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Abstract
Bell experiments can be used to generate private random numbers. An ideal Bell experiment
would involve measuring a state of two maximally entangled qubits, but in practice any state
produced is subject to noise. Here we consider how the techniques presented in [1] and [2], i. e.
using an optimized Bell inequality, and taking advantage of the fact that the device provider is
not our adversary, can be used to improve the rate of randomness generation in Bell-like tests
performed on singlet states subject to either white or dephasing noise.
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1 Introduction

It is well known that the violation of a Bell inequality rules out the possibility for the
outcomes of a Bell-type experiment to be known in advance [3]. Therefore, these outcomes
are certifiably unpredictable. Recent works have shown that the uncertainty present in these
outcomes can be quantified, thus allowing one to lower bound the number of random bits
that can be extracted from a given Bell-type experiment [4, 5].

This possibility has given rise to a variety of randomness-related studies based on a
similarly varied set of working assumptions. For instance, many works considered the case
in which the adversary (the actor for whom outcomes are to be certifiably unpredictable)
is allowed to distribute the quantum state measured by the authorized parties, and keep a
purification of this state. Under this assumption, it was shown that randomness expansion
is possible: if the user holds a secret string of finite length, he can expand it into a longer
one [6], or, in principle, even an infinite one [8, 7].

Also, the outcomes observed by the user can be certified to contain some amount of
randomness even when the adversary, in addition to distributing the state, holds partial
information about the initial random string of the user [9]. This possibility, refered to as
randomness amplification, was proved recently for initial randomness issued from a generic
min-entropy source [10, 11] after a series of partial results [12, 13].

These results show the full power of quantum certification in principle. However, when
it comes to realizing such protocols, a number of questions arise. For instance, in which
practical situation would one wish to expand a random string if we already have access
to a source that can produce initial random strings? Also, in the context of randomness
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2 More Randomness From Noisy Sources

amplification, it is unclear in which meaningful situation the dependence would exist at all
but be bounded. If the adversary is allowed to tamper with the devices, for instance, or even
to produce them, then he may have hidden some kind of emitter inside the boxes, in order
to retrieve all numbers produced by the boxes (which otherwise work as expected). This
simple possibility would compromise any certification of randomness.

For these reasons, in the design and assessment of practical realization of randomness
protocols , it is very reasonable to work under the assumption that the adversary has no
access to the devices used by the authorized partners. This trusted provider assumption
was already introduced in the context of randomness protocols in [14], where it was shown
that it restricts the adversary to hold only classical side information (i. e. he cannot hold a
purification of the quantum state). Note that this contrasts with the case of quantum key
distribution (QKD): practical QKD also requires the trusted provider assumption, for the
same reason as mentione above, however the adversary can still hold a purification in this
case since the quantum state passes in his hands. Another consequence mentioned in [14]
is that the initial string used by the user to choose settings for his Bell test need not be
private, but can be fully known in advance by the adversary. One thus speaks of randomness
generation in this context.

It was shown in [1] that additional randomness can be certified under the trusted provider
assumption compared to that granted by randomness expansion protocols, by extracting
randomness from all the settings. Moreover, this same paper as well as [2] demonstrated
that Bell-like inequalities that certify more randomness than usual Bell inequalities (like
e. g. CHSH) can be derived from knowledge of the full correlations. In this paper, we
analyse the advantage provided by these techniques when the quantum state measured by
the user is a singlet states mixed either with white or dephasing noise. White noise typically
describes the effect of many small errors in a setup whereas dephasing noise is the dominant
noise in SPDC-based sources when the pump power is low. The case of white noise was
already partially studied in both [1] and [2]. The analysis given here gathers the information
presented in both studies and provides a comparison with the dephasing noise case.

Even though our analysis relies on the trusted provider assumption, it is worth noting
that some of the results obtained here could also apply to more general adversaries; we refer
to [15] for a concise review of adversarial classes relevant to randomness protocols.

For the present paper, we assume that the source emits exactly one pair of particles per
unit time and that these are detected with certainty. The case of finite detection efficiency
was studied in [1], in absence of noise; when the emission is not heralded, more effects come
into play, see e. g. [16].

Another assumption that we make here is that the devices used by the user are i.i.d. and
that he can use as many of them as he wants. We thus focus on the rate of randomness
generation, defined as the number of random bits generated in each use of the devices.

2 Randomness analysis

We consider here a usual Bell-type experiment performed by a user [3]. At each round,
the user chooses some inputs x, y for his two devices to use as measurement settings, and
observes their outcomes a, b. The i.i.d. behavior of the boxes follows the quantum conditional
probability P (a, b|x, y) ∈ Q.

In general, these correlation can admit a decomposition {qλ, Pλ} such that

P (ab|xy) =
∑
λ

qλPλ(ab|xy) (1)
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with qλ ≥ 0,
∑
λ qλ = 1, Pλ(ab|xy) ∈ Q. When this decomposition is not trivial, by knowing

in each round which value of λ corresponds to the realization of the box, the adversary can
hold a more precise decription of the box’s behavior for that run, as given by Pλ(ab|xy).

Following [1, 2], we thus define the adversary’s guessing probability on the outcomes
observed by the user when using settings x, y and in presence of the decomposition {qλ, Pλ}
as

Gx,y({qλ, Pλ}) =
∑
λ

qλ max
a,b

Pλ(ab|xy). (2)

The average guessing probability when settings are chosen with probability p(x, y) is then
the maximum of

G(P ) =
∑
xy

p(x, y)
∑
λ

qλ max
a,b

Pλ(ab|xy) (3)

over all decompositions (1) compatible with the correlations P (ab|xy).
It was shown in [1] that this quantity can be upper bounded by considering an SDP

(Semidefinite Program) relaxation of the set of quantum correlations [17]. In the following
section, we thus use this program to evaluate the rate, as given by the min entropy

Hmin(P ) = − log2(G(P )), (4)

at which random bits are generated in the experiment.
Note that the particular case of this optimization where randomness is extracted from

a fixed choice of settings (pxy = δx,x0δy,y0), or where the outcomes of different settings are
allowed to by guessed with different decomposition, was also presented independently in [2].

In the following we compare three quantities:
1. The rate of randomness obtained from a fixed set of settings as certified by a CHSH

violation.
2. The rate of randomness obtained from a fixed set of settings as certified by an optimized

Bell-type expression.
3. The rate of randomness obtained when using all settings with the same probability as

certified by an optimized Bell-type expression.

Note that here we consider extracting randomness from the pair of outcomes (a, b) rather
than from the outcome of a single party. A similar computation could be done by taking
only one party’s outcome into consideration, but would result in a lower rate. Also, for the
first two quantities, the fixed set of settings is chosen as to maximize the rate of randomness.

For all results presented next, the numerical computations were performed using the
relaxation of the SDP hierarchy at local level 2 [18].

2.1 White noise
First, let us consider the case in which the measured state is

ρ(V ) = V |φ+〉〈φ+|+ (1− V )11/4, (5)

for some visibility V . The settings which provide the largest violation 2
√

2V of the CHSH
inequality

S = 〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉 ≤ 2, (6)

TQC’14
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Figure 1 Rate of private randomness generation certified by the measure 1, 2 and 3 for a singlet
state mixed with white noise. The inset presents the ratio of the curves to the lowest one.

where Ax, By are Alice’s and Bob’s observables, are the same for all V :

A0 = σz, A1 = σx, By = σz + (−1)yσx
2 . (7)

We thus computed for this state and settings the three different rates of randomness
mentioned above. The result is presented in Figure 1.

The randomness rate obtained in case 2 (middle curve) can be certified with the help of
the following Bell expression:

α〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − β〈A1B1〉, (8)

where the values of α and β depend on V (see [2] for a description of this dependence). The
inset in Figure 1 shows that the advantage provided by using this optimized Bell expression
is however quite limited.

The largest amount of randomness is obtained in case 3 when considering the outcomes
observed when all settings are used with the same probability (i. e. p(x, y) = 1/4). As
mentioned in [1], the improvement, of the order of a factor of 2, is certified with the usual
CHSH inequality.

2.2 Dephasing noise
Second, we consider measurement of the state

ρ(p) = p|φ+〉〈φ+|+ (1− p)(|00〉〈00|+ |11〉〈11|). (9)

The optimal violation of the CHSH inequality by this state, S = 2
√

1 + p2, is provided by
using the following settings [19]:

A0 = σz, A1 = σx,

By = cosχσz + (−1)y sinχσx, (10)

with χ = arctan(p).
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Figure 2 Rate of private randomness generation certified by the measure 1, 2 and 3 for a singlet
state mixed with dephasing noise. The inset presents the ratio of the curves to the lowest one.

The three randomness rates obtained with these state and settings are presented in
Figure 2. Similarly to the previous case, strictly more randomness can be certified in case
3 than in case 2, and in case 2 than in case 1. The inequality that certifies the largest
amount of randomness is again CHSH in case 3, and a different inequality in case 2. One can
check that this inequality, however, beyond being a correlation inequality presents no special
symmetry. In particular, it is not of the form (8). Nevertheless, we note that when the
randomness is extracted from a single set of settings, using an optimized inequality provides
a larger advantage for this dephasing noise than it did in the case of mixture with white
noise (as shown in the inset of Figure 2).

3 Conclusion

We have presented an application of the techniques presented in [1, 2] to the case where
the measured state is a singlet mixed with either white noise or dephasing noise. While
a significant advantage in terms of randomness rate can be obtained in both cases when
randomness is extracted uniformly from all settings, the advantage for extraction from a
fixed choice of settings is much more significant in the case of dephasing noise.

In a practical experiment, characteristics of both white and dephasing noise are expected
to appear [20], as well as various other kind of noises and imperfections [16]. The present
analysis is not meant to exhaust all the parameter space of a realistic experiment; but it
should be clear that the techniques used here can be extended to describe experiments with
all their features.

We have focused here on the asymptotic rate of randomness generation. It would be
interesting to extend our analysis to take into account finite statistics, maybe in a way similar
to [14] or [21]. This would allow one to quantify how many random bits can be extracted
from a Bell experiment which involves only a finite number of rounds.
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