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Abstract
The stochastic block model is a classical cluster-exhibiting random graph model that has been
widely studied in statistics, physics and computer science. In its simplest form, the model is
a random graph with two equal-sized clusters, with intra-cluster edge probability p, and inter-
cluster edge probability q. We focus on the sparse case, i. e., p, q = O(1/n), which is practically
more relevant and also mathematically more challenging. A conjecture of Decelle, Krzakala,
Moore and Zdeborová, based on ideas from statistical physics, predicted a specific threshold for
clustering. The negative direction of the conjecture was proved by Mossel, Neeman and Sly
(2012), and more recently the positive direction was proven independently by Massoulié and
Mossel, Neeman, and Sly.

In many real network clustering problems, nodes contain information as well. We study the
interplay between node and network information in clustering by studying a labeled block model,
where in addition to the edge information, the true cluster labels of a small fraction of the nodes
are revealed. In the case of two clusters, we show that below the threshold, a small amount
of node information does not affect recovery. On the other hand, we show that for any small
amount of information efficient local clustering is achievable as long as the number of clusters is
sufficiently large (as a function of the amount of revealed information).
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1 Introduction

The stochastic block model is one of the most popular models for networks with clusters. The
model has been extensively studied in statistics [14, 27, 4], computer science (where it is called
the planted partition problem) [10, 15, 7, 19] and theoretical statistical physics [8, 29, 9].

The simplest block model has k clusters of equal size, and is generated as follows. Starting
with n nodes, each node v is randomly assigned a label σv from the set {1, . . . , k}. For
each pair of nodes, (u, v), if their labels are identical an edge is added between them with
probability p, otherwise an edge is added with probability q. Often the case when p > q is
considered, and the question of interest is understanding how large p− q must be for correct
clusters recovery to be possible. In the recovery problem the input consists of the unlabeled
graph and the desired output is a partition of the graph.
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Real world networks are typically sparse. Thus, an interesting setting in the block model
is when p and q are in O(1/n). Here, it is more convenient to parametrize the problem by
setting p = a/n and q = b/n, where a, b are constants. In the sparse setting, exact recovery
is impossible as the resulting graph will have isolated nodes. Moreover, it is easy to see
that even nodes with constant degree cannot be classified accurately given all other nodes
in the graph. Thus the goal is to find a partition that has non-trivial correlation with the
original clusters (up to permutation of cluster labels). This has sometimes been referred
to as the cluster detection problem (see e.g. [8]); throughout the paper we refer to it as
the cluster recovery problem (though note that the goal is not to recover every cluster with
probability 1).

General results of Coja-Oghlan [6] imply that it is possible to identify a partition that is
correlated with the true hidden partition when (a− b)2 ≥ Ck4(a+ (k − 1)b). A beautiful
physics paper by Decelle et al. [8] conjectured that the recovery problem is feasible for the
case of two clusters when (a− b)2 > 2(a+ b) and impossible when (a− b)2 < 2(a+ b). The
non-reconstructability in the case where (a− b)2 < 2(a+ b) was proved by Mossel, Neeman
and Sly [22], and more recently the same authors [24] and Massoulié [18] independently
showed that recovery is possible when (a− b)2 > 2(a+ b).

1.1 The Labeled Stochastic Block Model
The aforementioned results along with previous results for denser block models provide a
detailed picture of recovery in the stochastic block model. However, the model they consider
is idealized and does not capture many aspects of real network problems. One such aspect
is that in many realistic settings, node label information is available for some of the nodes.
For example, in social networks, the group label of some individuals (nodes) is known. In
metabolic networks, the function of some of the nodes may be known. Indeed, there has been
much recent work in the machine learning and applied networks communities on combining
node and network information (see for example [5, 2, 3]). There are several ways in which
node and edge information can be incorporated; in real applications nodes and edges contain
rich information which is noisy, but correlated with the node’s “true" label and with the
“similarity" of pairs of nodes.

In this paper, we study a simple model which incorporates both node and edge information
which we call the labeled stochastic block model. This model has been considered previously
in the physics literature [8, 28, 1]. In addition to having the unlabeled graph as an input,
a small random fraction of the nodes’ labels are also provided as input to the clustering
algorithm.

1.2 The Big Effect of a Small Number of Node Labels
It is easy to see that even a vanishing fraction of node labels can play a major role in the
cluster recovery problem. For example, consider the denser case where the clusters C1, . . . , Ck
can be identified accurately [19]. Here, it is impossible to distinguish between a clustering
C1, . . . , Ck where the nodes in cluster Ci have label i and the same clustering where the
nodes in cluster i have label π(i) for any permutation π of the labels. However, note that for
any p > 0, given a p-fraction of the node labels, it is possible to identify the permutation π
correctly with high probability. It is natural to ask if the same result holds in the sparse
case, and it is not hard to see that a similar statement can be made (see Proposition 14).

The above observation shows that even a small amount of node information can overcome
the problems of symmetry in the stochastic block model. Another problem of symmetry



V. Kanade, E. Mossel, and T. Schramm 781

present in the unlabeled model is that there is no local algorithm that can identify clusters
better than random guessing. Informally, a local algorithm determines the label of a node
based solely on an o(logn) neighborhood of that node, including possibly uniform independent
random variables attached to each node of the graph (see A.2 for a formal definition and
[17, 13] for examples). The proof that a local algorithm cannot detect better than random
guessing in this case is folklore, and we include it (in the full version [16]) for completeness.
This limitation in detection may be compared to the problem of finding independent sets,
where local algorithms can have non-trivial power (while still being less powerful than global
algorithms) [12]. It is therefore natural to ask:

I Question 1. Does a vanishing fraction of labeled nodes allow local algorithms to detect
clusters? If so, when?

An even a more direct question relates to the statistical power of revealing some of
the node labels. While it is clear that revealing a large fraction of the node labels allows
non-trivial recovery, it is far from clear what the effect is when this fraction is vanishingly
small. On the one hand, we might expect by continuity that revealing a vanishing fraction of
the node labels will be identical in the limit to revealing no labels. On the other hand, we
might imagine how a small fraction of the node labels could be used as seeds for recovery
algorithms. We thus ask:

I Question 2. Does revealing a vanishing fraction of the node labels change the detectability
threshold? Does it change the fraction of correctly labeled nodes?

The latter question was considered in recent work in statistical physics [30, 28, 1].

1.3 Our Results
To set the stage for our contributions, we begin with some observations regarding the utility
of local information. More formal versions of these propositions are provided in Appendix A.
The proofs of these propositions are straightforward (provided in the full version [16]), but
they are useful for establishing context of how information about (a small fraction of) node
labels may help. The first is that even a vanishingly small proportion of node labels aids in
breaking the symmetry and assigning labels to the cluster assignments.

I Proposition 1 (Informal version). Given a clustering algorithm which outputs clusters
correlated with the true clustering, a small fraction of revealed node labels is sufficient to
output a labeling which is correlated with the true labeling.

In the absence of any node information, it is an easy folklore result that any local
algorithm cannot recover clusters. However, we show that in the case of two clusters, when a
small fraction of node labels are revealed, a local algorithm is able to recover the clusters
optimally. This latter result is a direct corollary of a robust reconstruction result on trees
of [23].

I Proposition 2 (Informal version). In the unlabeled stochastic block model, no local algorithm
can find a clustering correlated with the true clustering.

I Proposition 3 (Informal version). In an instance of the labeled stochastic block model, when
k = 2, if (a− b)2 > C(a+ b) for some large constant C, then there is a local algorithm which
given a vanishing fraction of labeled nodes, reconstruct the label of all nodes with the same
accuracy as the optimal (non-local) algorithm for the unlabeled problem.

APPROX/RANDOM’14
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Figure 1 Previous work (black) and our contributions (colored). The x-axes represent the second
eigenvalue of the corresponding broadcast process on the coupled Galton-Watson Tree when the
average degree is fixed–in simpler terms, this is an increasing function of the ratio a−b

a
. In all

three cases, θ∗ is the reconstruction threshold corresponding to the root reconstruction problem
on trees, and θCO is the threshold of [6]. In the two-cluster case (Subfigure (a)), θ∗ corresponds
exactly to the Kesten-Stigum bound of (a − b)2 < 2(a + b) [8, 22]. For the case of larger k,
θ∗ < (a− b)2/k(a+ (k − 1)b) (see Subfigures (b), (c) and Proposition 10). We prove analogously
that recovery is not possible below θ∗ in the labeled model as p→ 0 for all k (Theorem 11). In the
two-cluster case, recent results of [24] and [18] show that recovery is possible in the range (θ∗, θCO);
above θCO, a combination of the results of [6] and [23] give optimal recovery in the standard model
for k = 2; we observe that in the labeled model for k = 2, one can reconstruct better than randomly
in the range (θ∗, θCO) and optimally above θCO using local algorithms (see Propositions 19 and 18).
The results of [6] also give non-trivial recovery guarantees above θCO for all k. In the k-cluster
case (Figures (b), (c)), the picture is more complicated: φ1 and φ2 are conjectured brute-force and
efficient solvability thresholds respectively, both conjectured by [8]—above φ1 recovery is possible
via brute-force enumeration, and above φ2 an efficient algorithm for recovery exists. Above φ2,
Proposition 19 shows that recovery is possible for k clusters via a local algorithm. In Subfigure (c),
for any b, p, if k > k∗(p) and (a − b)/k > 1, as in Theorem 8, we give an efficient local recovery
algorithm that correctly labels 1

k
+ ε of the nodes, even below the conjectured efficient recovery

threshold φ2.

We also observe that results on census reconstruction [25] imply that above the Kesten-
Stigum bound a vanishingly small fraction of revealed nodes suffices for the cluster recovery
problem.

I Proposition 4 (Informal version). For any fixed k, above the robust reconstruction threshold
(i.e. when (a− b)2 > k(a+ (k− 1)b)), when the fraction of revealed node labels is vanishingly
small, the cluster recovery problem is solvable.

In this context, one might expect that labels could allow clustering in the labeled model
in regimes which cannot be effectively clustered in the unlabeled model. The case of two
clusters is the case we understand the best. Here, utilizing results for the reconstruction
problem on trees and of [22], we answer Question 2 in the negative (Theorem 5) and at the
same time answer Question 1 positively (Propositions 18 and 19). The complete picture for
the case of two clusters is presented in Figure 1(a).

For any fixed k > 2, the picture is much more complicated. In this case, we observe that
below the tree reconstruction threshold (this corresponds to θ∗ in Figure 1(b)), a vanishing
fraction of node labels do not assist in the cluster recovery problem (see Theorem 5 in
Section 4).
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I Theorem 5 (Informal version). For any fixed k, below the associated tree reconstruction
threshold (to be defined later), when the fraction of revealed node labels is vanishingly small,
the cluster recovery problem is not solvable. In particular, when k = 2, the threshold is the
Kesten-Stigum bound of (a− b)2 < 2(a+ b); for k ≥ 2, if a− b < k then recovery is impossible.

Our main interest is in the case when the number of clusters is very large. Here, we
consider the setting when the fraction of revealed nodes p → 0, and simultaneously the
number of clusters k = k(p)→∞. In this setting, we show that revealing node labels has
a dramatic effect on the threshold for cluster recovery. We show that a local algorithm
successfully solves the cluster recovery problem even below the conjectured algorithmic
threshold in the unlabeled case, (a− b)2 = k(a+ (k− 1)b). As the number of clusters k →∞,
our algorithm works all the way down to the tree reconstruction threshold of (a− b)/k > 1.
Moreover, it is impossible to recover (locally or globally) with a vanishing fraction of labeled
nodes if (a− b)/k < 1. Both results follow from the corresponding results on trees.

I Theorem 6 (Informal version). For every p > 0, if k is large enough as a function of p,
and a− b > (1 + δ)k, then the label of a random node can be recovered with probability at
least 1

k + ε, where ε depends on δ but is independent of p.

We give a more formal statement of Theorem 8 in Section 3.
Recent work in statistical physics [30] argues that for every fixed number of clusters k,

a vanishing fraction of labels does not provide any advantage in the detection probability
over having no labels at all. We note that in our results, the order of limits is exchanged as
the number of clusters k needed for our results to hold, depends on the fraction of nodes
revealed. Thus, there is no contradiction between the results (see also [1, 28]). Figure 1(c)
provides a detailed picture of the case in which the number of clusters is very large (in the
setting of Theorem 6).

Open Problems
In the case of two clusters, we conjecture that whenever any fraction of node labels are
revealed, there is a local algorithm that recovers the clusters optimally. This would follow
from a related conjecture regarding information flow on trees stated below. We report some
simulations suggesting the veracity of the conjecture in Appendix B.

I Conjecture 7 (Informal version). Let T be an infinite tree with root ρ. The tree is labeled
from the set {±1} as follows. First, the root is assigned a label from {±1} at random. Along
each edge the label is propagated with probability 1−η and flipped with probability η. Let (T, τ)
denote the resulting labeled tree. Add each node independently to a set R with probability p.
Finally for any r, let ∂Tr denote the set of leaves at depth r. Then, for any value of p > 0
and η < 1/2,

lim
r→∞

E
∣∣Pr[τρ = 1 | τR]− Pr[τρ = 1 | τR, τ∂Tr

]
∣∣ = 0

In addition to Conjecture 7, several interesting questions remain, particularly in the
regime where k is large. When k is large, is it possible to use global and local information
together to obtain better recovery guarantees? Which algorithmic tools might allow one to
use global and local information simultaneously?

Another open problem relates to different types noise models. The assumption in the
current paper is that each label is revealed accurately with a vanishing probability. But one
may consider other types of noise. In particular, we may assume for example that for each

APPROX/RANDOM’14
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node independently we are given the correct label with small probability δ and otherwise
a uniformly chosen label. Is it true that the same results hold for this noise model as for
the noise model considered here? For most of the results presented here, it is easy to see
that the answer is yes. However, for one of our main results, Theorem 6, the proof does not
extend to the latter noise model. It is an interesting open problem to determine the effect of
the noisy information in this setup.

2 Model

2.1 Stochastic Block Model
The stochastic block model is a generative model for modular random networks, defined by
the following set of parameters: the number of clusters k, the expected fraction of nodes
in each cluster i, 〈fi〉ki=1 , and a k × k symmetric affinity matrix Pi,j indicating the edge
probability between nodes of type i and j. A random network G on n nodes is generated as
follows:
1. First, each node v is assigned a label σv ∈ {1, . . . , k}, s.t. Pr[σv = i] = fi.
2. For every pair of nodes u, v, an edge is added between them with probability Pσu,σv

,
independently for each pair.

In this work, we are mainly interested in the sparse case, i. e., when the average degree of
the graph is constant. We focus on the setting where edge probabilities only depend on
whether the labels of the endpoint are same or different. Thus, Pii = a/n for 1 ≤ i ≤ k and
Pij = b/n for i 6= j, for constants a > b.1 Also, we focus on the case where fi = 1/k for each
i, i. e., each cluster is roughly of the same size. The model is denoted by G(n, k, a, b), and
(G, σ) ∼ G(n, k, a, b) denotes an instance of a graph generated according to the model, where
σ are the cluster labels of the nodes.

Labeled Block Model: The labeled block model has an additional parameter p, which is
the probability with which the true cluster label of any given node is revealed. Thus, if
(G, σ) ∼ G(n, k, a, b) is an instance of the block model, R ⊆ [n] is chosen by placing each node
of G in R independently with probability p. We denote this by (G, σ,R) ∼ G(n, k, a, b, p).
The clustering algorithm has access to the edges of G and the cluster labels σR of nodes in
R, i. e., (G,R, σR).

We also introduce the following notation for convenience. For any two nodes u, v ∈ G, let
d(u, v) denote the distance between u and v. We let Gr(v) = {u ∈ G | d(u, v) ≤ r} denote
the neighborhood of radius r around v; at times we will use Gr when v is clear from context.
Let ∂Gr(v) = {u ∈ G | d(u, v) = r} denote the boundary of Gr(v).

Cluster Recovery: The cluster recovery problem is the problem of recovering the cluster
label of nodes in the stochastic block model or labeled stochastic block model with better-
than-random probability. Note that correct recovery of all nodes is not the aim, nor is it
possible due to the sparsity of the graph. This problem has also been called the cluster
detection problem and the cluster reconstruction problem; for consistency we will use the
term recovery throughout the paper when referring to graphs, and use reconstruction when
referring to broadcast processes on trees.

1 This is the so-called assortative model.
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I Algorithm 1.
Input: (G,R) ∼ G(n, k, a, b, p), radius r, max-degree D, revealed cluster labels
σR

For each node v 6∈ R
1. Let Gr(v) denote the (tree-like) neighborhood of v up to distance r
2. From Gr(v) delete every subtree rooted at a node with degree larger than D
3. Let L denote the set of labels l ∈ Σ for which there exist x, y ∈ R such that

σx = σy = l, d(x, v) = d(y, v) = r, and v is x and y’s first common ancestor
4. Assign a random label from L to node v

2.2 Information Flow on Trees
We use some results regarding information flow on trees. For a detailed survey on this topic,
the reader is referred to [21].

Let T be an infinite rooted tree, with the root note denoted by ρ. A Galton-Watson tree
is obtained by starting with a root node, ρ, and recursively adding offspring drawn from
some distribution D with mean d. In particular, we will often be interested in the case when
D is Poisson(d). For any node v ∈ T , let d(v, ρ) denote the distance of v from the root.
Throughout the paper, we denote Tr = {v ∈ T | d(v, ρ) ≤ r} as the subtree of T up to depth
r, and ∂Tr = {v ∈ T | d(v, ρ) = r} as the boundary at depth r.

Broadcast Process: Let T be an infinite rooted tree with root ρ. Each node in the
tree is assigned a label from some finite alphabet Σ = {1, . . . , k}. The root is labeled by
choosing a label τρ ∈ Σ uniformly at random. For any edge (u, v), with d(u, ρ) < d(v, ρ),
τv is conditionally independent given τu, and is chosen as follows: τv = τu with probability
1−(k−1)η, and τv ∈ Σ\{τu} randomly otherwise, where η < 1/k is the broadcast parameter.
We denote this process by T (T, k, η) and an instance generated according to this process by
(T, τ) ∼ T (T, k, η). As in the block model, we can consider the process when the label of
each node is revealed with probability p, i. e., R ⊆ T is obtained by adding each v ∈ T to R
independently with probability p. We denote this process by (T, τ,R) ∼ T (T, k, η, p). The
reconstruction problem is to identify the label of the root, ρ given the labeled nodes up to
some depth r. Thus, the algorithm has access to (Tr, Rr, τRr

), where Rr denotes Tr ∩R.

Percolation Process: Let T be an infinite rooted tree with root ρ. For percolation parameter
λ, each edge e ∈ T is deleted independently with probability λ. Let C(ρ) denote the
component of T containing the root after percolation.

3 Recovery in the Many Clusters Regime

We show that when the number of clusters is very large, even a very small fraction of revealed
node labels allow for cluster recovery, and even in some regimes below the conjectured
algorithmic threshold in the standard model. More formally, if p is the probability that the
label of a node is revealed, and if the number of clusters is at least k∗ = k(p), then even as
p→ 0, the algorithm performs better than random assignment. The algorithm (Algorithm 1)
is simple and local—it considers a neighborhood around each node and uses the revealed
node information in the neighborhood to make its prediction.

APPROX/RANDOM’14
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I Theorem 8. Let b > 1 be fixed, let a = b + (1 + δ)k for some δ > 0, let p > 0 be
fixed. Then, there exists an ε = ε(b, δ) and k∗ = k∗(b, δ, p), such that for every k ≥ k∗, if
(G,R, σR) ∼ G(n, k, a, b, p), Algorithm 1 labels any random node of G correctly with probability
at least ε. In particular, there exists settings where (a− b)2 < k(a+ (k− 1)b) and recovery is
still possible.

We give a proof of Theorem 8 in the full version [16]; here we give a high-level idea of the
proof. First, we utilize a coupling between local neighborhoods in G(n, k, a, b) and a broadcast
process on a rooted Galton-Watson tree with offspring distribution Poisson(a+(k−1)b

k ). Fix
v ∈ [n] and let (G, σ) ∼ G(n, k, a, b). For large values of n, and when r is not too large (though
increasing as a function of n), Gr(v) looks like a tree. The degree distribution of any node in
G is Binomial(n, a+(k−1)b

kn ) ≈ Poisson(a+(k−1)b
k ). If η = b

a+(k−1)b , the distribution (Gr, σGr )
resembles the distribution (Tr, τr), where (T, τ) ∼ T (T, k, η) corresponds to the broadcast
process on a Galton-Watson tree process T with offspring distribution Poisson(a+(k−1)b

k ).
This coupling was formally proved in [22].

I Lemma 9 ([22]). Let r < r(n) = 1
10 log(2(a+(k−1)b)) log(n). There exists a coupling between

(G, σ) and (T, τ) such that (Gr, σGr
) = (Tr, τTr

) a.a.s.

In [20] it is shown that for larger alphabet sizes, d(1− kη)2 ≥ 1 is not the threshold for
reconstruction for regular trees. As our results show, this is also the case for Galton-Watson
trees. In order to understand the intuition behind Algorithm 1, it is useful to consider
an infinite color broadcast process on a tree. Let η̃ � 1 be a small broadcast parameter.
Suppose the root ρ is given some color, which is propagated away from the root as follows.
With (1− η̃) probability the neighboring node gets the same color, with η̃ probability the
neighboring node gets a completely new color. The color of each node is revealed with
probability p. Consider the following event: there are two nodes in the tree with the same
color, for which the root ρ is the first common ancestor. If such an event occurs, this color
must also be the color of the root. We show that this infinite-color picture is more or less
accurate when k is large enough.

4 Upper Bounds Below the Threshold

In this section, we consider the setting where there are a fixed number of clusters and the
fraction of revealed node labels is vanishingly small. We show that below a certain threshold
that arises from the reconstruction problem on trees, in the limit as p→ 0, cluster recovery
is not possible. We first note that a threshold exists for the tree problem.

I Proposition 10. Let T be a Galton-Watson tree with average degree d > 1. Let (T, τ) ∼
T (T, k, η) be the labels obtained by the broadcast process with parameter η. There there exists
a predicate, πk(d, η), monotonically decreasing in η and monotonically increasing in d, such
that if πk(d, η) is false, then for each i ∈ [k],

lim
r→∞

Pr [τρ = i | τ∂Tr
]→ 1

k
, a.a.s.

For the case of k = 2, the exact form of π2 is known, π2(d, η) = 1[d(1 − 2η)2 > 1],
which follows from [11]. In [26], the exact threshold is given for k = 3, and bounds on the
thresholds are given for k ≥ 5. For k ≥ 4, the exact form πk is not known, but it holds
that if (1− kη)d < 1, πk(d, η) is false. (This was proved for the case of regular trees in [20];
the proof for Galton-Watson trees is essentially identical). For all k, a reconstructability
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threshold in η, d provably exists in the limit as n → ∞; the proof of Proposition 10 relies
on the monotonicity of πk in η and d, and the existence of points where reconstruction is
feasible and also points where it is impossible.

The threshold from Proposition 10 can be translated to an equivalent threshold θk(a, b)
in the stochastic block model. We show that even in the labeled stochastic block model
(where each node’s label is revealed with probability p), if p is small and θk is false then it is
impossible to recover node labels with better accuracy than random guessing. Specifically, we
study the setting where k is fixed, θk is false, and p→ 0. We first prove this for the general
k-cluster case, then give an alternative proof for the case of two clusters (which results in a
more explicit dependence on p).

I Theorem 11. Fix v ∈ [n], and let (G,R, σ) ∼ G(n, k, a, b, p), for a+ (k − 1)b > k. Then
if the predicate θk(a, b) = πk(a+(k−1)b

k , b
a+(k−1)b ) is not satisfied, then for all i ∈ Σ = [k],

lim
p→0

lim
n→∞

Pr[σv = i|G,R, σR] = 1
k
, a.a.s.

The above result says that as the amount of revealed node information goes to zero,
recovering a clustering that is correlated with the true clustering is not possible if θk is false.
The proof of Theorem 11 is given in the full version [16], but we give a high-level overview of
the proof here.

We again utilize a coupling between local neighborhoods in G(n, k, a, b) and a broadcast
process on a rooted Galton-Watson tree. As in Section 3, let T be a Galton-Watson tree
with offspring distribution Poisson(a+(k−1)b

k ) and broadcast parameter η = b
a+(k−1)b . We

fix v ∈ [n] and let (G, σ) ∼ G(n, k, a, b). The distribution (Gr(v), σGr(v)) resembles the
distribution (Tr, τr).

We also use a result of [22] which states that conditioned on σ∂Gr , information from
further nodes is not helpful in clustering.

I Lemma 12 ([22]). Fix v ∈ [n], and let (G,R, σ) ∼ G(n, k, a, b, p), with a+ (k − 1)b > k.
For r ≤ 1

10 log(2(a+(k−1)b)) logn, let C = {u ∈ G | d(u, v) > r}, B = ∂Gr, and A = {u ∈
G | d(u, v) ≤ r}. Then

Pr[σA | σB , σC , G] = (1 + o(1)) Pr[σA | σB , G].

In [22], the lemmas above are stated for the case when k = 2; however, the same proofs
apply for any value of k. Armed with Lemmas 9, 12 and Proposition 10, we can prove
Theorem 11 by choosing p small enough that there is no label information in the local
neighborhood of any vertex with high probability, then showing that the global graph
information is not helpful in recovering the labels.

In the special case of k = 2 clusters, it is possible to prove the same result using a slightly
different technique. Here, we get a more explicit convergence rate in terms of p. Note that
the RHS in the statement of Theorem 13 cannot be smaller than p, since with probability p
the node of the label itself is revealed.

I Theorem 13. Fix v ∈ [n], and let (G,R, σ) ∼ G(n, 2, a, b, p), for a + b > 2. Then if
(a− b)2 < 2(a+ b), then

lim
n→∞

E
∣∣∣∣Pr[σv = 1 | G,R, σR]− 1

2

∣∣∣∣ ≤ 1
2

√
p

1− (a−b)2

2(a+b)

We give a proof of this better dependence in the full version [16].
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A When Little Information Helps

Here, we give formal statements of the simple observations described in Section 1 which
illustrate the power and limitations of revealed labels in the stochastic block model.

A.1 Revealed Labels and Cluster Labeling
I Proposition 14. Let C : [n] → [k] be the output of some clustering algorithm with the
guarantee that there exists a permutation π : [k]→ [k] such that

1
n

∑
i

1[π(C(i)) = σi] ≥
1
k

+ ε,

Then for p ≥ 1
n

512k
ε3 log 4k

δ , if a p-fraction of node labels are revealed, we can find a function
g : [k]→ [k] such that

1
n

∑
i

1[g(C(i)) = σi] ≥
1
k

+ ε

2

with probability at least 1− δ.

The proof follows easily from the following lemma, which is a simple application of the
Chernoff-Hoeffding bound.
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I Lemma 15. Let D be a probability distribution over [k], and let S ∼ Dm be a sample.
When m ≥ 64

ε2 log( 4k
δ ), for i = plurality(S) (ties may be broken arbitrarily), with probability

at least 1− (δ/2),

|Di −max
j
Dj | ≤

ε

4 ,

where Dj is the probability of j under D.

The complete proofs are given in the full version [16].

A.2 Limitations of Local Algorithms in the Unlabeled Model
Now, we discuss the impact of revealed labels in the context of local algorithms. We use the
definition of local algorithms as in [12]. (The reader is referred to their paper and references
therein for more background on local algorithms.)

I Definition 16. Let G be a graph with node set V , and for each v ∈ V , let Xv ∈ [0, 1]
uniformly at random. An r-local algorithm on G is one in which the value of each node
v ∈ V is decided by a function fv(Gr(v), Xr(v)), where Xr(v) is the set of samples from D

associated with Gr(v).

The proposition below formalizes the intuitive statement that no r-local algorithm can
accurately reconstruct clusters in the unlabeled stochastic block model for r = o(logn). The
proof is provided in the full version [16].

I Proposition 17. In the unlabeled stochastic block model, let A be a local algorithm with
node functions {fv} : Gr(v)→ Σ, where here Gr(v) denotes the structural information and
random variables on the neighborhood of radius r = o(logn) around v. Then for all ε > 0,

lim
n→∞

Pr
G,X

[max
π

1
n

∑
v

1(fv(Gr(v)) = π(σv)) ≥
1
k

+ ε] = 0,

where the maximum is taken over all possible permutations of the labels.

A.3 Optimal Local Reconstruction in the Labeled Model when k = 2
Before giving a formal statement of Proposition 18, we need to introduce some notation
related to broadcast processes on trees. Let (T, τ) ∼ T (T, 2, η), where T is a Galton-Watson
tree with offspring distribution Poisson(d). Let

T∗(d, η) = lim
r→∞

E
∣∣∣∣Pr[τρ = 1 | τ∂Tr ]− 1

2

∣∣∣∣
It follows from the work of Evans et al. that T∗(d, η) > 0 if and only if d(1− 2η)2 > 1 [11].

Mossel et al. [23] looked at the robust reconstruction problem on trees. Let (T, τ) ∼
T (T, 2, η) be as defined above. For some parameter δ ∈ [0, 1/2), let τ̃u be the random variable,
such that τ̃u = τu with probability 1 − δ, and τ̃u = 1 − τu with probability δ. In [23], the
authors consider the question of reconstruction of the root label given the noisy labels, τ̃∂Tr

,
in the limit as r →∞. They showed that if

T̃∗(d, η) = lim
r→∞

E
∣∣∣∣Pr[τρ = 1 | τ̃∂Tr

]− 1
2

∣∣∣∣ ,
then for any δ ∈ [0, 1/2), whenever d(1 − 2η)2 ≥ C for a sufficiently large constant C,
T̃∗(d, η) = T∗(d, η).
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I Proposition 18. Let (G,R, σR) ∼ G(n, 2, a, b, p), with a+ b > 2. Then, there exists a large
constant C, such that if (a− b)2 > C(a+ b), there is a local algorithm A such that if A(v)
denotes the label output by the algorithm, for a random node v,

lim
p→0

lim
n→∞

Pr[A(v) = σv] = 1
2 + T∗(a+b

2 , b
a+b )

A.4 Better-than-random Reconstruction with Local Algorithms in the
Labeled Model for Any k

Given an instance of the stochastic block model (G, σ,R) ∼ G(n, k, a, b, p) and the corres-
ponding Galton-Watson tree and broadcast process (T, τ,R) ∼ T (T, k, η, p), we now prove
that if dλ2 = (a− b)2/(k(a+ (k − 1)b)) > 1, the plurality of labels at distance ` from a node
v provides a robust way to recover a v’s label for every information p. The argument is based
on the reconstruction argument for the label of a root in a broadcast process on trees, and
the fact that the application of the second moment method in this argument is robust to
noise in the leaf labels. This was implicit in [25] and more explicit in [23]. Interestingly, the
proof will show that in the case of Poisson Galton-Watson tree, a simple plurality style rule
is sufficient for reconstruction.

I Proposition 19. Let (G, σ,R) ∼ G(n, k, a, b, p), with a+ (k − 1)b > k. Then, there exists
a constant ε = ε(a, b, k, p), such that if (a− b)2 > k(a+ (k − 1)b), there is a local algorithm
A such that if A(v) denotes the label output by the algorithm, for a random node v,

Pr[A(v) = σv] ≥
1
k

+ ε.

The result also holds for the noisy-label model.

The proof follows more or less directly from previous results [25], but we also provide it
in the full version [16] for completeness.

B Conjecture

B.1 The Uselessness of Global Information

In the case of two clusters, we conjecture that whenever any node label information is present,
a local algorithm is already able to recover the clusters optimally. The algorithm is the
following: Fix some radius r, for each v ∈ G, look at the neighborhood Gr(v), let Rr ⊆ Gr(v)
denote the revealed nodes in the neighborhood. As long as r ≤ c log(n) for a sufficiently small
constant c, the neighborhood is a tree with high probability. Then Pr[σv = 1 | Rr, σRr

] can
be computed exactly by belief propagation. We conjecture that this is optimal. This would
follow from a related conjecture regarding the broadcast process on trees and an application
of Lemma 9.

I Conjecture 20. Let T be infinite tree with root ρ. Let (T, τ,R) ∼ T (T, 2, η, p) (see
Section 2). Then for any p > 0 and η < 1/2,

lim
r→∞

E
∣∣Pr[τρ=1 | τR]− Pr[τρ=1 | τR, τ∂Tr

]
∣∣ = 0.
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Figure 2 The average distance |pR,L − pR| is shown for η = 0.1, ηc, 0.3, 0.4 and p =
0.01, 0.05, 0.1, 0.2.

B.2 Simulation
To test this conjecture, we ran the Belief Propagation algorithm on 3-regular trees of depth
10, in which labels were assigned to nodes according to broadcast processes starting at the
root. Let L denote the set of leaves at level 10. Each node in the interior was revealed
independently with probability p, to get the set R. We considered p ∈ {0.01, 0.05, 0.10, 0.20}.
We also tried various settings of the broadcast parameter, η. We chose η ∈ {0.1, ηc, 0.3, 0.4},
where ηc = 1

2

(
1− 1√

3

)
is the threshold value for the setting considered.

The labeling process was always initiated with the root having label 1. Thus, we were
interested in the posterior probability of the root being labeled 1 in various cases. We
computed this posterior probability in three cases: (i) using only the labels at the leaves,
denoted by pL (ii) using only the interior nodes, denoted pR, and (iii) using both the leaves
and the interior nodes, denoted by pL,R.

In the first case, only global information is used—i. e., the set of labels at the boundary
is the maximum possible information that can be inferred using the global properties of the
graph. Thus, in some sense this is an upper bound on the utility of global information. In
the second case, only local information in the form revealed nodes in the neighborhood is
used. Finally, in the the third case, both local and global information is used.

Our conjecture suggests that as r → ∞, |pR,L − pR| → 0. Figure 2 shows our results.
Each plot corresponds to a fixed value of η, and displays the average distance |pR,L − pR| for
different values of p. We ran the simulation multiple times for each setting of p and η and
the standard deviation is marked on the plot.
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