 1 ≤ i < j ≤ k + 1 such
that:
1. ρi and ρj have the same output, i.e. V (ρi) = V (ρj).
2. |lag(ρi, ρj)| ≤ nk+1.

FSTTCS 2014

142 Finite-Valued Weighted Automata

Based on Lemma 17, we show that any k-valued trim GA A = (Q, qI , F,∆, γ) over G is
equivalent to some k-ambiguous GA A′ = (Q′, q′I , F ′,∆′, γ′). We let N = nk+1, where n is
the number of states of A. The idea is to order the transitions of A with a total order ≺A and
to extend it to a lexicographic order over runs. Then, the construction non-deterministically
guesses a run ρ of A, and checks that all the runs that are smaller than ρ produce either a
different value than ρ, or have a lag with ρ whose size exceeds N . Lemma 17 will ensure
that there are at most k such runs ρ on the same input. In order to check these properties,
A′ guesses the transitions of ρ and for each state q ∈ Q, it stores all the lags (which are sets
of delays) between the current prefix of ρ and the runs that end-up in q and are smaller than
this prefix. If the size of a lag exceeds N , then A′ replaces this lag by the extra value ∞.
We will see that doing so, any lag that has to be stored by A′ is a lag that can be generated
by two runs of length n2k+3 at most, and therefore the state space will be finite.

Given a lag between two runs ρ1 and ρ2 and two transitions on the same symbol that
extend these two runs respectively, in order to compute the lag of the extended runs, A′ also
needs to know the delay between ρ1 and ρ2. Therefore, A′ also needs to store, for each lag,
the “current” delay contained in this lag.

Construction of A’. Let us now define formally the state set Q′ of A′. We let D be the set
of all delays that can be generated by pairs of runs of length at most N2n4 (we will show
later why we need to take such a value). Note that D is a finite set. Let also PN (D) be all
the subsets of D of cardinality at most N . Then, we let Q′ = Q× (Q→ 2(PN (D)×D)∪{∞}).
After reading an input string u ∈ Σ∗, A′ is in state (q, `) ∈ Q′ iff q is the state of the current
guessed run ρ of A on u, and for all p ∈ Q, (L, d) ∈ `(p) iff there exists a run ρ′ on u ending
in p, smaller than ρ, and such that lag(ρ, ρ′) = L, |L| ≤ N , and delay(ρ, ρ′) = d. Moreover,
∞ ∈ `(p) iff there exists a run ρ′ on u ending in p, smaller than ρ, such that |lag(ρ, ρ′)| > N .

We accept a run iff it ends in a state (q, `) such that q is accepting in A (q ∈ F), and there
is no state p ∈ Q such that (L,1) ∈ `(p) for some L (otherwise it would mean that there
exists a smaller run which gives the same output than the guessed run, on the same input).
So, F ′ = {(q, `) ∈ Q′ | ∀p ∈ Q,∀(L, d) ∈ `(p), d 6= 1}. The initial state of A′ is q′I = (qI , `0)
where qI is the initial state of A, and for all q ∈ Q, `0(q) = ∅ if q 6= qI and {({1},1)} if
q = qI . The transitions in ∆′ are defined by: (p, `) a|u−−→ (p′, `′) ∈ ∆′ iff p a|u−−→ p′ ∈ ∆ and for
all q′ ∈ Q, `′(q′) = prune(update(`, p, p′, a, u, q′)) where update(`, p, p′, a, u, q′) is the union of

L1 {(L ∪ {u−1 · d · v}, u−1 · d · v) | ∃q.(L, d) ∈ `(q) ∧ q a|v−−→ q′},
L2 {({u−1 · v}, u−1 · v) | ∃p a|v−−→ q′ ≺A p

a|u−−→ p′}, and,
L3 {∞ | ∃q.∞ ∈ `(q) ∧ ∃q a|v−−→ q′ ∈ ∆}

.

and prune replaces each element (L, d) by ∞ if |L| > N , and prune(∞) =∞.
It is easy to show that A′ is well-defined, in the sense that the transition function is

defined over states of Q′ only, i.e. all the delays computed by A′ can be generated by pairs
of runs of length at most N2n4.

I Lemma 18. A and A′ are equivalent. Moreover, A′ is k-ambiguous.

On the ground of the decomposition of k-valued GA as k-ambiguous GA, and the known
decomposition of k-ambiguous automata into union of unambiguous automata, one gets
finally the following equivalence theorem:

I Theorem 19. Any k-valued GA over G is equivalent to the union of k unambiguous GA
over G.

E. Filiot, R. Gentilini, and J.-F. Raskin 143

5 The Inclusion and Synthesis Problems for k-Valued WA

Inclusion problem. In this section we consider k-valued V -automata, V ∈ {Sum,Dsum}
and we provide positive decidability results w.r.t. their inclusion problem. Given two V -
automata on the alphabet Σ, the inclusion problem (A ≤ B?) asks whether for all w ∈ Σ+,
LA(w) ≤ LB(w). This problem is undecidable for general Sum-automata, open for general
Dsum-automata and PSPACE-c for functional Sum- and Dsum-automata [3, 10]. Relying on
the results in the previous sections, we provide an inclusion test applying to k-valued Sum
and to the class of Dsum-automata having a discount factor λ that is an inverted integer,
i.e. we consider discount factors of the form 1

n , n ∈ N
∗. In more details, we show how to

encode the inclusion problem for Sum-automata (resp. Dsum-automata) into the problem of
determining a strictly positive path (resp. a path with strictly positive discounted sum) in a
multi-weighted graph.

Let A,B be two k-valued weighted V -automata, V ∈ {Sum,Dsum}. The encoding
proceeds in three steps. First, we check whether dom(A) ⊆ dom(B). Then, by Theorem 19,
A and B can be effectively decomposed as unions of k unambiguous V -automata

⋃k
i=1Gi and⋃k

i=1Hi respectively. We can assume that dom(Gi) = dom(A) for all i (resp. dom(Hi) =
dom(B) for all i)4. Clearly, A 6≤ B iff there exist w ∈ Σ∗ and i ∈ {1, . . . , k} such that
Gi(w) > B(w). For all i ∈ {1, . . . , k}, we finally check whether GI(w) > B(w) for some
w (i.e. Gi(w) > Hj(w) for some w and all j) by a reduction to a multi-dimensional graph
problem, as follows.

Let i ∈ {1, . . . , k}, Qi be the set of states of Gi, and Pj the set of states of Hj for all
j ∈ {1, . . . , k}. We construct a k-weighted graph Φi = (Vi, q0

i , Fi, Ei, wi) where the vertices
are Vi = Qi × P1 × · · · × Pk, the weight function has type wi : Ei → Zk, and the weighted
transitions are defined by (q, p1, . . . , pk) (v1,...,vk)−−−−−−→ (q′, p′1, . . . , p′k) ∈ Ei iff q

a|m−−→ q′ is a
transition of Gi and for all j ∈ {1, . . . , k}, pj

a|vj+m−−−−−→ p′j is a transition of Hj . Final vertices
(resp. the initial vertex) in Φi are those whose components are all final (resp. initial) states.

Then, the following holds: A � B if and only if there exists i ∈ {1, . . . , k} and a path
π to a final state in Φi with strictly positive sum (resp. stricly positive discounted sum)
on all components. By Lemma 5, it is possible to check in polynomial time whether a
multi-weighted graph of dimension k contains a strictly positive path to a target vertex.
Therefore, the inclusion problem is decidable for k-valued Sum-automata.

Lemma 20 below provides a PSPACE procedure to check whether a multi-weighted graph
has a path to a given target state with strictly positive discounted sum w.r.t. a discounted
factor λ that is an inverted integer 1

n , n ∈ N
∗. This leads to decidability of the inclusion also

for the class of Dsum-automata, when the discount factor λ is an inverted integer5.

I Lemma 20. Let (V, v0, E, w : E 7→ Zk) be a multi-weighted graph of dimension k, t ∈ V ,
and consider λ = 1

n , n ∈ N
∗. The problem of deciding whether G admits a path from v0 to t

with strictly positive discounted sum on all components w.r.t. λ is in PSPACE.

I Theorem 21. The inclusion problem is decidable for k-valued Sum-automata and k-valued
Dsum-automata associated with a discount factor λ such that λ = 1

n , n ∈ N
∗.

4 Otherwise, we opportunely complete Gi.
5 Note that inverted integer discounted factors where considered in [1] to provide a determinization

procedure applying to complete Dsum-automata (all states are accepting). However, for Dsum-automata
with final states no special form of discount factor can guarantee determinization [1].

FSTTCS 2014

144 Finite-Valued Weighted Automata

I Remark. If A and B are given in input as union of k1 and k2 unambiguous WA with the
same domain, then checking whether A ≤ B can be done in polynomial time (resp. PSPACE)
for Sum-automata (resp. Dsum-automata w.r.t. inverted integer discount factors) in virtue of
Lemma 20, Lemma 5 and Theorem 21. Finally, note that the encoding into WA over groups
povided by Proposition 1 allows to associate a different discount factor with each edge of
the given automaton. The results in Theorem 21 can be further generalized in this sense:
In particular, Proposition 1 guarantees the correctness of the encoding into the problem of
determining a path with strictly positive discounted sum in a multi-weighted graph. The
proof of Lemma 20, solving the latter problem, can be easily generalized to deal with different
inverted integer discount factors.

Quantitative Synthesis. We consider quantitative realizability problem. The realizability
problem is better understood as a game between two players: "Player input" (the environment,
also called Player I) and "Player output" (the controller, also called Player O). Player I
(resp. Player O) controls the letters of a finite alphabet ΣI (resp. ΣO). We assume that
ΣO ∩ ΣI = ∅ and that ΣO contains a special symbol # whose role is to stop the game. We
let Σ = ΣO ∪ ΣI . Formally, the realizability game is a turn-based game played on an arena
defined by a weighted automaton A = (Q = QO] QI , q0, F, δ = δI ∪ δO, γ), whose set of
states is partitioned into two sets QO and QI , δO ⊆ QO ×ΣO ×QI , δI ⊆ QI ×ΣI ×QO, and
such that dom(A) ⊆ (Σ\{#})∗#. Player O starts by giving an initial letter o0 ∈ ΣO, Player
I responds providing a letter i0 ∈ ΣI , then Player O gives o1 and Player I responds i1, and so
on. Player O has also the power to stop the game at any turn with the distinguishing symbol
#. In this case, the game results in a finite word (o0i0)(o1i1) . . . (ojij)# ∈ Σ∗, otherwise the
outcome of the game is an infinite word (o0i0)(o1i1) · · · ∈ Σω.

The quantitative realizability problem asks whether Player O has the strategy λO :
(ΣOΣI)∗ → ΣO such that for all Player I’s strategies λI : ΣO(ΣIΣO)∗ → ΣI , the outcome of
this two strategie, which is a finite word w, satisfies A(w) > 0, in which case we say that A
is realizable. We refer the reader to [10] for formal definitions of strategies and outcomes.
In [10], we have shown that the realizability problem is undecidable for functional Sum WA
(and for other measures), while a positive decidability results applies to deterministic Sum
WA (and for other measure). As a corollary, we know that the problem is undecidable for
k-valued Sum WA. We will strengthen this negative result here and show that even if the
problem is decidable for deterministic WA, it is undecidable for Sum WA defined as union of
k deterministic automata, for k ≥ 4. In particular, we show that the halting problem for
deterministic 2-counter Minsky machines [16] can be reduced to the quantitative language
realizability problem for the union of 4-deterministic Sum-automata.

I Theorem 22. The realizability problem for a 4-valued Sum-automata defined as a union
of 4 deterministic Sum-automata is undecidable.

References
1 U. Boker and T.A. Henzinger. Determinizing discounted-sum automata. In CSL, pages

82–96, 2011.
2 V. Bruyère, N. Meunier, and J-F. Raskin. Secure equilibria in weighted games. In LICS,

2014. to appear.
3 K. Chatterjee, L. Doyen, and T.A. Henzinger. Quantitative languages. ACM Trans. Com-

put. Log, 11(4), 2010.
4 K. Chatterjee, V. Forejt, and D. Wojtczak. Multi-objective discounted reward verification

in graphs and mdps. In LPAR, pages 228–242, 2013.

E. Filiot, R. Gentilini, and J.-F. Raskin 145

5 C. Choffrut. Une caractérisation des fonctions séquentielles et des fonctions sous-
séquentielles en tant que relations rationnelles. Theor. Comput. Sci., 5(3):325–337, 1977.

6 E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press, Cambridge,
Massachusetts, 1999.

7 R. de Souza. On the decidability of the equivalence for k-valued transducers. In Develop-
ments in Language Theory, pages 252–263, 2008.

8 R. de Souza and N. Kobayashi. A combinatorial study of k-valued rational relations. Journal
of Automata, Languages and Combinatorics, 3/4(13):207–231, 2008.

9 M. Droste, W. Kuich, and H. Vogler. HandBook of Weighted Automata. Springer, 2009.
10 E. Filiot, R. Gentilini, and J-F. Raskin. Quantitative languages defined by functional

automata. In CONCUR, pages 132–146, 2012.
11 T.V. Griffiths. The unsolvability of the equivalence problem for -free nondeterministic

generalized machines. Journal of the ACM, 1968.
12 E. Gurari and O. Ibarra. A note on finitely-valued and finitely ambiguous transducers.

Mathematical Systems Theory, 16(1):61–66, 1983.
13 K. Hashiguchi, K. Ishiguro, and S. Jimbo. Decidability of the equivalence problem for

finitely ambiguous finance automata. IJAC, 12(3):445, 2002.
14 I. Klimann, S. Lombardy, J. Mairesse, and C. Prieur. Deciding unambiguity and sequenti-

ality from a finitely ambiguous max-plus automaton. TCS, 327(3):349–373, 2004.
15 D. Krob. The equality problem for rational series with multiplicities in the tropical semiring

is undecidable. Int. Journal of Algebra and Computation, 4(3):405–425, 1994.
16 M.L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.
17 K. S. Rao and G. Sullivan. Detecting cycles in dynamic graphs in polynomial time. In Proc.

STOC’88, STOC, pages 398–406. ACM, 1988.
18 J. Sakarovitch and R. de Souza. On the decidability of bounded valuedness for transducers.

In Proc. MFCS 2008, MFCS. Springer-Verlag, 2008.
19 J. Sakarovitch and R. de Souza. Lexicographic decomposition of k -valued transducers.

Theory Comput. Syst, 47(3):758–785, 2010.
20 H. Seidl. Equivalence of finite-valued tree transducers is decidable. Mathematical Systems

Theory, 27(4):285–346, 1994.
21 A. Weber. On the valuedness of finite transducers. Acta Informatica, 27(8):749–780, 1989.
22 A. Weber. Finite-valued distance automata. TCS, 134(1):225–251, 7 November 1994.

FSTTCS 2014

	Introduction
	Weighted Automata
	The k-Valuedness Problem
	The k-Valuedness Problem when k is a Fixed Constant

	Decomposition of k-valued group automata
	The Inclusion and Synthesis Problems for k-Valued WA

