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Abstract
The problem 2-quantum-satisfiability (2-QSAT) is the generalisation of the 2-cnf-sat problem to
quantum bits, and is equivalent to determining whether or not a spin-1/2 Hamiltonian with two-
body terms is frustration-free. Similarly to the classical problem #2-SAT, the counting problem
#2-QSAT of determining the size (i.e. the dimension) of the set of satisfying states is #P-complete.
However, if we consider random instances of 2-QSAT in which constraints are sampled from the
Haar measure, intractible instances have measure zero. An apparent reason for this is that almost
all two-qubit constraints are entangled, which more readily give rise to long-range constraints.

We investigate under which conditions product constraints also give rise to efficiently solvable
families of #2-QSAT instances. We consider #2-QSAT involving only discrete distributions over
tensor product operators, which interpolates between classical #2-SAT and #2-QSAT involving
arbitrary product constraints. We find that such instances of #2-QSAT, defined on Erdős–Rényi
graphs or bond-percolated lattices, are asymptotically almost surely efficiently solvable except to
the extent that they are biased to resemble monotone instances of #2-SAT.
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1 Introduction

Local spin Hamiltonians are simplified models for physical systems, in which the system
is approximated by finite-range interactions between particle sites in a fixed network. We
consider problems which involve the minimum eigenvalue of two-body Hamiltonians, H =∑
〈u,v〉 hu,v , for projectors hu,v acting on pairs of qubits (i.e. spin-1/2 particles) u and v

drawn from some set V . When each hu,v is a projector onto standard basis states, finding
the minimum energy of H is in effect MAX-2-SAT, or the problem of finding an assignment
to boolean variables which satisfies as many constraints as possible, from a given list of
constraints on pairs of bits. Minimum eigenspace problems are therefore at least NP-hard
in general, and are even NP-hard to approximate to within a small percentage error [15].
Even if the minimum energy is known, determining the degeneracy (the dimension of the
lowest-energy eigenspace) is #P-hard in general, or as difficult as determining the number of
satisfying solutions to an instance of 3-SAT [17]. Thus, such problems should be considered
to be intractable, barring major and unexpected advances in technique.
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This article concerns the conditions under which computing the degeneracy of local
Hamiltonians on spin-1/2 particles is possible in polynomial time, as opposed to its worst-
case complexity of being #P-hard. We make this question more precise below.

1.1 Counting problems for frustration-free spin-1/2 Hamiltonians
A special case of interest are frustration-free Hamiltonians, for which there are states |ψ〉
which minimize all of the terms 〈ψ|hu,v |ψ〉 simultaneously. Finding ground states of such
systems may still be hard, but one may at least certify succinct descriptions of ground states,
e.g. by direct calculation of energy contributions from each term hu,v. These models are
therefore a potentially useful proving ground for analytical techniques in many-body theory.
Indeed, there is a wide class of such Hamiltonians on qubits, for which one may efficiently
characterise the ground-state manifold [5].

Bravyi [2] defines the quantum satisfiability problem, or k-QSAT (for any fixed k > 1),
to be essentially the problem of determining whether a Hamiltonian consisting of a sum
of projectors, each acting non-trivially on at most k spin-1/2 particles, is frustration-free.
Bravyi shows that 2-QSAT is efficiently solvable; by contrast, 3-QSAT may not have any
efficient solutions, even if it were somehow shown that P = NP [9].

A natural problem for frustration-free systems is to determine the “degeneracy” of their
ground-state energy levels. Given a two-body spin-1/2 Hamiltonian H as input, let #2-QSAT
denote the problem of computing the dimension of the subspace of states which minimizes
the energy contributions of each interaction term of H independently. We refer to this
dimension as the value of the instance of #2-QSAT. This value is positive if and only if H is
frustration-free, and greater than one if H is also degenerate. The name #2-QSAT is chosen
(see also Ref. [13]) in analogy to the problem #2-SAT of counting the satisfying assignments
to an instance of 2-SAT . The dimension of the ground-state manifold of a frustration-free
spin-1/2 Hamiltonian is simply the size of a basis for the solution space: if the projectors
hu,v are all diagonal operators, this problem is #2-SAT. Thus #2-QSAT may be construed
as a counting problem in the traditional sense.

While 2-SAT is efficiently solvable, the counting problem #2-SAT is #P-complete [17],
i.e. polynomial-time equivalent to counting satisfying assignments for instances of 3-CNF-SAT.
As #2-QSAT generalizes #2-SAT, the former problem is at least as hard in the worst case.
(Ji, Wei, and Zeng [13] show that in fact #2-QSAT ∈ #P.) One may ask if there are broad
subfamilies of #2-QSAT which are considerably easier than #P to compute, and if so, whether
such conditions can themselves be easily decided.

1.2 Entanglement and worst case vs. typical counting complexity
Though #2-QSAT is #P-complete, there is a sense in which “generic” instances of #2-QSAT
are easily solved. Fix any graph G on n vertices. If we assign a qubit to each vertex, and a
term hu,v = |ηu,v〉 〈ηu,v| for each edge uv ∈ G, where |ηu,v〉 is distributed according to the
Haar measure, the resulting #2-QSAT instance can be easily solved (except with probability
0) from the structure of G [14, 3]. Specifically, if the graph is a tree, the #2-QSAT instance
has value n + 1; if the graph has a single cycle, it has value 2; and if it has two or more
cycles, it has value zero (i.e. it is unsatisfiable, or frustrated as a Hamiltonian).

The apparent reason for this is because a Haar-random state |ηu,v〉 is almost certainly
entangled. Following Refs. [2, 14, 5], if hu,v and hv,w project onto entangled states |ηu,v〉
and |ηv,w〉, a single-spin state on u determines the feasible single-spin states at both v and
w similarly to an instance of classical 2-XOR-SAT, in which the states of each interacting
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pair of bits strongly restrict each other. Typical instances of 2-QSAT thus have effective
long-range constraints between qubits within any connected component. As a result, any
graph which is dense enough to contain multiple cycles almost certainly gives rise to an
overconstrained instance of 2-QSAT, corresponding to a frustrated Hamiltonian. This is
in contrast to 2-CNF-SAT formulae, which as instances of 2-QSAT have constraints given by
standard-basis vectors |ηu,v〉 = |eu〉⊗|ev〉 for eu, ev ∈ {0, 1}. Such constraints on qubit-pairs
{u, v} and {v, w} may fail to impose any constraints between the next-nearest neighbour
qubits u and w. This is particularly important in the monotone special case of #2-SAT, which
corresponds to #2-QSAT instances in which |ηu,v〉 = |00〉u,v for all edges uv (corresponding
to the constraint xu ∨ xv on boolean strings x ∈ {0, 1}n), which is itself #P-complete [17].

1.3 The typical difficulty of #2-QSAT with product constraints

To obtain instances of #2-QSAT which resist solution by polynomial-time algorithms, there
must be a substantial chance of obtaining tensor product constraints on each edge. That
this does not happen for Haar random constraints (a natural analogue to uniformly random
constraints on pairs of bits) is a feature of quantum information theory, but does not shed
much light on the range of difficulty of #2-QSAT. We ask: which random graph families, and
which distributions of constraints, yield difficult instances of #2-QSAT? Specifically, if only
product constraints are involved, when is #2-QSAT likely to be polynomial-time solvable?

We show, both for Erdős–Rényi graphs and for bond-percolated rectangular lattices in
two and three dimensions, that difficult instances of #2-QSAT are rare if we select i.i.d prod-
uct constraints from a distribution which differs substantially from monotone constraints.
In particular, on bond-percolated lattices, we expect the value of any #2-QSAT instance to
be efficiently solvable almost surely; and for Erdős–Rényi graphs, the difficult-to-compute
regime vanishes as the “monotonicity” of the constraint distribution decreases.

We state our results more precisely, as follows. A property which holds asymptotically
almost certainly (or surely) is one which holds with probability 1−O(1/poly(n)). Following
the usual terminology associated with the study of random graphs, we often omit the word
“asymptotically” in connection with properties which hold almost surely/certainly: state-
ments about discrete distributions which are “almost” certain or sure, are intended to be
interpreted in the limit n→∞. Considering (families of) Hamiltonians on n qubits, we say
that a system is highly disconnected if its connected subsystems almost surely all have size
O(logn); similarly, if it can almost surely be decomposed into subsystems of size O(logn)
which are independent of one another (despite chains of intermediate interactions), we say
that the system is highly decoupled. The following Lemma follows easily from the definitions
of these terms: we discuss this in Section 2.4.

I Lemma 1. Instances of #2-QSAT which are highly disconnected, frustrated, or highly
decoupled are easy (solvable in time O(polyn) on e.g. a deterministic Turing machine).

We consider constraint models interpolating between monotone #2-SAT on one hand, and
continuous probability density functions of product constraints on the other. For f > 1, let
q = (q1, q2, . . . , qf ) be a distribution on f distinct single-qubit states |α1〉 , |α2〉 , . . . , |αf 〉,
used to generate constraints |ηu,v〉 = |αu〉 ⊗ |αv〉, where the factors are independently sam-
pled from q. For example, q = (1, 0, 0, . . .) for monotone 2-SAT, and q = ( 1

2 ,
1
2 , 0, . . .) for

uniformly-random 2-SAT. If q = (1/f , 1/f , . . . , 1/f , 0, . . .), we have ‖q‖2 = ‖q‖∞ = 1/f ,
which approaches 0 as f → ∞; this limiting distribution is precisely that of single-qubit
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constraints chosen from the Haar measure.1 Vector norms of q thus measure how monotone
the random constraints typically are. Let Q2 = 1− ‖q‖22, and let Q∞ = 1− ‖q‖∞.

I Theorem 2 (Erdős–Rényi models). For an Erdős–Rényi graph on n vertices with m = γn

edges, instances of #2-QSAT with γ < 1
2 are almost certainly highly disconnected, and in-

stances with γ > 1
2Q2

are almost certainly frustrated; while if 2γQ∞−ln(2γ) > 1, frustration-
free instances are almost certainly highly decoupled.

– thus, in the q→ 0 limit, a phase of typically “difficult” problems exists only for m/n ∼ 1
2 .

I Theorem 3 (Bond-percolated lattice models). Let d ∈ {2, 3}, and consider a d-dimensional
square or cubic lattice on n vertices: a segment of the rectangular grid Z×Z of dimensions
O(
√
n)×O(

√
n), or of the cubic grid Z×Z×Z with dimensions O( 3

√
n)×O( 3

√
n)×O( 3

√
n),

in which edges are present between nearest neighbours independently with some probability p.
Let pc denote the critical percolation probability, at which there asymptotically almost surely
exists a component of size Ω(n). For bond-percolated vertices with m edges, if Q∞ is bounded
away from 0, there is a transition at m

dn ∈ Θ(n−1/7) from being almost certainly highly
disconnected and frustration-free to being almost certainly frustrated. If we condition on
frustration-free instances, we find instead that instances for which the percolation probability
is subcritical (that is when m

dn 6 pc) are almost certainly highly disconnected, while instances
for which Q∞ is greater than some constant pfin < 1 (which depends on d) are almost
certainly highly decoupled.

– thus, a typical instance is almost surely solvable in polynomial-time even for q which
deviates from monotonicity by only a finite amount.

The above results suggest that the only difficult instances of #2-QSAT must be specially
constructed to resemble monotone instances of #2-SAT. Specifically: (a) hard instances of
#2-QSAT are atypical, and (b) the reason for this does not have to do with entangled con-
straints, but rather that an instance of #2-QSAT is only likely to be difficult if its constraints
are not very diverse and it is relatively sparsely constrained.

Structure of this article
Section 2 contains preliminary definitions and discussion, including types of easily solved
instances of #2-QSAT, and techniques to infer long-range constraints and to count solutions
to instances of #2-QSAT. Section 3 presents the conditions under which #2-QSAT is easily
solvable for instances whose interaction graphs are generated according to either the Erdős–
Rényi distribution or percolated rectangular/cubic lattice models. In Section 4 we suggest
some ways in which this work might be extended.

2 Preliminaries

We consider simple graphs, containing no parallel edges or single-vertex loops. We denote
the state-space of a generic qubit by H2 ∼= C2, and space of a particular qubit u by Hu.
For the sake of brevity we occasionally neglect error terms which are decreasing in n: for
instance, we write f(n) ∼ g(n) when f(n) = g(n)

[
1±o(1)

]
(which is an equivalence relation)

and f(n) & g(n) when f(n) > g(n)
[
1± o(1)

]
(which is a quasi-order).

1 As q contains no information about the states |αj〉, we are glossing over how well-defined the limit
q→ 0 is. We do not consider this here, but propose that |〈αj |αk〉| 6 1−Ω(1/f) for all j 6= k should be
sufficient to maintain a promise gap between the ground-state energy level and excited energy levels.
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While 2-QSAT allows for a broader range of constraints, in this article we consider only
Hamiltonians H =

∑
hu,v, where hu,v is a rank-1 projector on C2 ⊗C2 and the sum ranges

over pairs of vertices {u, v} which are adjacent in some graph (usually a typical graph from
a given probability distribution on graphs). It should be easy to see by extending the results
below that instances of 2-QSAT whose constraints correspond to projectors of rank 2 or more
will only increase the probability that the instance is efficiently solvable, by reason of the
emergence of long-range constraints on the marginals of satisfying states.

For each rank-1 projector hu,v, we consider the state |ηu,v〉 ∈ Hu ⊗Hv such that

hu,v = |ηu,v〉 〈ηu,v| ⊗ 1Vr{u,v} . (1)

For H frustration-free, the operator 〈ηu,v| is a constraint on any ground-state |ψ〉 of H: for
ρu,v the density operator of |ψ〉 on {u, v}, we have 〈ηu,v| ρu,v = 0 by hypothesis. Thus, as
with the classical decision problem 2-SAT, we describe instances of 2-QSAT by a list of local
“forbidden” configurations 〈ηu,v| : C2 → C on pairs of qubits u, v ∈ V (implicitly taking the
tensor product with the identity on all other qubits) for a global state to avoid.

2.1 Constraint induction
Let |Ψ−〉 ∝ |01〉−|10〉 be the singlet state. Following Ref. [2], given constraints 〈ηu,v| , 〈ηv,w|
for u 6= w which both act on a qubit v ∈ V , we may infer a further implicit constraint 〈η̃u,w|,
such that 〈η̃u,w| ρu,w = 0 whenever both 〈ηu,v| ρu,v = 0 and 〈ηv,w| ρv,w = 0 hold:

〈η̃u,w| ∝
[
〈ηu,v| ⊗ 〈ηv,w|

][
1u ⊗

∣∣Ψ−〉⊗ 1w]. (2)

We may renormalise 〈η̃u,w| so that 〈η̃u,w|η̃u,w〉 = 1, provided that the operator is non-zero.
We may induce further implicit constraints recursively. For two operators 〈ηu,v| and 〈ηv,w|,
we may write the operator obtained via Eqn. (2) by 〈ηu,v| ∗ 〈ηv,w|. It is easy to show that
the binary operator “∗” is associative, so that

〈ηu,v| ∗ 〈ηv,w| ∗ 〈ηw,x| ∝
[
〈ηu,v| ⊗ 〈ηv,w| ⊗ 〈ηw,x|

][
1u ⊗

∣∣Ψ−〉⊗ ∣∣Ψ−〉⊗ 1x], (3)

and so forth for longer chains, so that we may write 〈η̃u,z| = 〈ηu,v| ∗ 〈ηv,w| ∗ · · · ∗ 〈ηy,z| for
an operator acting on {u, z} induced by a chain of constraints from the input instance of
2-QSAT. This is similar, in the classical setting, to computing the transitive closure of the im-
plication graph defined by Aspvall, Plass, and Tarjan [1], in which case we may find multiple
constraints between a pair of variables which tightly constrain their values. Similarly, in the
more general quantum setting, we may obtain multiple constraints 〈η(1)

u,v| , 〈η(2)
u,v| , . . . which

may allow us to represent their joint state-space as a two-dimensional subspace S 6 Hu⊗Hv,
allowing us to reduce the number of qubits involved in the problem by a renormalisation
step [5] without affecting the dimension of the space of satisfying states |ψ〉.

With respect to the operation “∗” of induction of constraints, there are two significantly
different constraint types: product constraints 〈ηu,v| = 〈αu|⊗〈βv|, and entangled constraints
which do not factor in this manner. It is immediate that for 〈η̃u,w| = 〈ηu,v| ∗ 〈ηv,w|, the
constraint 〈η̃u,w| is a product constraint if either 〈ηu,v| or 〈ηv,w| is; and that 〈η̃u,w| = 0 only
if both 〈ηu,v| = 〈αi| ⊗ 〈αj | and 〈ηv,w| = 〈αk| ⊗ 〈α`| satisfy |αj〉 ∝ |αk〉. When this occurs,
the marginal state of u cannot indirectly constrain the marginal on w, or vice-versa, through
the interaction with v: by setting v to the state |ᾱj〉 in the kernel of 〈αj |, we extend any
marginal on {u,w} to one on {u, v, w} which satisfies the constraints 〈ηu,v| and 〈ηv,w|.
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2.2 Randomly generated instances of #2-QSAT

A “random instance” of #2-QSAT is a sample from a probability distribution over instances
of #2-QSAT, generally with a fixed number n of qubits and m of constraints. We consider a
generation process in which one first generates a random graph, either by selecting a fixed
number m of edges from the set of all possible pairs of edges (the Erdős–Rényi graph model),
or by considering a subgraph of some lattice in which each lattice-edge is included with a
probability p such that the expected number of edges is m, associating a qubit to each vertex
of the graph. At each edge uv in the random graph, we assign an operator 〈ηu,v| : C4 → C
according to some probability distribution, representing two-body constraints on the qubits.

We would like to also consider instances of #2-QSAT which are guaranteed to have a non-
zero value, corresponding to a distribution on two-body frustration-free Hamiltonians. This
requires a subtler random generation procedure. For a model of random graphs (e.g. either
an Erdős–Rényi model or a percolated lattice model), we select a random order for the edge-
set of the graph. Adding these edges sequentially to graph, we assign a constraint to each,
restricting the choice of constraint so that the resulting instance of 2-QSAT is satisfiable. In
any continuous distribution (such as the Haar measure), any non-trivial restriction of the
constraint model typically will be to a set of measure zero; the notion of restriction we intend
is limit as ε→ 0, of the Haar measure conditioned on being within an ε-neighbourhood (in
the Euclidean norm on C4) of the valid choices of constraint. (For instance, if only a finite set
of constraints avoid making the instance unsatisfiable, such a restriction yields the uniform
distribution over those constraints.) For the Haar measure, as well as for the product-
constraint model of our article, there is always a choice of constraint for which the instance
is satisfiable at each step: this is easy to show in the Haar random case by a minor extension
of Ref. [14], and can be established for the constraint model of this article without difficulty
(see e.g. the beginning of Section 3).

2.3 Remarks on the counting complexity of instances of #2-QSAT

Given a randomly generated instance of #2-QSAT, we ask: with what probability is it a
“difficult” instance? Our notion of “difficulty” is defined relative to some fixed algorithm A:
a family of instances for which A can successfully compute the answer in polynomial time are
“easy”, and families for which A has no such upper bound are “difficult”. Such statements
depend on the state of the art in combinatorics: an improved analysis of random graphs
may show that some family of formerly “difficult” instances happen to be solvable by A in
polynomial time. If one accepts standard complexity-theoretic assumptions such as P 6= NP,
there are families of instances of 2-QSAT which are inherently “easy” or “difficult” for any
algorithm implemented e.g. on Turing machines. The aim of this article is to establish
bounds on the extent of any such “difficult” regime for certain distributions on #2-QSAT.

An instance of 2-QSAT is monotone if there is a state |α0〉 ∈ C2 such that 〈ηu,v| =
〈α0| ⊗ 〈α0| for each uv ∈ E(G). This is equivalent to there being a local unitary operator
U such that 〈ηu,v| (U ⊗ U) = 〈00| for all uv ∈ E(G): the classical monotone instances of
#2-SAT are a special case in which we may take U to be the identity. As monotone #2-SAT is
#P-complete [17], it follows that #2-QSAT is at least #P-hard. Ji, Wei, and Zeng [13] show
that #2-QSAT is also contained in #P, by a simple transformation of instances of #2-QSAT
which preserves the solution space and puts the interaction graph into a standard form.

Even monotone instances of #2-QSAT may have structural properties which may render
it “easy”. For instance, instances whose interaction graphs G have bounded tree-width [16]
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(see Ref. [6] for an introductory reference) may be solved in poly(n) time,2 albeit with a
constant factor which grows exponentially with the tree-width [8]. This algorithm is useful in
particular for tree graphs or connected graphs which have a single cycle, which respectively
have tree-width 1 and 2. Conversely, instances of #2-SAT which are not monotone may still
be “difficult”: for a fixed graph G, if we assign a uniformly random clause to each uv ∈ E(G),
represented in the format of constraint operators for an instance of #2-QSAT as one of the
operators 〈ηu,v| ∈

{
〈00| , 〈01| , 〈10| , 〈11|

}
then the non-trivial constraints arising between

pairs of bits by the induction procedure of Eqn. (2) only extend over paths of expected
length O(1) in G. Then only for sets of nodes where the constraints are relatively dense
can there be a chance of giving rise to long-range constraints of order the size of a given
connected component: this is necessary to impose enough structure to obtain an instance of
#2-SAT substantially different in complexity from a monotone instance on nO(1) variables.

2.4 Three types of easily solved cases of #2-QSAT

We now remark on the simple observations presented in Lemma 1: this will allow us to
reduce the task of proving that instances of #2-QSAT are easy, to showing that they fall
into one of three structural classes of Hamiltonian – frustrated, highly disconnected, or highly
decoupled, in the senses described preceding Lemma 1.

Following Chvatal and Reed [4] concerning phase transitions in the satisfiability of ran-
dom instances of 2-CNF-SAT, one may obtain results concerning random classical #2-SAT
on Erdős–Rényi graphs with n vertices and m clauses. Specifically, an instance of 2-SAT
with density m

n > 1 is almost certainly unsatisfiable, and so by definition has value zero as
an instance of #2-SAT; and this can be determined in polynomial time by detecting certain
unsatisfiable substructures. Similar remarks apply for frustrated instances of #2-QSAT: if
one can efficiently determine that it is frustrated, this suffices to show that it has value zero.

As for easily solvable instances of #2-SAT with positive values, if mn < 1
2 , the underlying

graph is almost certainly composed of components of size O(logn) having at most one
cycle. One can solve each such component in polynomial time using brute-force techniques
(testing all possible assignments for each component); using dynamic programming and
taking advantage of the existence of a tree decomposition for the component, one can even
solve them in time linear in the component size (up to a logarithmic factor due to handling
vertex labels for a graph of size n). These represent a disconnected regime in random #2-SAT;
and again, similar techniques apply for #2-QSAT if we can establish that the components
scale as O(logn), and/or have treewidth bounded by a constant as we have described above.
It then suffices to multiply the #2-QSAT values for each component together: for random
graph models (such as the ones we consider) where small components dominate, this may
be done efficiently, e.g. using an algorithm which we describe in Appendix A.

Finally, we may consider highly decoupled instances, in which a subsystem which is con-
tiguous nevertheless decomposes into independent subsystems of size O(logn). These may
arise in instances which have been constructed to be frustration-free, due to the proliferation
of qubits whose states are “fixed” by their constraints. When a qubit x can only occupy a
unique state in a satisfying state, we refer to this as the fixed state of the qubit x (which we

2 The approach here, for instances having tree-width at most w > 0, is essentially to use dynamic
programming to count the partially-satisfying solutions for each of 2w possible assignments (in some
local basis) for each qubit indexed by a vertex in a tree-decomposition. A more complete description
can be found in [8].
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denote
∣∣ψ̄x〉). As we add constraints to a satisfiable instance of 2-QSAT, there are at least

two ways in which an added constraint can increase the number of qubits with fixed states:
either by adding a constraint 〈ηx,y| between some qubit x, and a qubit y which already
has a fixed state such that 〈ηx,y|

(
1x ⊗ |ψ̄y〉

)
6= 0†,

or by adding a constraint which closes a chain of constraints starting and ending at x,
which is only satisfiable by a single state

∣∣ψ̄x〉.
Any constraint 〈ηx,y| acting on a qubit x with a fixed state will either be satisfied by

∣∣ψ̄x〉
regardless of the state of y, or will serve to fix the state of y. Thus, interactions between
qubits with fixed states with non-fixed qubits will, by construction, fail to give rise to any
long-range constraints between qubits without fixed states. If there are enough qubits with
fixed states, these may then effectively partition the set of non-fixed qubits into independent
subsystems; if these subsystems are of size O(logn), the system is then highly decoupled.
Thus, to solve an instance of #2-QSAT, it also suffices to identify enough fixed qubits to
partition the remainder into systems whose degeneracy may be efficiently computed.

Our result is to show how in two different random graph models, for random instances
of 2-QSAT with enough diversity in the constraints to differ substantially from monotone
instances, there is (at most) a narrow range in which the density of constraints may give
rise to instances which are neither highly disconnected, nor frustrated, nor highly decoupled
almost surely.

3 Discrete probabilistic models

We consider a constraint model of independent factor distributions, in which constraints are
product operators 〈α|⊗〈β| for some i.i.d. single-qubit operators 〈α| , 〈β| : C2 → C distributed
over some set of operators {〈α1| , 〈α2| , . . . , 〈αf |} for some f > 1, where 〈αj | 6∝ 〈αk| for
j 6= k. Given an edge which represents a product constraint, the probability of obtaining
〈ηu,v| = 〈αh|u ⊗ 〈αj |v is given by qhqj , where q = (q1, q2, . . . , qf ) is a fixed probability
distribution. Throughout the following, we suppose that 1 > q1 > q2 > · · · > qf > 0, so
that there is some probability of obtaining non-monotone instances of 2-QSAT.

Independent factor distributions have convenient features for analysis. Following Ref. [13],
the ground-state manifold for an instance of 2-QSAT having only product constraints has a
basis consisting of product states. Furthermore, non-zero induced constraints 〈ηu,v| ∗ 〈ηv,w|
range over the same two-qubit operators as the individual edge-constraints themselves (al-
beit with a different probability distribution than q ⊗ q). As with Haar-random models,
when we wish to consider only random frustration-free Hamiltonians, we must specially se-
lect the constraints to meet that restriction. We construct the random graph in the same
manner as described in Section 2.2, this time restricting the choice of constraints according
to the condition of not giving rise to a frustrated (i.e. an unsatisfiable) instance of 2-QSAT.
Frustration can only arise if both qubits on which the constraint are each restricted to some
“fixed” state to satisfy the earlier constraints placed on it: a “non-frustrating” choice of
constraint can then be made simply by having it be satisfied by one of the two fixed states.

We may consider how likely long-range constraints (as described in Section 2.1) are
for such a constraint model. Let x0, x` ∈ V (G) be two vertices connected by a path P =
x0x1 · · ·x` in the interaction graph of a random instance of #2-QSAT. We may consider what
constraints may exist on the joint state of x0 and x` by virtue of the inducted constraint
CP = 〈ηx0,x1 |∗〈ηx1,x2 |∗ · · ·∗〈ηx`–1,x`

|. One may show by induction that CP is non-zero if and
only if 〈ηxh–1,xh

| ∗
〈
ηxh,xh+1

∣∣ 6= 0 for each index 0 < h < ` of internal vertices of the path.
For each such h, we have 〈ηxh–1,xh

| ∗
〈
ηxh,xh+1

∣∣ = 0 if and only if 〈ηxh–1,xh
| = 〈αi| ⊗ 〈αj |
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and 〈ηxh–1,xh
| = 〈αk| ⊗ 〈α`| for some j 6= k. Because the right-factor of 〈ηxh–1,xh

| and the
left-factor of

〈
ηxh,xh+1

∣∣ are independently distributed, this occurs with probability

Q2 := 1− ‖q‖22 =
f∑
j=1

qj(1− qj) 6 1− 1
f
, (4)

with equality if and only if q is uniform. Note that Q2 > 0, where the lower bound is the
infimum as q → (1, 0, 0, . . .). As the probabilities of having identical factors at each vertex
are independent, we then have

Pr
[
CP 6= 0

]
=

`−1∏
h=1

(
1− ‖q‖22

)
= Q`−1

2 . (5)

Thus, CP is non-zero and proportional to 〈αh| ⊗ 〈αj | with probability qhqjQ
`−1
2 for each

1 6 h, j 6 f , and equal to zero with probability 1−Q`−1
2 . Because the long-range constraints

which involve a particular vertex as amid-point are not independent of one another, it may be
useful in some cases to bound this probability from below by Q`−1

∞ , where Q∞ = 1−‖q‖∞,
where ‖q‖∞ = q1 is an upper bound on the probability that the single-qubit operators
〈αj | , 〈αk| with which two different constraints act on x are the same.

3.1 Erdős–Rényi interaction graphs

The attenuation of the probability of long-range constraints described in Eqn. (5) is similar
to what occurs in uniformly random 2-SAT. For Erdős–Rényi interaction graphs on n vertices
and m edges – a distribution on labelled graphs which may be sampled by listing each of
the

(
n
2
)
potential edges in a random order, and selecting the first m edges for inclusion –

this motivates an analysis which follows closely to that of Chvatal and Reed [4], adapting it
for counting problems and to involve more general constraint distributions. We show that,
except for a “difficult phase” in the regime 1

2 6 m
n 6 1

2Q2
, a random instance of #2-QSAT is

almost certainly either highly disconnected or frustrated, according to whether m
n is below

or above the boundaries of the difficult phase. In particular, the difficult phase shrinks to a
band of zero width at m

n ∼
1
2 as Q2 → 1. In the special case of frustration-free instances,

this band expands to 1
2 6 m

n 6 1
2Q∞

(1 + δ) for some small δ which vanishes as Q∞ → 1; this
band also converges to m

n ∼
1
2 as Q∞ → 1. Thus in the “completely non-monotonic” limit

q → 0, #2-QSAT is always easy; and there is a substantial band of instances which may be
difficult to solve only if the constraint distribution shows a corresponding bias towards a
small, finite number of constraints.

3.1.1 The highly disconnected phase in Erdős–Rényi models

Whether or not we restrict to frustration-free instances of 2-QSAT, the existence of a highly
disconnected regime in instances of 2-QSAT on Erdős–Rényi graphs G follows directly from
the random graph model itself. For m

n < 1
2 , almost certainly G contains only components of

size O(logn), and almost certainly contains no components having more than one cycle [7].
Any instance of 2-QSAT on such a graph will thus be highly disconnected, regardless of the
constraint distribution. For our results on Erdős–Rényi models, it thus suffices to establish
upper bounds on the extent of any difficult phase.



N. de Beaudrap 127

x0 = x` = x2`

x1

· · ·

. . .

x`−1

x`+1

· · ·

. . .

x2`−1

X1 X2

Figure 1 Example of a “figure eight” graph on 2`− 1 vertices, for ` = 8. By Eqn. (7), the
probability of such a graph describing a frustrated figure-eight subsystem scales as O

(
Q2`

2
)
.

3.1.2 The frustrated phase in unconditional Erdős–Rényi models

For a random graph with m ∈ Ω(n) edges, we adapt the analysis of Chvatal and Reed [4,
Theorem 4] to consider the probability that the giant component Γ contains a “frustrated
figure eight” (corresponding to a “snake” in Ref. [4]): a subsystem X such that
1. Its interaction graph contains a figure eight graph, which we define as a pair of cy-

cles X1 = x0x1 · · ·x`−1x` and X2 = x`x`+1 · · ·x2`−1x2` of the same length, where
x0 = x` = x2`, and where X1 and X2 intersect only at the vertex x0 = x`. (See
Fig. 1 for an example.) There may be additional edges connecting vertex-pairs xjxk
(though these will typically be unlikely), and X = X1 ∪X2 may be connected to other
vertices.

2. For each 0 6 j < 2`, the constraints
〈
ηxj,xj+1

∣∣ = 〈βj | ⊗ 〈γj | satisfy 〈γj | 6= 〈βj+1|.

3. We have
{
〈β0| , 〈γ`−1|

}
∩
{
〈β`| , 〈γ2`−1|

}
= ∅, so that the constraints imposed by X1 and

X2 on their common spin x0 are not simultaneously satisfiable.

The cycles X1 and X2 are either “alternating loops” or “quasi-alternating loops” in the
terminology of Ref. [13], and impose constraints on x0 is which cannot be simultaneously
satisfied. Thus a frustrated figure eight is unsatisfiable by construction. We consider the
probability of a large frustrated figure-eight arising in a random instance of 2-QSAT with
constraints given by an independent factor distribution, which in particular implies that it
is part of the largest contiguous subsystem of the Hamiltonian.

In a system with a figure-eight subgraph, the probability of 〈γj−1| 6= 〈βj | is simply Q2
for each of the 2`− 2 sites xj of the two cycles, excluding the shared vertex x0 = x` = x2` .
The conditions at the node x`, where we require 〈β0| = 〈γ`−1| 6= 〈β`| = 〈γ2`−1|, occur with
a probability Qcrux which also depends only on q. (By a routine calculation, one may show
that

Qcrux =
∑
h

qh

([
qh
∑
j,k 6=h

qjqk

]
+
[∑
i 6=h

qi
∑

j,k/∈{h,i}

qjqk

])

= 1− 4‖q‖22 + 2‖q‖42 + 4‖q‖33 − 3‖q‖44 . (6)

Then Qcrux → 1 as q → 0, and Qcrux ∈ Θ(1) for ‖q‖∞ bounded away from 1.) Given a
fixed figure-eight graph X on 2`− 1 vertices, the probability that it gives rise to a frustrated
figure-eight system is then

Pr
[
X a frustrated subsystem

]
= Q2`−2

2 Qcrux. (7)
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Let m = γn for some constant γ > 0. Using a second moment probabilistic argument,
adapting the proof of Ref. [4, Theorem 4], we show that the largest contiguous subsystem
almost certainly contains a frustrated figure eight so long as γ > 1

2Q2
.

Let ϕ` denote the number of frustrated figure eight subsystems in G on 2`− 1 vertices.
The mean E(ϕ`) over all random graphs on n vertices and m edges can be evaluated by
considering all sets S of 2`− 1 vertices, and summing the probability of S being such figure
eight subsystem for all such subsets. We will make use of the equality

n!
(n− t)! ∼ nt exp

(
−α(n, t)

)
, where α(n, t) := t+ (n− t+ 1

2 ) ln
(

1− t

n

)
(8)

which holds for t ∈ o(n),3 ignoring a relative error term of O( 1
n ) using the notation defined

at the beginning of Section 2. By considering (i) the number of ways that we may choose the
common vertex, (ii) the number of distinguishable ways that we may construct two cycles
on ` vertices (built in either order) which incorporate the common node, (iii) the number of
ways of allocating the remaining edges after having built X, and (iv) the probability that
X is a frustrated figure eight given that it is present in the random graph, we may obtain

E(ϕ`) = Q2`−2
2 Qcrux ·

n

2

[
1
2

(
n− 1
`− 1

)
(`− 1)!

][
1
2

(
n− `
`− 1

)
(`− 1)!

]
((

n
2

)
− 2`+ 1

m− 2`+ 1

)
((

n
2

)
m

)


∼ Qcrux

8Q2

(2Q2m

n

)2`−1 exp
(
−α
(
n, 2`− 1

)
+ α
((
n
2

)
, 2`− 1

))
exp
(
α
(
m, 2`− 1

)) . (9)

For ` ∈ o(n1/2), we have α(n, 2` − 1) ∈ o(1); then we can easily show that ϕ` > 0 with
non-zero probability, provided that m = 1

2Q2

(
1 + Ω( 1

` )
)
n.

Next, we show that ϕ` almost surely doesn’t differ substantially from its mean. Define
a random variable ϕX ∈ {0, 1} such that ϕX = 1 for instances of 2-QSAT whose constraint
subgraph contains a frustrated figure-eight on a given subgraph X. We compare E(ϕX)2

against E(ϕXϕY ), where X = x0x1 · · ·x2`−1x0 and Y = y0y1 · · · y2`−1y0 are both figure-
eight graphs on 2` − 1 vertices, but which may have vertices and edges in common. By
definition, we have Var(ϕ`) = E(ϕ2

`)− E(ϕ`)2. We have

E(ϕ`) =
∑
X

Pr
[
ϕX = 1

]
, E(ϕ2

`) =
∑
X,Y

Pr
[
ϕXϕY = 1

]
, (10)

where we sum over all possible figure-eight subgraphs X,Y on 2`− 1 vertices selected from
n vertices. We show that E(ϕ2

`) ∼ E(ϕ`)2, which implies that Var(ϕ`) ∈ o
(
E(ϕ`)2).

Consider the probability that a given subgraph g on t edges occurs as a subgraph of
G. Accounting for how we can distribute t edges among the first m elements of a random
sequence of edges, we have

f(t) := Pr
[
g ⊆ G

]
=
(
m

t

)
t!
[((

n
2
)
− t
)
!(

n
2
)
!

]
∼
(

2γ
n

)t
exp
(
α
((
n
2
)
, t
)
− α(γn, t)

)
. (11)

We suppose that ` ∈ o(n1/2), so that f(2` + δ(`)) ∼ (2γ/n)2`+δ(`) for δ(`) ∈ ±O(`),
again using eα(N,t) ∼ 1 for t ∈ o(N1/2). For figure-eight subgraphs X,Y on 2` − 1 vertices

3 This may be easily recovered using Stirling’s approximation.
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each, write Φ(X,Y ) := Pr
[
ϕXϕY = 1

∣∣X ∪ Y ⊆ G] for the probability of the frustration
conditions on X ∪ Y . Then if

∣∣E(X) ∩ E(Y )
∣∣ = i,

Pr
[
ϕXϕY = 1

]
= Pr

[
X ∪ Y ⊆ G

]
Φ(X,Y ) = f(4`− i)Φ(X,Y ). (12)

For X fixed, define Φi(X) to be the sum of Pr
[
ϕXϕY = 1

]
over all figure-eight subgraphs

Y of the same size, for which |E(X) ∩ E(Y )| = i as above (i.e. the probability of obtaining
two frustrated figure-eight subsystems which intersect in this way, one of which is X). The
probability of having any pair of isomorphic frustrated figure eight subgraphs, of which one
is X, is then given by Φ(X) :=

∑
i Φi(X).

We may show that for a fixed X, the contribution of Φ0(X) is the only significant
contribution to Φ(X). Note that if none of the edges of X and Y overlap, the frustration
conditions for X and for Y are completely independent, even if X and Y share vertices:
that is, Φ(X,Y ) =

[
Q2`−2

2 Qcrux
]2 in this case. We can then upper bound Φ0(X) roughly by

removing the restriction on Y that X ∧ Y have no edges. Let F2`−1 denote the number of
possible frustrated figure eight graphs on 2`− 1 vertices selected from n vertices: then

Φ0(X) <
∑
Y

f(4`)Φ(X,Y ) ∼ F2`−1
(
2γ
/
n
)4`
Q4`−4

2 Q2
crux. (13a)

For all other 0 < i 6 2`, we consider the number N(i, j) of figure-eight subgraphs Y on
2` − 1 vertices, for which X ∧ Y has i edges and j vertices, and consider an upper bound
Φ(i, j) for the frustration probabilities Φ(X,Y ) for all such subgraphs Y . Then we have

Φi(X) 6
∑
j

N(i, j)f(4`− i)Φ(i, j) (13b)

for i > 0. We bound the parameters Φ(i, j) and N(i, j) by considering bounds on the
frustration conditions holding at each site in X ∪ Y , and by considering how the number
of components in X ∧ Y affects both N(i, j) and the probability of all the local frustration
conditions holding.

Local frustration conditions

If X and Y intersect at all, the probabilities of the frustration conditions holding for any
shared vertex only differs from what it would be independently for X and for Y if they also
share edges. For instance, if xj = yk for j, k /∈ {0, `, 2`}, and ex,j , ex,j+1 /∈ E(Y ), then the
frustration conditions for X and for Y at xj are independent of one another and obtain
with probability Q2

2, as if xj and yk were actually distinct vertices. Similarly, if xj = yk
for j, k /∈ {0, `, 2`}, and ex,j , ex,j+1 ∈ E(Y ), then the frustration conditions are identical
and they obtain with probability Q2. The most interesting cases are for the “crux” vertices
x` and y`, and for the “junction” vertices of degree 3 in X ∪ Y arising from xj = yk for
j, k /∈ {0, `, 2`}.

Vertices in X ∪ Y of degree 3 correspond to vertices xj = yk for j, k /∈ {0, `, 2`}, where
one of the edges ex,j or ex,j+1 is equal to one of the edges ey,k or ey,k+1. To satisfy the
frustration conditions, the common edge of X and Y which is adjacent to xj must act
on xj differently from the remaining two edges, but the other two edges may act on xj
in either distinct or identical ways to each other. Routine calculation shows that the
probability of this occurring is Qjunct := ‖q‖22 − ‖q‖33.
The probability that the frustration conditions for X holds at x`, when x` = yk for some
0 < k < 2`, may be somewhat complicated if some of the edges of Y incident to yk
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overlap some of the edges {ex,1, ex,`, ex,`+1, ex,2`} incident to x`. Similar remarks apply
to the other crux vertex y`. As there are at most two crux vertices in X ∪ Y , we may
ultimately subsume the probability that these conditions hold at x` or at y` as a constant
factor, and simply bound the probability from above by 1.

Vertex types and simultaneous frustration

The probability of X and Y both being frustrated depends on the number of junction
vertices, crux vertices, and other vertices in X∪Y , which are closely related to the number of
components. Extending the observation made with respect to the probability of frustration
conditions holding at the crux vertices, we adopt an approach of avoiding case analysis, by
sweeping various scalar factors under the rug when they depend only on a constant number
of vertices. To do so, we define a scalar factor c (which we do not explicitly calculate) to
bound from above any contributions by constant factors in the various cases.

In most cases, the components of X ∧ Y (if it is non-empty) will consist of paths, and
possibly one non-path tree component in the case that x` = y` (with at least three of the
edges of X and Y overlapping at that vertex). In rare cases, X ∧ Y may have a component
which contains an entire cycle, or indeed two cycles if X = Y . In the typical case where
X ∧Y is cycle-free, the number of components will be the difference j− i; Otherwise, X ∧Y
has one or two cycles, so that it has j − i + 1 or j − i + 2 components. In any case, the
number of components is j− i+O(1). We may then make the following remarks concerning
vertices of different types:

As we note above, X ∪ Y has at most O(1) distinct crux vertices, for which frustration
conditions occur with constant probability regardless of the number of edges of X and
Y which overlap at those vertices.
The number of junction vertices is minimized when each component of X ∧ Y is a path
segment, with each component having two junction vertices at its endpoints; the largest
number of junction vertices a component may have is four, in the case that the the
two crux vertices coincide so that one component of X ∧ Y has four leaf nodes. (Three
junction nodes are possible as well if the two crux nodes coincide, but where only three of
the edges of X and of Y coincide.) Thus the number of junction vertices is 2(j−i)+O(1)
in all cases.
The frustration conditions elsewhere are governed by edge-pairs meeting at some vertex,
where either both edges are common to X and Y or both belong to one figure-eight
graph X and Y (the same one), but not to both. Considering the edges x0x1, x1x2, etc.
in sequence and pairing each with the one that follows it, we may count these edge-pairs
by considering those edges xjxj+1 for which xj+1 is not a junction or crux vertex. The
number of edges in X which meet at non-junction, non-crux vertices is 2`−2(j−i)−O(1),
and similarly for Y ; and the number of such edges in X∧Y is i−2(j− i)−O(1), yielding
a total of 4`− 2(j − i)− i±O(1).

Thus for 0 < i < 2` we have

Φ(X,Y ) 6 cQ4`−i
2

(
Qjunct

Q2

)2(j−i)
(14a)

for some constant c depending only on the probability distribution q of constraint probabil-
ities. For i = 2`, we have X = Y and j = 2`− 1: then following Eqn. (7) we may explicitly
evaluate

Φ(X,X) = Pr
[
ϕX = 1

∣∣X ⊆ G] = QcruxQ
2`−2
2 . (14b)
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Ways to overlap at i edges

Following the analysis of Ref. [4], we may bound N(i, j) by considering upper bounds on
(i) the number of ways a fixed shape for the graph X ∧ Y could be mapped injectively into
X and into Y , (ii) the number of ways that the components of X∧Y could be arranged into
the vertex-order of Y , and (iii) the number vertices which may belong to Y r (X ∧Y ). The
number of subgraphs Y such that X ∧Y has i edges and j vertices can then be bounded by

N`(i, j) < 4
(

2`+ 2
2j − 2i+ 2

)2
`(j − i)!2j−in2`−j−1

6 4`(2`+ 2)4(j−i)+4 2j−in2`−j−1 (15a)

in the case 0 < i < `, and

N`(i, j) < 4
(

2`+ 2
2j − 2i+ 2

)2
`(j − i)!2j−i+1n2`−j−1

6 8`(2`+ 2)4(j−i)+4 2j−in2`−j−1 (15b)

for 0 < i < 2` more generally. If for the sake of brevity we define Λ = 2(2`+ 2)4/n, we then
have

N`(i, j) 6
{

2`Λj−i+1n2`−i if 0 < i < `,

4`Λj−i+1n2`−i if ` 6 i < 2`.
(15c)

Again, we have X = Y if i = 2`, so that N`(2`, j) = 1.

Suppose that ` ∈ o(n1/4), so that Λ ∈ o(1). We may then use the above remarks to bound
Φi(X) for i > 0. For 0 < i < `, the graph X ∧ Y has no cycles, so that i+ 1 6 j 6 2`− 1;
we may then bound

Φi(X) 6
2`−1∑
j=i+1

N(i, j)Φ(i, j)f(4`− i)

<

2`−1∑
j=i+1

[
2`Λj−i+1n2`−i

][
cQ4`−i

2

(
Qjunct

Q2

)2(j−i)
] (

2γ
/
n
)4`−i

= 2c`Λn2`−iQ4`−i
2

(
2γ
/
n
)4`−i 2`−1∑

j=i+1

(
ΛQ2

junct

Q2
2

)j−i

< 2c`Λn−2` (2γQ2)4`−i
(

ΛQ2
junct

Q2
2

)(
1

1− ΛQ2
junctQ

−2
2

)

∼

(
2cQ2

junct

Q2
2

)
`Λ2n−2` (2γQ2)4`−i . (16a)

For ` < i < 2`, we may only bound i 6 j 6 2`− 1, and for i = 2` we have j = 2`− 1 = i− 1;
we may then obtain similar bounds

Φi(X) . 4c`Λn−2` (2γQ2)4`−i for ` 6 i < 2`, (16b)

Φ2`(X) ∼ QcruxQ
−2
2 n−2` (2γQ2)2` for i = 2`. (16c)
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Expanding the formulas for Φi(X) for i > 0 and eliding the constant factors, we may obtain

Φ(X) = Φ0(X) + `n−2`(2γQ2)4`O

(
Λ2

`−1∑
i=1

(2γQ2)−i+ Λ
2`−1∑
i=`

(2γQ2)−i+ `−1(2γQ2)−2`

)
.(17)

For ` ∈ ω(1), the asymptotic expression of the previous equation is bounded from above
by O(Λ2), provided that poly(`)(2γQ2)−Θ(`) ⊆ o(1). For the latter to hold, it suffices that
2γQ2 − 1 ∈ ω

(
`−1 log(`)

)
. We then obtain the upper bound

Φ(X) = Φ0(X) + O
(
`Λ2n−2`(2γQ2)4`

)
. (18)

We may show that Φ(X) = Φ0(X)
[
1 + o(1)

]
: using Eqn. (8), we may estimate

F2`−1 = n · 1
2

[
1
2

(
n− 1
`− 1

)
(`− 1)!

] [
1
2

(
n− `
`− 1

)
(`− 1)!

]
= n!

8(n− 2`+ 1)! ∼
1
8n

2`−1, (19)

so that we have

Φ0(X) . F2`−1
(
2γ
/
n
)4`
Q4`−4

2 Q2
crux =

(
Q2
crux

8Q4
2

)
n−2`−1 (2γQ2)4` , (20)

whereas by ` ∈ o(n1/9) and Λ ∈ Θ(`4/n) ⊆ o(n−5/9) we have

O
(
`Λ2n−2`(2γQ2)4`

)
⊆ o

(
n−2`−1(2γQ2)4`

)
. (21)

We then have Φ(X) ∼ Φ0(X) as promised. Thus we have E(ϕ2
`) ∼ E(ϕ`)2, so that Var(ϕ`) ∈

o(E(ϕ`)2). By Chebyshev’s inequality, the probability that ϕ2
` varies from its mean by

ω(Var(ϕ`)) is zero; then in particular ϕ` is almost surely greater than 1 provided that
E(ϕ`) > 1.

Frustrated subsystems may be efficiently detected when they are present, as follows.
For each vertex x ∈ V (G), constraint-pair (〈αh| , 〈αj |), and ` > 1, we may enumerate the
number of alternating paths (in the terminology of Ref. [13]) of length ` which begin an end
at x whose first constraint is of the form 〈αh| ⊗ 〈γ| and whose final constraint is of the form
〈β| ⊗ 〈αj |. We may do so by traversing all alternating paths starting at x by a breadth-first
search, and noting at each step whether in one step we may reach a visited vertex which could
be used to close an alternating path back to x. Any one such path represents an alternating
or quasi-alternating loop at x. If for any ` > 1 there are two such loops with inconsistent
constraints, then the constraints at x are unsatisfiable. Exploring all of the alternating paths
from x for any one constraint pair (〈αh| , 〈αj |) can be done in time O(m); doing so for all
constraint-pairs and all x ∈ V (G) can be done in time O(nmf2). The frustrated pair of
constraints may not represent a frustrated figure eight (e.g. if the alternating paths starting
and ending at x are of different lengths), but nevertheless serve to certify that the instance
of #2-QSAT is frustrated, and are present for all frustrated instances.

Thus form > 1+ε
2Q2

n for positive ε ∈ ω(n−1/9 log(n)), an instance of 2-QSAT constructed on
G selected according to the Erdős–Rényi distribution will be frustrated almost surely, due to
the presence of multiple frustrated figure-eight subsystems of size O(poly(n)). Furthermore,
one may determine that such frustrations exist in polynomial time, when they are present.
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3.1.3 The highly decoupled phase in frustration-free Erdős–Rényi
models

In constructing frustration-free instances of 2-QSAT from a discrete distribution, we may
suppose that constraints are repeatedly sampled for each new constraint until we obtain
one which does not render the instance unsatisfiable. Any constraint which on the first
“try” would have resulted in a frustrated instance, we call a would-be frustration. We may
then consider the structures in the Hamiltonian which would have arisen, had we taken the
constraint which was first selected for any interaction, and thus speak counterfactually of
such features as “would-be” frustrated figure-eight subsystems.

In frustrated figure-eight subsystems X = X1 ∪X2, the common qubit x` has conflicting
constraints imposed on it by the two cycles X1 and X2. If we condition on frustration-free
instances, this becomes a would-be frustrated figure-eight. As X is being constructed, one of
the cycles (without loss of generality, X1) must be completed before the other: this is either a
loop or quasi-alternating loop at x (in the terminology of Ref. [13]). A quasi-alternating loop
at x fixes the state of x, which by construction do not by themselves satisfy the constraints
imposed on x by X2. Similar remarks apply when X1 is an alternating loop, which allows
two possible single-qubit states for x which on their own satisfy the constraints imposed by
X1. In the case that X1 is an alternating loop, x may be in one of two states |ψ0

x〉 or |ψ1
x〉

in a product with the rest of X1, in which case all of the other spins of X1 are in a product
state |Φ0〉 or |Φ1〉 (respectively) determined by that state, or it may be entangled with the
rest of the loop in some superposition u0|ψ0

x〉|Φ0〉+ u1|ψ1
x〉|Φ1〉. In either case, the marginal

of any satisfying state on x is a mixture of |ψ0
x〉 or |ψ1

x〉, neither of which on their own satisfy
the constraints imposed by X2 on x. Then in any case, upon the completion of the cycle
X1, the states of all qubits in X2 which are accessible from x at that time are uniquely
fixed. Each subsequent edge of X2 which connects more qubits to x` also fixes the state of
those qubits. This means in particular that every one of the ` qubits v ∈ V (X2) have fixed
states

∣∣ψ̄v〉. We call such a subsystem of fixed qubits a frozen subsystem. Thus, a would-be
frustrated figure-eight on 2`− 1 qubits contains an (actually) frozen cycle of ` qubits.

The analysis of the preceding section concerning frustrated figure-eight subsystems X =
X1 ∪X2 can be used to demonstrate the the existence of a “frozen core”, or a subgraph
of the giant component which itself contains Ω(n) vertices. The growth of this frozen core
will gradually start to obstruct long-range constraints within the giant component, until
eventually it renders the #2-QSAT problem highly decoupled.

To describe the growth of large frozen subsystems in frustration-free Erdős–Rényi models,
we consider a random graph model for qubits with fixed states. Define a directed graph
F defined by the 2-QSAT instance consisting of frozen subsystems, including only vertices
representing qubits with fixed states, and with arcs x→ y for qubits connected by constraints
〈ηx,y| such that 〈ηx,y|

(
|ψ̄x〉 ⊗ 1

)
6= 0†. We call this digraph the frozen subgraph of G.

We may establish lower bounds on the growth of F in terms of an Erdős–Rényi graph
U , where edges of G belong to E(U) independently with some probability Q̃ 6 Q, and
where all edges of U are covered by arcs of F . We consider Q∞ = 1 − ‖q‖∞, and let
p∞ = mQ∞/

(
n
2
)
. We then let U be an Erdős–Rényi graph having m∞ ≈

(
n
2
)
p∞ edges:

we treat this as a subgraph of the Erdős–Rényi interaction graph G,4 including each edge

4 We may simulate randomly sampling over graphs with m edges, by considering graphs in which edges
are present i.i.d with probability p = m/

(
n
2

)
– the

√
n variance in the number of edges is smaller than

the scales at which phase transitions such as the emergence of the giant component occur.
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of G with probability Q∞. Consider a random colouring c : V → {1, 2, . . . , f}, in which
Pr[c(x) = j] = qj . For a given qubit x which has a fixed state |ᾱc(x)〉, and a newly added edge
xy ∈ E(G), the probability that x→ y is an arc of the frozen subgraph F is 1− qc(x) > Q∞.
From an initial set S of fixed qubits, we then simulate the construction of F as follows:
1. For each newly included vertex x ∈ V (F ) or x ∈ S, assign its colour c(x);
2. For each neighbour y of x in G: If xy ∈ U , include x→ y in F ; otherwise include x→ y

in F with probability (q1 − qc(x))/q1; otherwise exclude it.
3. Repeat the above until all x ∈ S have been traversed, and no new vertices have been

included in F .
This construction reproduces the probability distribution of arcs in F , with the random
colouring of the vertex c(y) taking the place of the action of constraints 〈ηx,y| = 〈β|x⊗

〈
αc(y)

∣∣
which fixes the state of the qubit y.

From the above, we may show that the largest (weakly connected) component of F
grows at least as quickly as that of the Erdős–Rényi graph U having m∞ ∼ mQ∞ edges.
In particular, if m

n > γ∞ for γ∞ := 1
2Q∞

, then U has a giant connected component Γ(U);
if any vertices of Γ(U) are in F , then the entire component γ(U) is a subgraph of F . As
we have noted, there are frozen cycles (arising from would-be frustrated figure eights) of
size ` ∈ poly(n) for (1 + ε)/2Q2 6 m

n 6 γ∞: and almost surely a constant fraction of
these vertices are subsumed into Γ(U), which has size O(n). Then for m

n > γ∞, the giant
component of U is almost surely contained in some weakly-connected component of F . Thus
F almost surely contains a frozen core Γ(F ) for γ > γ∞, which is at least as large as Γ(U).

Because the qubits in the frozen core cannot mediate non-trivial long-range constraints
between non-fixed qubits, and do not contribute to the value of the #2-QSAT instance,
they in effect play no role in the solution and may be removed. Let γ = m

n . By Ref. [7,
Theorem 9b], the subgraph Γ(U) contains (1− 1

2γQ∞
ξ(γQ∞))n+ o(n) vertices, where

ξ(ρ) =
∑
k>1

kk−1

k! (2ρe−2ρ)k (22)

and where 1
2ρξ(ρ) expresses (almost surely and up to o(1) error) the fraction of vertices which

are contained in tree components in an Erdős–Rényi graph with ρn edges. Following Ref. [7,
Theorem 4b], the function ξ : [0,∞) → [0, 1] has the property that ξ(ρ)e−ξ(ρ) = 2ρe−2ρ.
We may show that for any super-critical edge-density ρ > 1

2 , there is a sub-critical edge-
density ρ̃ := 1

2ξ(ρ) < 1
2 such that the distribution of the sizes of tree-components for the

edge-densities ρ and ρ̃ are the same up to a normalization factor.5 Thus deleting the giant
component from the Erdős–Rényi graph with density ρ gives rise to a graph indistinguishable
from an Erdős–Rényi graph with density ρ̃, albeit on 1

2ρξ(ρ)n vertices. More generally,
deleting the subgraph Γ(U) from the graph G yields a graph indistinguishable from an
Erdős–Rényi graph on 1

2γQ∞
ξ(γQ∞)n vertices, with edge-density given by

γ̃ := 1
2ξ(γQ∞) + γ(1−Q∞)

[
ξ(γQ∞)
2γQ∞

]2
= 1

2ξ(γQ∞) + 1−Q∞
4γQ2

∞
ξ(γQ∞)2, (23)

5 Consider a randomly selected tree component T , and let τρ(t) = 1
2ρt! t

t−2(2ρe−2ρ)t. The probability
Pρ(t) that T has size t, when selecting tree-components from the Erdős–Rényi graph with ρn edges, is
then Pρ(t) ∼ τρ(t)

/∑
k
τρ(k) by Ref. [7, Eqn. 2.22]. From ρ̃ := 1

2 ξ(ρ) and Ref. [7, Eqn. 4.4] we may
immediately see that Pρ(t) = Pρ̃(t) for all t. As all but an insignificant number of vertices are contained
in either the giant component or in trees, the two distributions on graphs are indistinguishable.
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where the first term accounts for the density of U r Γ(U), and the second term accounts for
the contribution of edges e ∈ E(G) r E(U) which are also not incident to Γ(U).

As the frozen core Γ(F ) ⊇ Γ(U) grows, the subgraph of G that remains after removing
Γ(F ) becomes more sparse, and eventually becomes highly disconnected. That is to say, the
instance with the frozen subsystems included is highly decoupled. Note that ξ(ρ) = 2ρ for
ρ ∈ [0, 1

2 ], achieving a maximum of 1 and then decreasing for ρ > 1
2 . It follows that γ̃ = γ

for γQ∞ 6 1
2 , achieving a maximum of 1/2Q∞ and then subsequently bounded by

γ̃ 6
[

1
2 + 1−Q∞

2Q∞

]
ξ(γQ∞) 6 1

2Q∞
ξ(γQ∞)

6 γeξ(γQ∞)e−2γQ∞ 6 γe1−2γQ∞ . (24)

If 2γQ∞ − ln(2γ) > 1, we then have γ̃ < 1
2 . In this case Gr Γ(U) becomes subcritical and

thus highly disconnected; the same is then true of Gr Γ(F ).
Thus for γ sufficiently large, frustration-free instances of #2-QSAT almost surely contain

a frozen core pervasive enough to cause the problem to be highly decoupled. It is easy to
show that such a frozen core can be easily detected, as well, using the same techniques as
described in the preceding section for frustrated figure-eights. We may detect the existence
of alternating and quasi-alternating loops at each vertex x in the graph, and then consider
the constraints on x and its neighbours to discover an initial set of frozen spins. Following
this, using a single breadth-first traversal, we may discover the entire frozen subgraph and
its largest component in particular. Discovering the frozen core is therefore possible in
polynomial time using standard techniques.

3.2 Bond-percolated lattice graphs
The analysis for random 2-QSAT is much simpler for bond-percolated square or cubic lattices.
In this graph model, we take vertices labelled either (a, b) ∈ {0, 1, . . . , L− 1}2 or (a, b, c) ∈
{0, 1, . . . , L− 1}3, and connect each pair of vertices which differ by 1 in a single co-ordinate,
independently with some probability p. We let d denote the dimension of the lattice, let
n = Ld be the number of vertices and m ∼ dpn be the expected number of edges.

The analysis of phase transitions in the difficulty of #2-QSAT for independent factor
constraints is simpler for percolated lattices than for Erdős–Rényi graphs, as cycles arise
in the percolated lattice much more easily and as the degree of each vertex is necessarily
bounded. Furthermore, we only expect the largest components to grow with n if p is greater
than a “percolation threshold” pc [10],6 in which case the largest component is unique and
scales as O(n). For #2-QSAT with independent factor constraints, this allows one to show:

#2-QSAT is almost certainly efficiently solvable for any value of p, as there are overlapping
phases of frustrated and highly disconnected instances, occurring respectively for p ∈
ω(n−1/7) and p 6 pc ∈ O(1);
For frustration-free instances of #2-QSAT, provided that Q∞ := 1− ‖q‖∞ > pc, there is
a transition directly from highly disconnected instances for p < pc to highly decoupled
instances for p > pc, due to the emergence of frozen subgraph whose components decouple
the system into small non-interacting components (in a way which is similar to, but more
straightforward than, the analogous phenomenon in models on Erdős–Rényi graphs.)

6 For d2, we have pc = 1
2 ; for d = 3, we have pc ≈ 0.24881; c.f. Ref [10]. N.B. For d = 3 it is not yet

known whether there exists an infinite component when p = pc; this is known not to occur for d = 2
or d > 19, and the same is conjectured for d = 3 [10, Section 9.4].
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In this Section we outline these results in enough detail to indicate how the results may
be shown more completely. Furthermore, results which are similar in quality could also be
shown for any lattice model, depending in practise only on the size of the smallest cycles
and the percolation threshold pc of the lattice.

3.2.1 Critical thresholds for unconditional percolated lattice models
If each edge in a d-dimensional rectangular lattice (for d ∈ {2, 3}) is present independently
with probability p ∈ o(1), then the first components with cycles to emerge as p increases
are the ones with the fewest edges. That is, if the probability of there being a component in
G which is isomorphic to a graph g is Ω(1), then G will contain infinitely many isomorphic
copies of any component g′ for which |E(g′)| < |E(g)|. The first components with cycles to
emerge are therefore individual square facets of the lattice, which are almost surely absent
for p ∈ o(n−1/4), and present in infinite abundance for p ∈ ω(n−1/4).

The smallest subgraph of a rectangular lattice which contains two cycles is a domino
graph, as pictured in Fig. 2, which has seven edges. These are therefore almost certainly
absent for p ∈ o(n−1/7), and almost certainly abundantly present for p ∈ ω(n−1/7). It is not
difficult to show that each of these has a constant probability of being a frustrated domino:
a system similar to a frustrated-figure eight in which the constraints give rise to unsatisfiable
restrictions on the state of the two central qubits. Consider the three independent paths
between the central vertices of a domino subgraph (also depicted in Fig. 2). Given that
each edge represents a non-zero constraint (which happens with constant probability), the
two outer paths in the domino each give rise to a non-zero path constraint with probability
Q2

2 = (1 − ‖q‖22)2. With some probability, the three path constraints will act on each of
their endpoints in a different way from the others. This remains true even for classical
instances of #2-SAT, if the constraint-operators are chosen from a probability distribution
over a distribution on {〈00| , 〈01| , 〈10| , 〈11|} in which each element occurs with probability
Ω(1), each such domino is unsatisfiable with constant probability, in which case the entire
instance of #2-SAT which contains it has value zero. (This would occur, for instance, for an
independent factor distribution q = (q1, q2) in which 〈α1| = 〈0| and 〈α2| = 〈1|, where q1 and
q2 are both bounded away from zero.) Thus, there is a phase transition at p ∈ Θ(n−1/7) from
almost certain satisfiability to almost certain unsatisfiability, due to the probable emergence
of frustrated dominoes, of which there are almost surely infinitely many once p ∈ ω(n−1/7).

The components in a bond-percolated lattice for p ∈ O(n−1/7) almost certainly have size
O(1): specifically, they will almost surely have seven vertices or fewer. Thus the complex-
ity of computing #2-QSAT is almost surely governed by that of multiplying O(n) “small”
integers. A simple algorithm to do so is described in Appendix A. Thus, #2-QSAT is almost
surely easy for p increasing up to, and even through, the phase transition at p ∈ Θ(n−1/7);
afterwards, of course, the value is almost surely zero. Difficult instances of #2-QSAT on
percolated lattices are thus either ones which are asymptotically monotone – that is, for
which Q2 decreases with n – or ones which almost surely never occur. Similar phenomena
will occur for any lattice model, with a phase transition at p ∈ Θ(n−1/β), where β is the
number of edges in the smallest subgraph having more than one cycle.

3.2.2 Critical thresholds for frustration-free percolated lattice models
To obtain interesting instances of #2-SAT or #2-QSAT on a percolated rectangular lattice, we
must condition on models which are frustration-free. However, for p less than the percolation
probability pc, almost surely the resulting graph G contains only components of size o(f(n))
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Figure 2 (Top:) An isolated “domino” subgraph of a square lattice. Dashed lines indicate
missing edges incident to the subgraph. A domino subgraph in a 3D lattice may also occur with the
two cycles meeting at a right angle. (Bottom:) Illustration of the three independent paths between
the central qubits of a domino subgraph. If the constraints acting on b do so with different tensor
factors 〈α| , 〈α′| , 〈α′′| : C2 → C and similarly for the constraints 〈β| , 〈β′| , 〈β′′| : C2 → C acting on
e, and the path-constraints are all non-zero, then these form an infeasible system of constraints on
the states of b and e. Similar remarks apply for any pair of qubits connected by more than two
independent paths.

for any f ∈ ω(1).7 This implies that for p < pc, it again suffices to compute the values
of #2-QSAT for each component individually,8 so that #2-QSAT is almost surely efficiently
solvable so long as p 6 pc. It thus suffices for us to consider the regime p > pc.

We may proceed similarly to the analysis of the giant component in frustration-free
Erdős–Rényi models in Section 3.1.3. Would-be frustrated subsystems – such as frustrated
figure-eights on seven vertices (consisting of two square cells intersecting at one qubit) or
would-be frustrated dominoes – will arise in abundance for p ∈ Θ(1). Each one gives rise
to several qubits with fixed states, which contribute to the presence of a non-empty frozen
subgraph F . If there is a giant component Γ(G), then there are almost certainly would-be
frustrated subsystems inside it: we ask to what extent these give rise to frozen subsystems
which decouple Γ(G).

As with the Erdős–Rényi case, we may let Q∞ = 1 − ‖q‖∞ be a lower bound on the
probability that any two constraints coinciding at a qubit give rise to a non-zero constraint
on a path of length two, such that we may treat this as as independent events even for
various pairs of constraints meeting acting on the same qubit. For instance, the probability
that any domino subgraph is a would-be-frustrated domino is at least Q7

∞. For any qubit
x ∈ V (F ), the probability that some neighbour y in G is also subsumed into V (F ) is also at
least Q∞. We may then consider a percolated lattice model U in which edges are present
with probability Q∞, and any such component which contains a frozen seed gives rise to a
component in the frozen subgraph F .

When does the frozen core Γ(F ) decouple an instance of #2-QSAT? That is: when does
Gr V (Γ(F )) decompose as a collection of small components? This relates to the problem,
when U has a giant component Γ(U), of whether the complement of Γ(U) in the complete

7 For d = 2 (for which pc = 1
2 ) or d = 3 (for which pc ≈ 0.24881), the distribution of component sizes

decreases geometrically for p < pc [10, Section 6.3].
8 As the components all have essentially constant size, this may be done for each component in O(logn)
time, dominated merely by the time required to process the labels of vertices.
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(square or cubic) lattice has any infinite components (in the limit n → ∞). For both
d ∈ {2, 3}, there exists a threshold pfin < 1 [11] such that the complement of Γ(U) in the
lattice decomposes into components of finite size when Q∞ > pfin.9 Consider the case
Q∞ > pc:

If p = 1 (that is, G is simply the entire O(n)-vertex square or cubic lattice segment),
then by construction GrU is a collection of small components. As Γ(U) is almost surely
subsumed by a frozen core Γ(F ) of qubits with fixed states, which do not contribute to
the value of the #2-QSAT instance. As the complete lattice with Γ(F ) removed consists
of components of finite size, the resulting instance of #2-QSAT is highly decoupled.
If p < 1, then we may model the resulting 2-QSAT instance on the percolated lattice
by reducing from the previous case (in which the instance is highly decoupled), and
removing each constraint in the complete lattice with probability 1 − p: doing so does
not make the instance any less decoupled.

Thus, forQ∞ > pfin (which occurs for ‖q‖∞ below some constant), there is a phase transition
for random frustration-free instances of #2-QSAT from highly disconnected instances to
highly decoupled instances. This means that for d = 2, difficult instances of #2-QSAT are
only likely if the constraint model is “at least as monotone” as some distribution of classical
#2-SAT constraints; for d = 3, a bias towards monotonicity which would be substantial even
for #2-SAT is necessary to obtain difficult instances.10

As a final remark, note that even in the case that Q∞ 6 pfin, there is a chance that
frozen subsystems will decouple the largest component Γ(G) into small subsystems. Any
domino-shaped subsystem of Γ(G) has a finite probability of containing a frozen cycle, which
can be treated in the giant component as nodes which are removed from Γ(G) with some
finite probability 1 − Psite > 0. Using results on mixed site- and bond-percolation [12], if
Psite p < pc, the giant component Γ(G) still decouples into small subsystems whose degener-
acy may be efficiently computed. We do not present any quantitative results for Q∞ 6 pc,
but mention this to indicate that it likely that #2-QSAT may remain easy even for some
values Q∞ < pc, for reasons similar to what we have shown for Q∞ > pc.

4 Open questions

The results of this article may allow for some improvements, which would further bound
any “difficult” regime in random distributions of #2-QSAT on random graphs.

For frustration-free instances, Q∞ = minj(1− qj) is used as a percolation probability on
an existing random graph, to obtain lower bounds on the transition to a highly decoupled
phase; whereas Q2 = Ej

[
1− qj

]
is used for potentially frustrated models (where we take

Pr[j] = qj). Can we replace bounds involving Q∞ with tighter bounds involving Q2?
If we remove the condition of frustration-freeness from #2-QSAT altogether, we are left
with the problem of computing the degeneracy of the ground-state manifold of a po-
tentially frustrated Hamiltonian. Physical intuition suggests that this is typically “1”,
but as with #2-QSAT, the classical problem of determining how many boolean strings
satisfy a maximum number of constraints is a hard problem in general. Under what

9 A simple duality argument shows that pfin = pc = 1
2 for d = 2 [11]. For d = 3, only know the more

general result pc 6 pfin < 1 is currently known. While no numerical results are known about pfin for
d = 3, the growth of infinite clusters in each planar cross-section of the cubic lattice suggests that pfin
is closer to 1− pc than to 1.

10This implies, for instance, that uniformly random #2-SAT on bond-percolated cubic lattices is almost
surely efficiently solvable whether or not we condition on satisfiability.
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conditions is it provably easy to compute the ground-state degeneracy of random local
Hamiltonians?
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A An effective technique for multiplying together long lists of mostly
small numbers

The value of an instance of #2-QSAT is at most 2n. We may decompose the value of an
instance of #2-QSAT as a product of the values of each connected component. In the easily
solved instances which arise either when the interaction graph is highly disconnected, or when
a large frozen subsystem decouples the Hamiltonian into small independent subsystems,
the value of #2-QSAT for these instances is O(logn). One might then show that simply
multiplying together these values can be performed in polynomial time, by accounting for
the increase in size of the integers involved in the multiplication as more and more factors
are included in the product. Rather than analyse the growth of the product in an iterative
multiplication algorithm, we will show a different algorithm, by which the complexity of
evaluating this product is asymptotically no greater than multiplying two n-digit numbers.

By sorting the non-giant components of G in order of size (we assume only non-giant
components henceforth), we may construct a binary tree such that

The leaves represent sets, each of which contains an individual component and having a
stored #2-QSAT value of one more than the component size;
Each node which is not a leaf represents the union of the sets of components represented
by its child nodes, and stores the product of the #2-QSAT values of its children;
The #2-QSAT values of the children of any node are either similar in size (e.g. differing
by a factor of at most 3), or the degeneracy of one of them is constant (e.g. at most 3).

We start by pairing the largest component with the second largest component; in the case
that the second-largest component is less than half the size of the largest, we first pair it
together with a small component (e.g. isolated vertices), and pair the largest component with
the parent to these two nodes. We continue similarly for the next two largest components,
using the smallest components to compensate for differences in the size of the degeneracies
of subtrees. (Because there are O(n) components in the Erdős–Rényi graph for any number
of edges m, the components of constant size must dominate, and the smallest ones will
occur most frequently as a result of the reduced probability of being merged with other
components. For bond-percolated lattices, the distribution of component sizes is monotone
decreasing for any bond-percolation probability p, so again small components dominate.)
The degeneracy of the root node of the tree then is the degeneracy of the Hamiltonian.

The number of bits required to represent the degeneracy at each level in the tree ei-
ther remains about constant, or decreases by a factor of 2, with each level down from the
parent node. Due to the domination by components of constant size, there will be Θ(n)
leaves on either side of the tree, so that it will have depth O(logn); most subtrees will be
balanced. Thus there will be approximately O(logn) rounds of (in principle parallelisable)
multiplications, where the tth round from the final one is between numbers of size n/2t, and
each round involves about 2t multiplications in total. For any given multiplication algo-
rithm running in some time O(nd) (e.g. where d = 2 for the usual straightforward algorithm
taught in schools), we can recursively evaluate the value of the entire #2-QSAT instance,
corresponding to the root node of the tree, in time

O(logn)∑
t=1

2t
( n

2t
)d

=
O(logn)∑
t=1

2t(1−d)nd =
[

2(1−d) − 2O((1−d) logn)

1− 2(1−d)

]
nd ∈ O(nd). (25)
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