
Shortest Path with Alternatives for Uniform
Arrival Times: Algorithms and Experiments
Tim Nonner and Marco Laumanns

IBM Research
{tno, mlm}@zurich.ibm.com

Abstract
The Shortest Path with Alternatives (SPA) policy differs from classical shortest path routing
in the following way: instead of providing an exact list of means of transportation to follow,
this policy gives such a list for each stop, and the traveler is supposed to pick the first option
from this list when waiting at some stop. First, we show that an optimal policy of this type
can be computed in polynomial time for uniform arrival times under reasonable assumptions.
A similar result was so far only known for Poisson arrival times, which are less realistic for
frequency-based public transportation systems. Second, we experimentally evaluate such policies.
In this context, our main finding is that SPA policies are surprisingly competitive compared
to traditional shortest paths, and moreover yield a significant reduction of waiting times, and
therefore improvement of user experience, compared to similar greedy approaches. Specifically,
for roughly 25% of considered cases, we could decrease the expected waiting time by at least 20%.
To run our experiments, we also describe a tool-chain to derive the necessary information from
the popular GTFS-format, therefore allowing the application of SPA policies to a wide range of
public transportation systems.

1998 ACM Subject Classification G.2.2, G.1.6, F.2.2

Keywords and phrases Shortest Path, Stochastic Optimization, Public Transportation

Digital Object Identifier 10.4230/OASIcs.ATMOS.2014.15

1 Introduction

Despite the increasing availability of smartphones and real-time information, it is still a
common practice, especially in high-frequency public transportation systems, to simply wait
for the next arriving suitable bus (or other means of transportation like metros). This holds
especially for systems which do not provide exact time-table information, but manage buses
instead by the frequency they leave the terminal, e.g. the Dublin bus system1. In such a
situation, an experienced local traveler should be aware of alternative suitable buses in order
to minimize his waiting time by picking the first arriving one. Formally, such a selection
process requires to find a trade-off between minimizing the waiting time by selecting a large
set of alternatives, and minimizing the consequent travel time by selecting a small set of
alternatives with short travel time, in the extreme case the single alternative with shortest
travel time. Iterating this process through the whole network leads to an extension of
the classical Shortest Path Problem, called Shortest Path with Alternatives (SPA) Problem.
Datar and Ranade [6] observed that this extension can be solved efficiently in case of Poisson
arrival times (with exponentially distributed inter-arrival times) of buses, which makes it
practical even for large-scale public transportation systems. In contrast, Nonner showed that

1 http://www.dublinbus.ie/en/

© Tim Nonner and Marco Laumanns;
licensed under Creative Commons License CC-BY

14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’14).
Editors: Stefan Funke and Matúš Mihalák; pp. 15–24

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62919343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.ATMOS.2014.15
http://www.dublinbus.ie/en/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


16 Shortest Path with Alternatives for Uniform Arrival Times

general arrival times result in an NP-hard problem [9], even for one-hop networks. Arguably,
for systems where buses run with a given frequency, uniform arrival times (with uniformly
distributed inter-arrival times) are the most suitable modelling choice, but they lack the
nice properties of a memoryless process. In fact, Boyan and Mitzenmacher [5] showed that
optimal policies for such a system have a more complicated structure, which might be hard
to communicate: in addition to a list of alternatives for each stop, they require additional
timing information for the bus picking process.

First, we show in this paper that an optimal SPA policy for uniform arrival times can be
efficiently computed subject to the constraint that it has the structure implied by Poisson
arrival times, thus giving a trade-off between providing a simple policy to execute and a
realistic time assessment. Second, we run several experiments to illustrate the benefits of
SPA policies. In fact, we are not aware of any such study, the only related experimental
evaluation was done in the context of data delivery in bus networks [1]. We are interested
in comparing the following policies: (P1) a classical single shortest path using an exact
timetable, (P2) a SPA policy using a post-processed timetable with frequency information,
but where we allow only a single alternative at each stop, and (P3) a SPA policy without
this restriction. Comparing policies (P1) and (P2) allows us to reason about how efficient
frequency based systems are compared to exact time-tables, and comparing policies (P2) and
(P3) gives insights in how much we are able to improve by allowing multiple alternatives
in such systems. Note that policy (P2) corresponds to a traveler who navigates greedily
through the system, waiting at each stop for the single bus with best combined waiting and
travel time.

To run our experiments, we build on the increasingly popular General Transit Format
Specification (GTFS)2, which allows us to collect timetable information of multiple Euro-
pean capitals34: Berlin, Budapest, Dublin, and Oslo. Interestingly, this format allows the
specification of frequencies, exactly the information needed for our study. However, probably
because the current shortest path computation methods do not benefit from this informa-
tion, it is hardly ever provided. Even public transportation systems like the one of Dublin,
which explicitly mention that their timetables should be interpreted as frequencies rather
than exact times, do not make use of this extension. To deal with this lack of available fre-
quency information, we derive it by counting runs-per-hour in standard time-tables, which
aligns with the implicit behavior of a sample traveler.

Our main conclusions are: (1) frequency-based systems are not much worse than exact
systems, at least on average, and (2) allowing multiple alternatives in a SPA policy provides
a significant improvement. Specifically, although the average improvement in total travel
time is relatively small, we could decrease the waiting time by at least 20% for roughly
25% of considered cases. Thus, policy (P3) is clearly superior to policy (P2). Hence, we
think that providing SPA policies would be a natural extension to any public transportation
planner. Another advantage of such policies is that they provide backup opportunities in
case there are disruptions in the timetable.

Outline. In Section 2, we formally introduce the SPA Problem and present an efficient
method to compute SPA policies for uniform arrival times subject to the constraint that the
policy has the simple prefix structure implied by Poisson arrival times. Since we could not

2 https://developers.google.com/transit/gtfs/
3 http://dublinked.com/datastore/datasets/dataset-254.php
4 http://www.gtfs-data-exchange.com/

https://developers.google.com/transit/gtfs/
http://dublinked.com/datastore/datasets/dataset-254.php
http://www.gtfs-data-exchange.com/


T. Nonner and M. Laumanns 17

find a counterexample during extensive experiments, we conjecture that an optimal SPA
policy for uniform arrival times satisfies this constraint anyway, but proving this is an open
problem. In Section 3, we introduce the popular GTFS-format and explain our approach
to derive frequency information from this format. Finally, in Section 4, we describe our
experiments, which are then discussed in Section 5.

Related work. Bertsekas and Tsitsiklis [4] discuss the problem of selecting a fixed probabil-
ity distribution over the outgoing arcs of each node in order to also minimize the expected
travel time. But since only a fixed distribution is selected at each node, this problem is
more related to the classical shortest path problem. Having different alternatives is also an
element in the recently introduced guidebook routing [3], but the focus is here to cover as
many optimal routes as possible with a few such guidebook routes. Also Dibbelt et al. [7]
consider the case of providing alternatives to recover from failed connections, but as for
guidebook routing, it is assumed that a fixed timetable is given (with some random delay on
top), whereas we assume from the beginning that stochastic frequencies are given as input.
However, we think that algorithms for SPA could be valuable fast heuristics for problems
with a fixed timetable and an additional random component. Another interesting problem
in the context of stochastic routing is to maximize the probability to arrive on time [8]. But
in contrast to SPA, only a single path is considered.

2 Algorithmic Approach

Consider the case of n buses labeled 1, 2, . . . , n in a one-hop network, that is, they all leave
the origin stop for the destination stop, possibly with different travel times and arrival
patterns at the origin stop. More specifically, let Ti be the (possibly random) travel time of
bus i, and let Ai be a random variable that describes the time until the next arrival of bus
i at the origin stop, which is the time we have to wait in order to board this bus. The goal
is now to select a fixed subset of alternatives σ ⊆ {1, 2, . . . , n} that minimize the expected
combined travel and waiting time subject to the assumption that the traveler will pick the
first arriving alternative.

If the Ai are Poisson then simple arithmetic shows that, for any set of alternatives σ,
the combined expected waiting and travel time is

1 +
∑
i∈σ

E[Ti]
E[Ai]∑

i∈σ
1

E[Ai]
. (1)

Using this, if we assume that the buses are ordered such that E [T1] ≤ E [T2] ≤ . . . ≤ E [Tn],
then an optimal solution σ∗ has the form 1, 2, . . . , s for some 1 ≤ s ≤ n [6, 9], we say that it
forms a prefix. Thus, there is only a linear number of possible optimal solutions, which can
hence be efficiently enumerated. Even if we add some cardinality constraint k on the size
of σ, there are still only O(n2) many solutions to enumerate [9]. By applying these facts
iteratively in a backward Dijkstra-scheme, it is then possible to compute an optimal SPA
policy for a network with an arbitrary number of hops in polynomial time, see [6, 9]. In
fact, a large part of the complexity of computing SPA policies is already contained in such
one-hop networks.

However, the term in (1) does not describe the combined waiting and travel time for
uniform arrival times. For instance, if all Ai are uniformly distributed in [0, 1] and all Ti are
0, then selecting imany buses results in a combined waiting and travel time of 1

i+1 . However,
since then E [Ai] = 1

2 , the term in (1) would yield 1
2i , which is a lower bound on the real

ATMOS’14



18 Shortest Path with Alternatives for Uniform Arrival Times

Figure 1 The functions 1
i+1 ≈ uniform (solid line), 1

2i
≈ Poisson (dotted line), and 1

i
≈ Poisson

with 2E [Ai] (dashed line).

cost. A better approximation for large i is 1
i , which we receive if we replace E [Ai] by 2E [Ai]

in term (1). Indeed, it has been shown in [9] that this is an arbitrary good approximation
for large i under reasonable assumptions, yielding a polynomial-time approximation scheme
(PTAS).

Figure 1 illustrates the values of these different objectives in such a simple scenario. This
picture shows that using Poisson arrival times as an approximation for uniform arrival times
might result in quite a large gap. Specifically, using 1

2i as an approximation is exact for
i = 1, but insufficient for large i. On the other hand, using 1

i is a good approximation for
large i, but insufficient for i = 1. A reasonable heuristic to cover this case is to use 1

2i for
i = 1 and 1

i otherwise, which still has a large gap for i = 2. Therefore, we decided not to
use a heuristic, but to exactly compute the waiting time for uniform arrival times. However,
to keep the space of possible policies small, we only consider solutions that form prefixes.
This is motivated by the fact that it might be hard to communicate to a traveler that he
should not pick a bus with a smaller travel time than a given one. Besides, we conjecture
that such policies are optimal for uniform arrival times as well.

We use Algorithm 1 to compute an optimal set of buses for uniform arrival times subject
to the constraint that they form a prefix. In this algorithm, we have two DP-arrays, Φ and
Π, which we will explain first. For each bus i, let li be the value such that Ai is uniformly
distributed in [1, li]. Consider then a prefix of buses 1, 2, . . . , i. Clearly, the earliest arriving
bus from this set will arrive before time lmin := min1≤j≤i lj . The goal is then to fill array
Π such that Π[i, j] is the probability that from the buses 1, 2, . . . , i exactly j many arrive



T. Nonner and M. Laumanns 19

before time lmin. Formally,

Π[i, j] =
∑
v

(
i∏

z=1
pvz
z

i∏
z=1

(1− pz)1−vz

)
,

where the sum is over all {0, 1}-vectors v of length i where exactly j entries are 1, and
pz = lmin

lz
is the probability that bus z arrives before time lmin. Let then Φ[i, j] be the

expected travel time conditioned on this event multiplied by j, thus

Φ[i, j] =
∑
v

(
i∏

z=1
pvz
z

i∏
z=1

(1− pz)1−vz

i∑
z=1

vzE [Tz]
)
.

Using inductive arguments, we see that Algorithm 1 fills these arrays. Now note that the
expected waiting time of the prefix of buses 1, 2, . . . , i is lmin

∑k
j=1

Π[i,j]
j+1 . On the other hand,

the expected travel time is
∑k
j=1

Φ[i,j]
j . Consequently, because of linearity of expectation,

the final value of rk is the total combined waiting and travel time when taking the first k
buses, which implies the correctness of the algorithm. The running time is clearly O(n3).
Note that n is at most the maximum number of buses that pass any stop, and therefore
cubic running time is feasible in practice.

I Algorithm 1. Input: Ti, li for 1 ≤ i ≤ n

for k in 1, . . . , n :

1. set all values in Φ and Π to 0.0 and set Π[0, 0] = 1.0
2. lmin = min1≤i≤k li
3. for i in 1, . . . , k :

a. p = lmin
li

b. for j in 1, . . . , i :
Π[i, j] = (1− p)Π[i− 1, j] + pΠ[i− 1, j − 1]
Φ[i, j] = (1− p)Φ[i− 1, j] +
p(Φ[i− 1, j − 1] + Π[i− 1, j − 1]E [Ti])

c. Π[i, 0] = 1.0−
∑n
j=1 Π[i, j]

4. rk =
∑k
j=1(lmin

Π[k,j]
1+j + Φ[k,j]

j )

return the prefix 1, 2, . . . , k that corresponds to the smallest rk

Observe that Algorithm 1 does not provide an individual probability for each bus to be
picked, which might be useful to analyze, for instance, the expected walking time, if each
choice would imply a different walking time later on. It is somewhat surprising that it is
possible to compute the combined waiting and travel time without getting this information
as a byproduct. To derive this information, we can use the following Algorithm 2, which
has again running time O(n3). The input value k∗ is the output of Algorithm 1, and the
DP-array Π has the same meaning as in Algorithm 1. There is an additional DP-array Ψ,
and this array is filled such that Ψ[i, j, z] denotes the probability that from the prefix of
buses 1, 2, . . . , i exactly j many arrive before time lmin and z is one of them. The output Pi
gives then the individual probability of a bus i to be picked as the first arriving one.

ATMOS’14



20 Shortest Path with Alternatives for Uniform Arrival Times

I Algorithm 2. Input: Ti, li for 1 ≤ i ≤ n and k∗

set all values in Ψ and Π to 0.0 and set Π[0, 0] = 1.0 and Ψ[0, 0, 0] = 1.0
lmin = min1≤i≤k∗ li
for i in 1, . . . , k∗ :

1. p = lmin
li

2. for j in 1, . . . , i :

a. Π[i, j] = (1− p)Π[i− 1, j] + pΠ[i− 1, j − 1]
b. Ψ[i, j, i] = pΠ[i− 1, j − 1]
c. for z in 1, . . . , i− 1 :

Ψ[i, j, z] = (1− p)Ψ[i− 1, j, z] + pΨ[i− 1, j − 1, z]

3. Π[i, 0] = 1.0−
∑n
j=1 Π[i, j]

for i in 1, . . . , k∗ : return Pi =
∑k∗

j=1
Ψ[k∗,j,i]

j

3 GTFS Data Model

The goal of this section is to prepare input data in a way such that the techniques for
uniform arrival times described in Section 2 can be applied. Specifically, we want to compute
frequencies of buses, which is motivated by the fact that if a bus runs every 10 minutes,
then a uniform arrival time in a 10 minutes interval is arguably the appropriate modeling
choice.

The GTFS5 format, formerly Google Transit Format Specification, allows the specifica-
tion of public transportation time-tables in csv-files. Its basic entities are trips (defined in
file trips.txt), which are described by a sequence of stop times, that is, combinations of stops
and times (defined in file stop_times.txt). Thus, a trip only describes a single journey of a
bus. It is important to note that there is no explicit grouping of trips into similar ones. One
option is the route specification, but different trips assigned to the same route might have a
different stop sequences. Another way is to associate trips with their corresponding shapes.
However, shapes are more intended to describe a possible visualization. Therefore, the only
way to logically group trips is to preprocess them into lines with a similar stop sequence and
route identifier. We do this in hourly buckets, and then, for simplicity, take the first trip in
any bucket as the one that defines the inter-stop travel times for the bucket. The number
of trips in one bucket or runs-per-hour (rph) is then used to compute their frequency, e.g.,
if there are 6 runs-per-hour, then we assume that a trip runs every 10 minutes. This trans-
lates into 10 headway minutes or 600 headway seconds in GTFS, and would correspond to
a waiting time uniformly distributed in interval [0, 600] in terms of seconds. The following
table gives an example of such a hourly bucket or frequency in file frequencies.txt.

trip_id start_time end_time headway_secs exact_times

freq_trip_0 08:00:00 08:59:59 600 0

Using this scheme, we can add frequencies to instances where such information is not
available, that is, we compute the additional file frequencies.txt. Note that this file is part

5 https://developers.google.com/transit/gtfs/

https://developers.google.com/transit/gtfs/


T. Nonner and M. Laumanns 21

Figure 2 Runs-per-hour histogram of Dublin.

of the specification of GTFS, but it is almost never provided. Table 1 shows the original
number of trips and the final number of frequencies for the considered instances.

Figure 2 shows a histogram of the average number of runs-per-hour in Dublin. Note that
there is a peak at 4 and 6, which corresponds to having a trip every 15 and 10 minutes,
respectively.

Clearly, more fine-grained methods could be applied to derive the necessary frequency
information, for instance to avoid having sharp borders between buckets. It is also reasonable
to only turn trips into frequencies if the number of runs-per-hour is above some threshold, say
3, but this would require some heuristic approach for mixing normal trips with frequencies
during the routing process. Therefore, to allow an easy reproduction of results, we decided
to use the presented basic method due to its simplicity.

4 Experiments and Results

First, since we are more interested in high-frequency inner-city traffic, we restrict the stops
to the more central ones. This is done via first computing the geographic center of all stops,
and then a function that indicates the decreasing density of stops when moving away from
this center. We finally limit the radius of stops to consider such that the density is at least
half the maximum density in the very center.

Second, on the remaining stops, we do a K-means clustering with K = 20, and from each
cluster, we pick the centroid as a sample. This gives a representative selection of 20 stops.
For instance, Figure 3 shows the inner-city of Dublin in dark grey with roughly labeled
centroids. Each experiment is then executed on all 380 origin-destination pairs from this
selection and every two hours between 8 o’clock and 18 o’clock to obtain averages of 2280
runs.

ATMOS’14



22 Shortest Path with Alternatives for Uniform Arrival Times

Table 1 Transformation of instances.

instance Berlin Budapest Dublin Oslo

planning date 10-06-11 14-09-12 19-11-12 06-12-13
#trips 45872 49905 7308 14200

#frequencies 20245 11554 3319 6353
#rph (average) 2.27 4.32 2.2 2.24

Table 2 Experimental results.

Berlin Budapest Dublin Oslo

travel (P1) 49.01 53.04 45.47 34.11
travel (P2) 49.22 50.45 44.41 36.58
travel (P3) 47.52 49.42 43.06 35.1

walk (P1) 8.35 13.23 10.04 7.35
walk (P2) 6.14 11.27 9.39 8.07
walk (P3) 6.05 10.57 8.5 8.09

wait (P1) 9.23 8.04 6.44 11.05
wait (P2) 13.12 9.43 11.49 16.38
wait (P3) 11.59 9.0 10.3 14.52

%trav. impr. 3.2 2.1 3.7 4.6
%trav. impr. (25%) 5.1 3.4 5.8 7.7
%wait impr. 5.8 2.3 7.6 8.2
%wait impr. (25%) 18.4 15.7 22.6 20.4

Other assumptions are: (1) we use the euclidean distance (on the earth surface) to
approximate walking times between stops with walking speed 4km per hour, (2) we assume
that we are allowed to switch buses at most three times, and (3) we assume that the traveler is
aware of arriving buses at other stops within 50 meters, and hence we can select alternatives
within this tolerance.

We consider three policies: (P1) an exact shortest path using the original GTFS-instance,
(P2) a shortest path with alternatives using the derived GTFS-instance with frequencies
where we allow only a single alternative at each stop, (P3) a shortest path with alternatives
with an arbitrary number of alternatives at each stop.

We list our experimental results in Table 2. First, we give the average total travel times
in minutes for the different policies, and then the respective walking and waiting times.
Afterwards, we compare policies (P2) and (P3) in the second block. Rows %trav. impr.
and %wait impr. give the average percentage of travel and waiting time improvement when
allowing an arbitrary number of alternatives, respectively, and rows %trav. impr. (25%)
and %wait impr. (25%) give the minimum travel and waiting time improvement in the top
25%-quantile.



T. Nonner and M. Laumanns 23

Figure 3 Origin-destination selection for Dublin.

5 Conclusion

We find that there are no large differences in travel times of all three policies, which is due
to the fact that the travel time is dominated by the time spend in buses or walking, which
are physical constraints that we cannot improve. It is interesting that policy (P1) does not
clearly dominate the other policies.

Of course, policy (P1) is applied to the original GTFS-instance and hence gives exact
routes, whereas policies (P2) and (P3) use the postprocessed GTFS-instance with frequen-
cies, and therefore give policies with random travel time. Hence, this comparison should be
considered as a high-level indicative study. However, in terms of total resources (buses) in
the public transportation system, both sides are equal, only the latter case is stochastic.

As expected, the major difference between the three policies are the waiting times. Here
we see that policy (P2) is strictly worse than policy (P1), it almost doubles the waiting time
in some cases. However, a significant part of this waiting time increase can be absorbed by
allowing more alternatives with policy (P3). More specifically, the benefit of allowing more
alternatives is listed in the second block. We see again that the influence on the total travel
time is relatively small, but around 25% of considered cases allow a reduction of waiting
time of at least 20%.

We implemented our algorithms in C++ using the standard library and ran them on
a single core of an Intel i5-2540M CPU with 2.60GHz and 8GB RAM. The shortest path

ATMOS’14



24 Shortest Path with Alternatives for Uniform Arrival Times

Table 3 Running times.

Berlin Budapest Dublin Oslo

(P1) 363 217 131 24
(P2) 613 314 472 72
(P3) 594 323 520 80

procedure is implemented using a standard Dijkstra-scheme. For the SPA policies, we im-
plement the recurrence relation in this scheme using the algorithms described in Section 2,
which gives additional overhead. On the other hand, we consider smaller instances in this
case because of the clustering of trips into frequencies as described in Section 3. Table 3 lists
the average running times in milliseconds for the different instances and policies. Note that
the additional overhead due to the more involved recurrence relation is counterbalanced in
a large part by using smaller instances. This shows that SPA policies can be practically
computed even in interactive applications.

All our implementations build on a standard Dijkstra-scheme and do not further optimize
this procedure. Therefore, many of the techniques used to speed-up this scheme could be
used to derive faster running times, see for instance [2] for a comprehensive overview.

References
1 Utku Günay Acer, Paolo Giaccone, David Hay, Giovanni Neglia, and Saed Tarapiah. Timely

data delivery in a realistic bus network. IEEE Transactions on Vehicular Technology,
61(3):1251–1265, 2012.

2 Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann, Thomas
Pajor, Peter Sanders, Dorothea Wagner, and Renato Werneck. Route planning in trans-
portation networks. Technical Report MSR-TR-2014-4, Microsoft Research, January 2014.

3 Hannah Bast and Sabine Storandt. Flow-based guidebook routing. In Proceedings of the
16th Workshop on Algorithm Engineering and Experiments (ALENEX’14), pages 155–165,
2014.

4 Dimitri P. Bertsekas and John N. Tsitsiklis. An analysis of stochastic shortest path prob-
lems. Math. Oper. Res., 16:580–595, August 1991.

5 Justin Boyan and Michael Mitzenmacher. Improved results for route planning in stochastic
transportation. In Proceedings of the 12th annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’01), pages 895–902, 2001.

6 Mayur Datar and Abhiram G. Ranade. Commuting with delay prone buses. In Proceedings
of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’00), pages 22–
29, 2000.

7 Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Intriguingly simple and
fast transit routing. In Proceedings of the 12th International Symposium on Experimental
Algorithms (SEA’13), pages 43–54, 2013.

8 Evdokia Nikolova, Jonathan A Kelner, Matthew Brand, and Michael Mitzenmacher.
Stochastic shortest paths via quasi-convex maximization. In Proceedings of the 14th Annual
European Symposium on Algorithms (ESA’06), pages 552–563. Springer, 2006.

9 Tim Nonner. Polynomial-time approximation schemes for shortest path with alternatives.
In Proceedings of the 20th Annual European Symposium on Algorithms (ESA’12), pages
755–765, 2012.


	Introduction
	Algorithmic Approach
	GTFS Data Model
	Experiments and Results
	Conclusion

