
Towards a Programming Paradigm for Artificial
Intelligence Applications Based On Simulation∗

Jörg Pührer

Institute of Computer Science, Leipzig University
Leipzig, Germany
puehrer@informatik.uni-leipzig.de

Abstract
In this work, we propose to use simulation as a key principle for programming AI applications.
The approach aims at integrating techniques from different areas of AI and is based on the
idea that simulated entities may freely exchange data and behavioural patterns. We introduce
basic notions of a simulation-based programming paradigm and show how it can be used for
implementing different scenarios.

1998 ACM Subject Classification I.2 Artificial Intelligence

Keywords and phrases Artificial Intelligence, Simulation, Programming Paradigm

Digital Object Identifier 10.4230/OASIcs.ICCSW.2014.66

1 Introduction

We sketch a programming paradigm based on simulation that is targeted towards applications
of artificial intelligence (AI) [13]. Simulation has been used in different fields of AI (such
as agent-based systems [10, 14] or evolutionary computation [3]) for achieving intelligent
behaviour. The rationale is that many aspects of intelligent behaviour are complex and
not well understood but emerge when the environment in which they occur is simulated
adequately. We propose to use a simulation environment for realising AI applications
that offers an easy way to integrate existing formalisms including methods from different
areas of AI such as computational intelligence, symbolic AI, or statistical methods. This
environment is composed of interacting entities that are grouped in different worlds and
driven by concurrent processes. The proposed approach exploits advances in hardware and
concurrent computing due to which simulation became feasible for many applications.

The next section introduces the basic notions of a simulation-based programming paradigm
and Section 3 discusses how to use it for modelling different scenarios. In Section 4, we give
considerations on the user interface, consistency maintenance, and discuss the relation to
related techniques. Section 5 concludes the paper and gives an outlook on future work.

2 Simulation-Based Programming

In this section we explain the proposed simulation-based programming paradigm (SBP) on
an abstract level. An SBP system deals with different worlds, each of which can be seen as
a different point of view. The meaning of these worlds is not pre-defined by SBP, e.g., the
programmer can decide to take an objectivistic setting and consider one world the designated

∗ A longer version of this paper appeared in the proceedings of ReactKnow 2014 [12]. The German
Research Foundation (DFG) partially supported this work under grants BR-1817/7-1 and FOR 1513.

© Jörg Pührer;
licensed under Creative Commons License CC-BY

Imperial College Computing Student Workshop (ICCSW’14).
Editors: Rumyana Neykova and Nicholas Ng; pp. 66–73

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62919293?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.ICCSW.2014.66
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

J. Pührer 67

real one or treat all worlds alike. Different worlds allow, e.g., to model the beliefs of different
agents as in an agent-based approach. Other applications are hypothetical reasoning or
realising different granularities of abstraction for efficiency (see Section 3).

A world contains a set of named entities which are the primary artifacts of SBP and
represent the subjects of the simulation. Entities may have two sorts of named attributes:
data entries which correspond to arbitrary data (including references to other entities) and
transition descriptions which define the behaviour of the entities over time. The name of an
entity has to be unique with respect to a world and serves as a means to reference the entity,
however the same entity may appear in different worlds with potentially different attributes
and attribute values. Transition descriptions can be seen as the main source code elements
in the approach and they are, similar to the data entries, subject to change during runtime.
This allows for a dynamic setting in which the behaviour of entities can change over time,
e.g., new behaviour can be learned, acquired from other entities, or shaped by evolutionary
processes. We do not propose a particular language or programming paradigm for specifying
transition descriptions. It might, on the contrary, be beneficial to allow for different languages
for different transition descriptions within the same simulation. E.g., a transition description
implementing sorting can be realised by some efficient standard algorithm, while another
transition description that deals with a combinatorial problem with many side constraints uses
a declarative knowledge representation approach like answer-set programming (ASP) [8, 11]
in which the problem can be easily modelled. We require transition descriptions—in whatever
language they are written—to comply to a specific interface that allows us to execute them in
asynchronous processes. In particular, the output of a transition contains a set of updates to
be performed on worlds, entities, data entries, and transition descriptions. When a transition
has finished, per entity, these changes are applied in an atomic transaction that should leave
the entity in a consistent state (provided that the transition description is well designed). As
mentioned, transition descriptions are executed in processes. Each process is associated with
an entity and runs a transition description of this entity in a loop. A process can however
decide to terminate itself or other processes at any time, initiate other processes, and wait
for their results before finishing their own iteration.

We now formally summarise the concepts discussed above. We assume the availability of a
set Σ of semantics for transitions descriptions. A semantics is a function defining how a piece
of source code is interpreted and stands for the formalism used for a particular transition
description. Let N be a set of names. We call a concept c named if it has an associated name
nc ∈ N . A map is a set M of pairs 〈nv, v〉 where v is a named object and 〈n, v1〉, 〈n, v2〉 ∈M
implies v1 = v2. With slight abuse of notation we write v ∈M for 〈nv, v〉 ∈M .

I Definition 1.
A transition description is a pair t = 〈sc, σ〉, where sc is a piece of source code, and σ ∈ Σ
is a semantics.
A process is a tuple p = 〈t, tb〉, where t is a transition description and tb is a timestamp
marking the begin of the current transition.
An entity is a tuple e = 〈D,T, P 〉, where D is a map of named data, T is a map of named
transition descriptions, and P is a map of named processes. Entries of D,T , and P are
called properties of e.
A world is a map of named entities.
An SBP configuration is a map of named worlds.

For space reasons we describe the runtime behaviour of an SBP system only on an
informal level and refer the interested reader to a longer version of this paper [12]. We

ICCSW’14

68 Towards a Programming Paradigm for AI Applications Based On Simulation

assume a pre-specified set Υ of updates describing what changes should be made to an
SBP configuration together with a fixed update function υ that maps an SBP configuration,
an entity name, the name of a world, and a set of updates, to a new SBP configuration.
Whenever a process has finished, it returns a pair 〈U, bc〉 where U ⊆ Υ is a set of updates
and bc is one of the boolean values true or false that decides whether the process should
continue with another transition. Intuitively, 〈U, bc〉 is the result of the semantics of the
transition description of the process given the current SBP configuration. All updates created
at one time instant are collected and used as input for the update function υ that produces
a follow-up SBP configuration. Consequently, an SBP system can be started with an initial
SBP configuration c0 whose active processes will trigger a sequence of SBP configurations
c1, c2, . . . Note that we do not make assumptions whether time is continuous or discrete.

Using names (for worlds, entities, and properties) allows us to speak about concepts that
change over time. E.g., if e0 is an entity e0 = 〈D,T, P 〉 in some world at time 0 and some
data is added to D for time 1 then, technically, this results in another entity e1 = 〈D′, T, P 〉.
As our intention is to consider e1 an updated version of e0 we use the same names for both,
i.e., ne0 = ne1 . In the subsequent work we will sometimes refer to concepts by their names
and use a path-like notation using the .-operator for referring to SBP concepts, e.g., we refer
to an the entity e in a world w by nw.ne.

3 Modelling AI Applications in SBP

Next, we sketch how to model different scenarios in SBP. Note that we use high-level pseudo
code for expressing transition descriptions and emphasise that in an implementation we
suggest to use different high-level programming languages tailored to the specific needs of
the task handled by the transition description.

In contrast to objects as in object-oriented programming (OOP) entities are not grouped
in a hierarchy of classes. Classes are a valuable tool when clear structures and rigorously
defined behaviour are required. However, they also impose a rigid corset on their instances:
data and behaviour of objects is limited to what is pre-defined in their class. In the scenarios
we target, the nature of entities may change and the focus is on emerging rather than
predictable behaviour. E.g., a town may become a city and a caterpillar a butterfly, etc., or,
in fictional settings (think of a computer game) a stone could turn into a creature or vice versa.
We want to directly support metamorphoses of this kind, letting entities transform completely
over time regarding their data as well as their behaviour. Instead of using predefined classes,
type membership is expressed by means of properties in SBP, e.g., each entity ne may have a
data entry ne.types that contains a list of types that ne currently belongs to.

I Example 2. We deal with a scenario of a two-dimensional area, represented by a single SBP
world w, where each entity may have a property loc with values of form 〈X,Y 〉 determining
the coordinates of the location of the entity. The area is full of chickens running around,
each of which is represented by an entity. In the beginning, every chicken ch has a transition
description ch.mvRand that allows the chicken to move around with the pseudo code:

wait(randomValue(1..5000))
switch{randomValue(1..4)}
case 1: return {’mv_up’}; case 2: return {’mv_right’};
case 3: return {’mv_down’}; case 4: return {’mv_left’}

The transition first waits for a random amount of time, and randomly chooses a direction for
the move, represented by the updates mv_up,mv_right, · · · ⊆ Υ. The semantics of mvRand

J. Pührer 69

always returns 〈U, true〉, where U contains the update (the direction to move) and true
indicates that after the end of the iteration there should be another. When the update
function υ is called with one of the mv updates it changes the value of ch.loc, e.g., if ch.loc
has value 〈3, 5〉 at time t and the update is mv_left then ch.loc has value 〈2, 5〉 at t + 1.

Besides chickens, the area is sparsely strewn with corn. Corn does not move but it is
eaten by chickens. Hence, each chicken ch has another transition description eat:

if there is some entity en in myworld with en.loc = my.loc and
en.types contains ’corn’ then return {’eatCorn(en)’}

Using the keyword my we can refer to properties of the entity to which the transition
description belongs (ch in this case). Furthermore, myworld refers to the world in which
this entity appears. Also here, every iteration of eat starts another one. For an update
eatCorn(en), the location entry en.loc of the corn is deleted and the corn entity is notified
about being eaten by setting the data entry en.eatenBy to ch (we need the information
which chicken ate the corn later) and adding a process to the corn entity with the transition
description en.beenEaten. For now we assume that it only causes the corn to delete itself.

For an initial SBP configuration c0 = 〈w〉, where every chicken entity in w has an active
process named move for transition description mvRand and a process for eat, an SBP run
simulates chickens that walk around randomly and eat corn on their way.

While Example 2 illustrates how data is changed over time and new processes can be
started by means of updates, the next example enriches the scenario with functionality for
learning new behaviour.

I Example 3. We extend the scenario of Example 2 to a fairy tale setting by assuming that
among all the corn entities, there is one dedicated corn named cornOfWisdom that can make
chickens smarter if they eat it. It has a transition description cornOfWisdom.moveSmart:

wait(randomValue(1..1000))
en is an entity in myworld where en.types contains ’corn’ and there is no
other entity en’ in myworld where en’.types contains ’corn’ and
distance(en’.loc,my.loc) < distance(en.loc,my.loc)

let my.loc=(myX,myY) and en.loc=(otherX,otherY)
if |otherX - myX| > |otherY - myY| then

if otherX - myX > 0 then return {’mv_right’} else return {’mv_left’}
else
if otherY - myY > 0 then return {’mv_down’} else return {’mv_up’}

Intuitively, this transition causes an entity to move towards the closest corn rather than
walking randomly as in mvRand. Another difference is that moveSmart processes have
shorter iterations on average as the range of the random duration to wait is smaller. The
cornOfWisdom does not have active processes for this transition definition itself but can pass
it on to everyone who eats it. This is defined in the transition cornOfWisdom.beenEaten
that differs from the beenEaten transition description of other corn by not only deleting the
corn but also copying the moveSmart transition description from the cornOfWisdom to the
chicken by which it was eaten. It also changes the move process of the chicken to use its new
moveSmart transition description instead of mvRand. Thus, if a chicken happens to eat the
cornOfWisdom it subsequently has a better than random strategy to catch some corn.

Having means to replace individual behavioural patterns, as in the example allows for
modelling evolutionary processes in an easy way. E.g., if the chicken scenario is modified

ICCSW’14

70 Towards a Programming Paradigm for AI Applications Based On Simulation

in a way that chicken which do not eat corn regularly will die, a chicken that ate the
cornOfWisdom has good chances to survive for a long period of time. Further processes
could allow chickens to reproduce when they meet such that baby chicken may inherit which
transition description to use for moving from one of the parents. Then, most likely, chicken
using moveSmart will be predominant soon.

Example 3 also illustrated that inheritance in SBP works on the individual level: entities
can pass their transition descriptions and data entries to fellow entities. Thus, compared
to OOP, inheritance is not organised in a hierarchical way. The underlying motivation is
to follow the main idea of simulating real world objects, taking the stance that entities in
nature are individuals that are not structured into distinct classes per se.

The next example illustrates the use of worlds for hypothetical reasoning.

I Example 4. Entity barker represents a waiter of a restaurant in a tourist area trying to
talk people on the street into having dinner in his restaurant. To this end, barker guesses
what food they could like and makes offers accordingly. We assume an SBP configuration in
which for every entity h that represents a human there is a world wh that models the view of
the world of this person. The transition description barker .watchPeople allows barker to set
the eating habits of passer-by in his world wbarker using country stereotypes:

wait(randomValue(50))
let en be an entity in myworld where en.loc near my.loc,

en.types contains ’human’, and en.eatingHabits = unknown
country = guess most likely home country of en
prototype = myworld.country.inhPrototype
return {’setEatingHabits(en,propotype)’,’setPotentialCustomer(en)’}

For every country wbarker contains a reference inhPrototype to an entity representing a
typical person from this country. The update setEatingHabits(p1 , p2) copies transition
descriptions and data properties related to food from person p2 to person p1 . The update
setPotentialCustomer(p) lets barker consider entity p to be a potential customer. In order to
choose what to offer a potential customer, the waiter thinks about what kind of food the person
would choose (based on his stereotypes). This is modelled by transition barker .makeOffer :

let cus be a potential customer in myworld
w’ = copy of myworld
w’.cus.availableFood = restaurant.availableFood
w’.cus.hungry = true
intermediate return {addWorld(w’), startProcess(w’.cus.startDinner)}
when process w’.cus.foodSelected is finished
food = w’.cus.selectedFood
return {praiseFood(food), deleteWorld(w’)}

To allow for hypothetical reasoning by the waiter, a temporary copy w′ of world wbarker is
created. The sole purpose of w′ is to simulate the customer dining. We need a temporary
world as we use the same transition descriptions that drive the overall simulation. E.g., if we
would use wbarker instead, it would mean that barker thinks that the customer is actually
dining, using the world of the customer would mean that she thinks she is dining and so on.

After creating w′, the transition description defines that the food available to the version
of the customer in w′ is exactly the food that is on the menu of the restaurant and the
customer is set to be hungry in the imagination of the waiter. Then, w′ is added to the SBP
configuration and a process for w′.cus is started using the transition description startDinner

J. Pührer 71

that lets enitity cus start dining in w′. Note that the keyword intermediate return in the
code is a convenience notation that allows for manipulating the SBP configuration during a
transition which is strictly speaking not allowed in our framework. The same behaviour could
be accomplished in a complient way by splitting makeOffer into two transition descriptions
used in an alternating scheme. As soon as the customer chooses some food in the simulation,
transition barker .makeOffer is notified which then reads which food has been chosen in the
hypothetical setting. Finally, the update praiseFood(food) causes the waiter to make an offer
for the chosen food, whereas deleteWorld(w′) deletes the temporary world.

Note that copying worlds as done in Example 4 does not necessarily imply copying all of the
resources in this world within an implementation of an SBP runtime engine (cf. Section 5).

I Example 5. We continue Example 4 by assuming an SBP configuration where a tourist, Ada,
passes by the waiter. His process for transition barker .watchPeople classifies Ada by her looks
to be an Englishwoman. After that, the process for barker .makeOffer starts hypothetical
reasoning about Ada having dinner. Following the stereotypes of barker about English
eating habits, the process reveals that Ada would go for blood pudding which he offers her
subsequently. However, Ada is not interested in this dish as she is vegetarian. She explains her
eating habits to the waiter, modelled by the transition description ada.explainEatingHabits:

let pers be current discussion partner in myworld
if pers offers food containing meat then
let w_pers be the world of pers
return {’setEatingHabits(w_pers.me, myworld.me)’}

Here, update setEatingHabits that we know from Example 4 overwrites food related properties
of the entity representing Ada in the world of barker with her actual eating habits. If barker
repeats the dining simulation for making another offer the result matches her real choices.

The last two examples showed how worlds can be used to express different modalities like
individual points of views or hypothetical scenarios. Next, we sketch a setting where different
worlds represent the same situation at different granularities.

I Example 6. Consider a computer game in which the player controls a character in an
environment over which different villages are distributed. Whenever the character is close to
or in a village the inhabitants of the village should be simulated following their daily routines
and interacting with the player. However, as the game environment is huge, simulating all
inhabitants of each village at all times is too costly. The problem can be addressed by an SBP
configuration with two worlds, w(v)act and w(v)apx , for each village v. Intuitively, w(v)act
simulates the village and its people in detail but has only active processes while the player is
closeby. The world w(v)apx approximates the behaviour of the whole village, e.g., increasing
or shrinking of the population, economic output and input, or relations to neighbour villages,
based on statistics and it has only active processes when the player is not around. When
the player enters a village, a process is started that synchronises the world w(v)act with the
current state of the village in w(v)apx , e.g., by deleting or adding new inhabitants or shops.
It also starts processes in w(v)act and cancels processes in w(v)apx . If the player leaves again,
another type of process performs an opposite switch from w(v)apx to w(v)apx being active.

4 Discussion And Related Work

For handling interaction of an SBP system with the user or another system, we suggest to
use externally controlled processes: A transition description can use a dedicated ’external

ICCSW’14

72 Towards a Programming Paradigm for AI Applications Based On Simulation

semantics’ where the result returned for every transition is provided externally. By deciding
which parts are controlled externally on the level of transition descriptions, the behaviour of
an entity can be partially controlled by the user and partially by the system. This way one
could replace, e.g., a human player in a computer game by an AI player or vice versa.

A natural question is how concurrent access on data is handled in the approach. Concep-
tionally, conflicting updates that occur at the same time instant are managed by the update
function υ. In practice, however, this function has to be implemented and conflicts have
to be addressed. Here, techniques for concurrency control in databases [1] could be useful.
Besides technically conflicting updates on data, another issue is semantical inconsistency, i.e.,
data whose meaning with respect to the modelled problem domain is conflicting. Consider an
SBP configuration modelling a banana and two monkeys where each monkey has a transition
description for grabbing the banana. Suppose that both monkeys detect the banana their
grabbing processes start. Then, it could happen that the system gets into a state where each
monkey is believed to have the banana. It is probably sensible to tackle consistency problems
of this kind on the level of modelling rather than by the underlying computational framework
as there are many types these issues that must be addressed differently and also in the real
world two monkeys could believe that they succeeded in getting a banana for a moment.

One goal of SBP is integrating different AI techniques where a main mechanism of
integration is the explicit use of existing AI formalisms (e.g., ASP, planning techniques, etc.)
for solving emergent subproblems by means of transitions descriptions. This is related to the
use of different contexts in recent reactive forms of heterogenous multi-context systems [2, 4].

Evolutionary processes are intrinsic to many types of simulation. In, genetic algorithms [5,
9] the fitness of individuals is typically rated by a dedicated fitness function, whereas the
most obvious approach in SBP is simulating natural selection by competition in the simulated
environment, as discussed for the chicken scenario after Example 3. Evolving behaviour is
related to genetic programming [6] where programs are shaped by evolutionary processes.

Agent-based systems (ABS) [10, 14] share several aspects with SBP like the significance of
emerging behaviour when entities are viewed as agents. This view, however, is not adequate
for all types of entities, e.g., when they represent objects like stones, collections of entities,
or intangible concepts like ’the right to vote’ which should not be seen as agents. Moreover,
agents interact via explicit acts of communication that can but need not be modelled in an
SBP configuration. Thus, we see SBP conceptionally one level below ABS, i.e., SBP languages
can be used for implementing ABSs rather than being ABSs themselves. Nonetheless, many
techniques from ABS literature could be beneficial for future SBP systems.

The idea of using multiple worlds for different points of view and modalities is loosely
related to the possible world semantics of modal logics [7].

5 Conclusion

We proposed initial ideas on an approach for using simulation as a programming paradigm.
Its cornerstones are 1. typeless entities, 2. different worlds for different views on reality,
3. behaviour defined by heterogenous concurrent services, and 4. exchange of behavioural
patterns and individual inheritance. Clearly, there are many important aspects that were
not discussed here that need to be addressed when putting SBP in practice. Thus, a major
goal is a prototype of an SBP engine which opens a wide range for further work: E.g., on
how to manage resources in SBP systems in which many worlds and entities share slightly
different data and processes. Efficiency requirements could necessitate mechanisms for sharing
resources, e.g., by only keeping track of differences when a world or entity is cloned.

J. Pührer 73

References
1 Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and

Recovery in Database Systems. Addison-Wesley, 1987.
2 Gerhard Brewka, Stefan Ellmauthaler, and Jörg Pührer. Multi-context Systems for React-

ive Reasoning in Dynamic Environments. In Proceedings of the 21st European Conference
on Artificial Intelligence (ECAI 2014), pages 159–164, 2014.

3 Lawrence J. Fogel, Alvin J. Owens, and Michael J. Walsh. Artificial Intelligence through
Simulated Evolution. Wiley, Chichester, WS, UK, 1966.

4 Ricardo Gonçalves, Matthias Knorr, and João Leite. Evolving Multi-context Systems. In
Proceedings of the 21st European Conference on Artificial Intelligence (ECAI 2014), pages
375–380, 2014.

5 John H. Holland. Adaptation in Natural and Artificial Systems. The University of Michigan
Press, 1975.

6 John R. Koza. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

7 Saul Kripke. A Completeness Theorem in Modal Logic. Symbolic Logic, 24(1):1–14, 1959.
8 Victor W. Marek and Mirosław Truszczyński. Stable Models and an Alternative Logic

Programming Paradigm. In Krzysztof R. Apt, Victor W. Marek, Mirosław Truszczyński,
and David S. Warren, editors, In The Logic Programming Paradigm: a 25-Year Perspective,
pages 375–398. Springer, 1999.

9 Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1998.
10 Muaz Niazi and Amir Hussain. Agent-based Computing from Multi-agent Systems to

Agent-based Models: a visual survey. Scientometrics, 89(2):479–499, 2011.
11 Ilkka Niemelä. Logic Programs with Stable Model Semantics as a Constraint Programming

Paradigm. Annals of Mathematics and Artificial Intelligence, 25(3-4):241–273, 1999.
12 Jörg Pührer. Towards a Simulation-based Programming Paradigm for AI applications. In

Proceedings of the International Workshop on Reactive Concepts in Knowledge Represent-
ation (ReactKnow’14), pages 55–61, 2014.

13 Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach (3. internat.
ed.). Pearson Education, 2010.

14 Michael J. Wooldridge. An Introduction to MultiAgent Systems (2. ed.). Wiley, 2009.

ICCSW’14

	Introduction
	Simulation-Based Programming
	Modelling AI Applications in SBP
	Discussion And Related Work
	Conclusion

