
On Recent Advances in Key Derivation via the
Leftover Hash Lemma
Maciej Skorski

Cryptology and Data Security Group, University of Warsaw
maciej.skorski@gmail.com

Abstract
Barak et al. showed how to significantly reduce the entropy loss, which is necessary in general,
in the use of the Leftover Hash Lemma (LHL) to derive a secure key for many important cryp-
tographic applications. If one wants this key to be secure against any additional short leakage,
then the min-entropy of the source used with the LHL must be appropriately bigger (roughly by
the length of the supposed leakage). Recently, Berens came up with a notion of collision entropy
that is much weaker than min-entropy and allows proving a version of the LHL with leakage
robustness but without any entropy saving. We combine both approaches and extend the results
of Barak et. al to Beren’s collision entropy. Summarizing, we obtain a version of the LHL with
optimized entropy loss, leakage robustness and weak entropy requirements.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, K.6.5 Security and
Protection

Keywords and phrases Key derivation, Leftover Hash Lemma, leakage resilient cryptography

Digital Object Identifier 10.4230/OASIcs.ICCSW.2014.83

1 Introduction

1.1 Randomness extractors
Analyzing security of cryptographic primitives one usually assumes an access to perfect
randomness. However in practice we are limited to imperfect sources, which have a lot of
randomness (measured by entropy1) but exhibit some patterns, bias or correlations between
particular bits in generated sequences. As an entropy source one can use biometric data (like
fingerprints), data collected from user-application interaction (mouse movements, typing
the keyboard, timing events and others) and even physical sources (thermal noise, nuclear
decay). Having collected “noisy” data with enough entropy, in the post-processing phase
one “extracts” pure randomness by dedicated procedures called randomness extractors. One
needs to stress that in general these procedures, in addition to a high-entropy source, require
some amount of pure randomness used as a “catalyst”2, referred to as the seed.

1.2 Leftover Hash Lemma
The famous Leftover Hash Lemma [4] states that universal hash functions are good extractors:
if an n-bit source X has at least ` = k+ 2 log(1/ε) bits of min-entropy3 then the distribution

1 In information theory, the most popular notion is Shannon Entropy. In the context of extracting
randomness one typically uses min-entropy or collision entropy.

2 Since obtaining true random bits might be hard and expensive, a lot of research is focused on deterministic
extractors, which don’t need to be seeded. However, they work only for very limited class of sources.

3 Which means that no adversary can guess the output of X with probability better than 2−`.
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H(X), H, where H is a randomly chosen universal hash function from n to k bits (the seed),
is ε-close to the k-bit uniform distribution, even if H is published.

Entropy loss and RT bound. Note that the Leftover Hash Lemma requires the significantly
bigger entropy on its input comparing to what it extracts. More specifically, we sacrifice
L = 2 log(1/ε) bits of entropy in order to obtain an output of quality ε. The result of
Radhakrishnan and Ta-Shma [5], called the RT-bound, shows that this loss is necessary for
any extractor. In this sense, the LHL as an extractor achieves the optimal entropy loss.

Importance of optimizing the LHL. Although the loss of 2 log(1/ε) bits might seem to
be negligible from an asymptotic point of view, however in some important applications it
affects the efficiency (for instance the Diffie-Hellmann key exchange). Thus, minimizing it is
important for efficiency. Similarly, shorter seeds than that one of the LHL are desired.

1.3 Key derivation: ideal and real settings
For any cryptographic primitive (like an encryption scheme or a signature), which uses
randomness R to derive its secure key, we compare two different settings:
(a) ideal: R is perfectly uniform and independent of any attacker’s side information Z
(b) real settings: the key owner has only an imperfect entropy source X and uses the key

extracted (in our case: by hashing) from X as R. In addition, an attacker may have
some side information Z correlated with X.

The security of the primitive is parametrized by ε, which is the success probability or the
advantage of an attacker with certain resources. The LHL implies that if the security is ε for
uniform R, then the same application keyed with a random hash of X is ε′-secure, where

ε′ 6 ε+
√

2−L (1)

and the entropy loss L is the difference between the entropy of X given Z (suitably defined)
and the length of the hashing output (the length of the extracted key).

1.4 Side leakage and chain rules
In the context of leakage, we want the guaranteed security not to degrade much when some
extra but short information is revealed to an attacker. For an entropy notion H and two
correlated random variables X,Z, the chain rule is an inequality of the following form

H(X|Z) > H(X)− C · |Z| (2)

where |Z| = log |supp(Z)| is the length of Z and C is some constant (ideally C = 1).

Applications of chain rules. Many information-theoretic notions of entropy satisfies the
property (2). In fact, it is what one expects from a “good” notion of entropy and is often used
in security proofs. Typically, high entropy corresponds to high security. Thus, Equation (2)
is often used to prove security in the presence of leakage.

Example: Guessing Probability. The min-entropy of a random variable X given Z is
defined as the negative logarithm of the maximal probability that an attacker can guess the
output of X given only Z. It is known that it satisfies the inequality (2) with C = 1. In
particular, if X is 128-bit uniform key, then any adversary given 10 bits of extra information,
can guess X correctly with probability at most 2−118, comparing to original 2−128.
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Example: leakage-robustness of the LHL. From Equation (1) it follows that to derive a
secure key of required length we need to guarantee that H(X|Z), where H is the min-entropy,
is big enough. Let us say that we have an application whose security for the uniform k-bit
key is ε and that we want to derive a k-bit key which guarantees the security (with no extra
side information) 2ε. For this we need H(X) > k + 2 log(1/ε). Suppose now that we look
at the security against any leakage Z of length m = 20. The chain rule for min-entropy (2)
implies that the entropy loss L = H(X|Z)−k is not smaller than H(X)−m−k. Combining
this with (1) we see that the security is now ε+ ε · 2m/2 ≈ 210ε. Alternatively, we could start
with m = 20 bits of entropy more and achieve the security 2ε. The chain rule is necessary to
derive keys which remain secure against any bounded leakage.

1.5 Improvements in key derivation by the LHL
Reducing the entropy loss . The RT bound shows that it is impossible to avoid losing
2 log(1/ε) bits of entropy if we want the extracted output to be ε-indistinguishable from
uniform (i.e. ε-close) by all statistical tests. However, in cryptographic applications we are
interested only in very special tests, corresponding to the definition of the security of the
application. This suggests that one can overcome the RT bound in specific situations. Indeed,
Barak et al. proved in [1] the stronger version of LHL, which essentially says that for many
scenarios the “ideal” security ε and “real” security ε′ are related by

ε′ 6 ε+
√
ε2−L (3)

where L is the entropy loss. This shows that one obtains roughly the same level of security with
L reduced by half up to L = log(1/ε). The result is valid for the broad class of cryptographic
applications, including unpredictability applications (for example, one-way functions) and
some indistinguishability applications (the so called squared-friendly applications [1, 3], like
weak pseudo-random functions or stateless chosen plaintext attack secure encryption).

Reducing the seed length. It is known that seed for LHL must grow linearly with the
number of extracted bits [7]. In [1] the authors also observed that in some cases the length
of the seed in the LHL can be reduced. The natural idea of expanding a shorter seed works
either for small number of bits or in minicrypt [1].

Relaxing the entropy assumptions. The assumptions in the Leftover Hash Lemma are
typically formulated in terms of min-entropy. However, it gives the same security guarantees
when the upper bound on the probability of guessing X (which corresponds to min-entropy) is
replaced by the same bound on the collision probability of X 4. Since the collision probability
is typically much bigger than the guessing probability, this means that from many sources
we can extract more bits than it is guaranteed by the min-entropy bounds5. This result can
be extended into the conditional case (when there is side information Z correlated with X):

(a) The generalized LHL of Barak et al. [1]. The min-entropy requirement can be replaced
by the upper bound on the collision probability of X given Z, as observed by the authors.
Unfortunately, the latter does not guarantee the leakage-robustness.

4 This fact is actually intuitive, as the hash functions are, by definition, collision resistant and one can
expect that the entropy notions based on the collision probability fit well to that settings

5 Note that this does not contradict to the RT-bound, because that counterexample is a flat distribution
for which the collision and guessing probability coincide (and thus, is a very special case)
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Table 1 Improvements of the Leftover Hash Lemma

Statement Standard Generalized
Assumptions min-entropy collision prob. collision entropy min-entropy collision prob. collision entropy
Reduced entropy loss No No No Yes Yes ?
Reduced seed length No No No Yes Yes ?
Side leakage robustness Yes No Yes Yes No ?
Minimal entropy requirements No No ? No ? ?

(b) The standard formulation of the LHL given for the appropriate notion of conditional
collision entropy [2]. This notion has two big advantages: is the weakest among other
notions proposed for the collision entropy (weaker than conditional collision probability!)
and it satisfies the chain rule, guaranteeing leakage robustness.

The ideal version of the LHL - issues. On the one hand the generalized LHL allows
reducing the entropy loss, the seed length and also handling side information, provided that
we quantify randomness by min-entropy. On the other hand, we know how to minimize the
entropy requirements for the standard LHL. This landscape is summarized in Table 1 below.

The discussion leads to the natural question about the existence of the “ideal” LHL:

Question: Does there exist a variant of the LHL which simultaneously captures the
following advantages: reducing the entropy loss, reducing the seed length, leakage
robustness and possibly minimal entropy assumptions?

1.6 Our results
Summary. We answer this question affirmatively. As a first contribution we show that that
the generalized LHL is not guaranteed to be leakage-robust with low-collision-probability
sources. Second, we show that this can be fixed with a “correct” notion of collision entropy.

Conditional collision probability is not leakage-robust. We show (Section 4) that the
generalized LHL [1] does not guarantee security for the key derived from a source of low
collision probability against leakages of even one extra bit!

The generalized LHL works with the conditional collision entropy. We extend the gener-
alized LHL [1] to work with Beren’s entropy [2] (Section 5). It gives more security (because
of the weaker entropy notion) and leakage robustness (because of the chain rule).

Applications - saving entropy. For a low-collision-probability source X, from which we
want to derive a key ε-secure and secure against arbitrary one-bit leakage Z we save even
log(1/ε)−O(1) bits of entropy comparing to what follows from [1]. Indeed, the only way
to apply the statement of Barak et al. would be to convert first the “entropy” in X into
min-entropy (because there is no chain rule for collision probability). By “entropy smoothing”
[6], this can be achieved with loss of log(1/ε) bits. In our approach this is not necessary.

2 Preliminaries

Notation. By Uk we denote the uniform distribution over {0, 1}k and, more generally, by
US we denote the distribution uniform over a set S. By supp(X) we denote the support of
the distribution X.
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Distinguishing Advantage and Statistical Distance. For two distributions X,Y defined
on the same set we define ∆D(X;Y ) = E D(X) − E D(Y ) as the advantage of a function
(attacker) D in distinguishing X and Y . The statistical distance is defined by SD(X;Y ) =
1
2
∑
x |Pr(X = x)− Pr(Y = x)|, we also denote for shortness SD(X;Y |Z) = SD(X,Z;Y, Z)

and ∆D(X;Y |Z) = ∆D(X,Z;Y,Z). We have SD(X,Y ) = maxD ∆D(X,Y ), where the
maximum is taken over all boolean functions D (possibly probabilistic).

Entropy notions and hash functions . Here we provide necessary entropy definitions.

I Definition 1 (Min-entropy). The min-entropy of X given Z is defined as

H̃∞(X|Z) = − log
(

E
z←Z

[
max
x

Pr(X = x|Z = z)
])
. (4)

I Definition 2 (Collision-probability). The collision probability of X given Z is given by

CP(X|Z) = E
z←Z

(∑
x

Pr(X = x|Z = z)2

)
= E
z←Z

CP(X|Z=z). (5)

I Definition 3 (Collision-entropy [2]). The collision entropy of X given Z is equal to

H2(X|Z) = − log
(

E
z←Z

√
CP(X|Z=z)

)2
. (6)

All these three definitions are related as follows:

I Lemma 4. For any joint distribution X,Z we have

H2(X|Z) > − log CP(X|Z) > H̃∞(X|Z) (7)

I Definition 5 (Almost universal families). A family H of functions h : X → {0, 1}k is called
γ-universal hash family, if for any x1, x2 ∈ X , x1 6= x2 we have Prh←H[h(x1) = h(x2)] 6 γ.
If γ = 2−k then we say that H is universal.

3 Leftover Hash Lemma

3.1 Standard LHL

Below we formulate the Leftover Hash Lemma for the conditional min-entropy.

I Theorem 6 (The LHL [4]). Let (X,Z) be a joint distribution on X ×Z, let H = {h : X →
{0, 1}k} be a 1+γ

2k -universal family and let H be a random member of H. Then we have

SD(H(X);Uk|H,Z) 6 1
2 ·
√

2−L + γ, (8)

where L = H̃∞(X|Z)− k is the entropy loss.

For universal hashing we need L ≈ 2 log(1/ε) to make the statistical distance smaller than ε.

ICCSW’14
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Entropy requirements for the standard LHL. It is well known that in Theorem 6 one can
use collision probability instead of min-entropy. More precisely, we have

SD(H(X);Uk|H,Z) 6 1
2 ·
√

2kCP(X|Z) + γ. (9)

Since CP(X|Z) 6 2− H̃∞(X|Z) this implies the bound in Equation (8). Berens [2] observed
that even weaker assumption is enough. Namely, we have

SD(H(X);Uk|H,Z) 6 1
2 ·
√

2k−H2(X|Z) + γ. (10)

By Theorem 4 this implies both Equation (9) and Equation (8).

3.2 Generalized LHL
We start with the inequality that can be thought of as an abstract formulation of the LHL:

I Lemma 7. [1] Let (Y,Z) be a joint distribution on Y × Z and let U be independent and
uniform on Y. Then for all real-valued functions D on Y × Z, we have

E D(Y, Z)−E D(U,Z) 6
√

Var D(UY , Z) ·
√
|Y| · CP(Y |Z)− 1. (11)

The generalized Leftover Hash Lemma is a special case of this result, where Y = (H(X), H)
for a randomly chosen hash function H. We need only one simple fact (we omit the proof):

I Lemma 8. Let H = {h : X → {0, 1}k} be a 1+γ
2k -universal family and let H be a random

member of H. Then CP(H(X), H) 6
(
CP(X) + 2−k(1 + γ)

)
/|H|.

By Theorem 7 and Theorem 8 one obtains the following generalization of Theorem 6:

I Theorem 9 (Generalized LHL [1]). Let (X,Z) be a joint distribution on X × Z, let
H = {h : X → {0, 1}k} be 1+γ

2k -universal and H be a random member of H. Then

E D(H(X), H, Z)−E D(Uk, H, Z) 6
√

Var D(Uk, UH, Z) ·
√

2kCP(X|Z) + γ, (12)

for any real valued function D on {0, 1}k ×H×Z. In particular, if L = H̃∞(X|Z)− k is
the entropy loss then we obtain

E D(H(X), H, Z)−E D(U,H,Z) 6
√

Var D(Uk, UH, Z) ·
√

2−L + γ. (13)

I Remark. Note that we recover the standard LHL in Equation (8) by applying the above
theorem to D′ = D− 1

2 where D is [0, 1]-valued and taking the maximum over D.

3.3 Applications of the generalized LHL
The bound in Theorem 9 introduces the factor Var D(Uk, UH, Z) depending only on the
distinguisher D. If we only want the extracted key H(X) to be (almost) as good as the
uniform key U for a restricted class of distinguishers6 D then Equation (13) might offer a
significant improvement over Equation (8).

6 For example, in secure unpredictability applications we assume that D almost always outputs 0.
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Security games. In the security game an attacker tries to win against a challenger which
uses a key r. To cover the case when the key is extracted by a hash function h and there is
some side information z, we assume that the attacker is given also h and z. By WinA(r, h, z)
we denote the probability that the attacker A wins the game given h, z and challenged on r.

Unpredictability vs indistinguishability applications. The security requires the advantage
of the winning probability over the “trivial strategy”7 to be small.

I Definition 10 (Security of applications, [1]). Let c = 0 for an unpredictability and c = 1
2

for indistinugishability application. The application is (T, ε)-secure in the ideal model
if E WinA(U,H,Z) 6 c + ε for all attackers A with resources (running time, number of
oracle questions...) less than T . The application is (T, ε′)-secure in the real model if
E WinA(H(X), H, Z) 6 c+ ε′ for all attackers A with resources less that T .

I Remark. In the “ideal” scenario the values of h and z do not help the attacker. That is,
for the security in the ideal model it is enough to assume that the winning probability is
smaller than c+ ε for any A challenged on r which does not know h and z.
Define D(r, h, z) to 1 if A(h, z) wins when challenged on r, and 0 otherwise. Clearly we have
WinA(H(X), H, Z)− c− (WinA(U,H,Z)− c) = ∆D(H(X);U |H,Z). Theorem 9 implies

ε′ 6 ε+
√

Var (WinA(Uk, UH, Z)) ·
√

2−L + γ.

If the variance term is not bigger than ε, we see that the use of the extracted key and the
use of the ideally random key are (roughly) equally secure when L = log(1/ε).

Reducing the entropy loss by bounding the variance term. For the variance term to be
small, the adversary’s winning probability in the ideal setting must be concentrated around its
mean. This is always the case of unpredictability because then we have Var (WinA(U,H,Z)) 6
E WinA(U,H,Z) 6 ε. However, the case of indistinguishability is more subtle. For example,
it might happen that the adversary always wins on one half of the keys and always fails on
the second half. Then the variance is equal to 1

2 and we do not get any improvement in the
entropy loss. For more details we refer the reader to [1].

4 The generalized LHL and collision probability: no robustness

We show that the “natural” use of the collision probability to define the conditional collision
entropy leads to the notion for which any reasonable chain rule fails.

I Lemma 11 (Chain Rule fails for collision probability). For every k there exist random
variables X ∈ {0, 1}k+1 and Z ∈ {0, 1} such that CP(X) = 2−k but CP(X|Z) > 2− k+1

2 .
Thus, if we define H′2(X|Z) = − log CP(X|Z), then for some X and a bit Z we have
H′2(X) = k but H′2(X|Z) ≈ k

2 .

Proof. Let p = 2− k+1
2 and q = 1− p. Fix a point x0 ∈ {0, 1}n and let S ⊂ {0, 1}n be a set

such that |S| = 2k+1q2 and does not contain x0. Let Z = 0 with probability p and 1 with
probability q, and let X|Z=0 be the point mass at x0 and let X|Z=1 be uniform on S. Then
CP(X) = p2 + q2/

(
2k+1q2) = 2−k and CP(X|Z) = p · 1 + q

(2k+1q2) = 1
2

k+1
2 −1

> 2− k+1
2 . J

7 In unpredictability games, an adversary needs to guess a long string so the trivial guess succeeds with
the probability close to c = 0. In indistinguishability games he needs to guess a bit, thus the trivial
guess wins with probability c = 1

2 .

ICCSW’14
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5 Generalized LHL works with conditional collision entropy

I Theorem 12. Let X be an n-bit random variable, H be a 1+γ
2k -universal family from n

to k bits and H be a random member of H. Suppose that we have an application which is
(T, ε)-secure in the ideal model. Then the same application is (T ′, ε′)-secure in the real model
where ε′ 6

√
ε2k−H2(X|Z) +√εγ and T ′ ≈ T (against non-uniform attackers).

Proof. Define D(r, h, z) = WinA(r, h, z)− c. For every fixed z, by Theorem 7 and Theorem 8

E D(H(X|Z=z, H, z)−E D(U,H, z) 6
√

Var D(U,H, z) ·
√

2kCP (X|Z=z) + γ (14)

Since H is independent of X we have Var D(U,H, z) 6 maxh Var D(U, h, z) which is smaller
by ε by the assumptions (applied to D with fixed h and z). Hence,

E D(H(X|Z=z, H, z)−E D(U,H, z) 6
√
ε ·
√

2kCP (X|Z=z) + γ

6
√
ε ·
√

2kCP (X|Z=z) +√εγ. (15)

Since Ez←Z
√

CP(X|Z=z) = 2− 1
2 H2(X|Z), the result follows. J

6 Conclusion

Our result extend all the results of [1] for the case of collision entropy, which is much less
restrictive and still provides the leakage robustness because of the chain rule. Moreover, our
results strongly support the belief that this notion of collision entropy is the “right” one.
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