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Abstract
We construct an explicit family of linear rank-metric codes over any field Fh that enables efficient
list decoding up to a fraction ρ of errors in the rank metric with a rate of 1−ρ−ε, for any desired
ρ ∈ (0, 1) and ε > 0. Previously, a Monte Carlo construction of such codes was known, but this is
in fact the first explicit construction of positive rate rank-metric codes for list decoding beyond
the unique decoding radius.

Our codes are explicit subcodes of the well-known Gabidulin codes, which encode linearized
polynomials of low degree via their values at a collection of linearly independent points. The
subcode is picked by restricting the message polynomials to an Fh-subspace that evades cer-
tain structured subspaces over an extension field Fht . These structured spaces arise from the
linear-algebraic list decoder for Gabidulin codes due to Guruswami and Xing (STOC’13). Our
construction is obtained by combining subspace designs constructed by Guruswami and Kopparty
(FOCS’13) with subspace-evasive varieties due to Dvir and Lovett (STOC’12).

We establish a similar result for subspace codes, which are a collection of subspaces, every
pair of which have low-dimensional intersection, and which have received much attention recently
in the context of network coding. We also give explicit subcodes of folded Reed-Solomon (RS)
codes with small folding order that are list-decodable (in the Hamming metric) with optimal
redundancy, motivated by the fact that list decoding RS codes reduces to list decoding such
folded RS codes. However, as we only list decode a subcode of these codes, the Johnson radius
continues to be the best known error fraction for list decoding RS codes.

1998 ACM Subject Classification E.4 Coding and Information Theory

Keywords and phrases list-decoding, pseudorandomness, algebraic coding, explicit constructions

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2014.748

1 Introduction

This paper considers the problem of constructing explicit list-decodable rank-metric codes.
A rank-metric code is a collection of matrices M ∈ Fn×th over a finite field Fh for fixed
n, t. The rate of a rank-metric code is logh|C|/(nt), and the distance measure between two
codewords is the rank over Fh of their difference; that is, dist(M1,M2) = rankFh

(M1−M2).
We will be interested in linear rank-metric codes, where C is a subspace over Fh.

Rank-metric codes have found applications in network coding [23] and public-key cryp-
tography [8, 17], among other areas. They can also be thought of as space-time codes
over finite fields, and conversely can be used to construct space-time codes, eg. in [19, 18].
Unique decoding algorithms for rank-metric codes were shown in [5] to be closely related to
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the so-called Low-rank Recovery problem, in which the task is to recover a matrix M from
few inner products 〈M,H〉. The authors of [5] use their low-rank recovery techniques to
construct rank-metric codes over any field, and show that they can be efficiently decoded.

In this work, we will consider subcodes of Gabidulin codes, which are analogues of Reed-
Solomon codes for the rank-metric. A Gabidulin code (denoted CG(h;n, t, k)) encodes h-
linearized polynomials over Fht of h-degree less than k by

(
f(α1), . . . , f(αn)

)T , where the
αi ∈ Fht are linearly independent over Fh, and f(αj) is thought of as a column vector in
Fth under a fixed basis of Fht over Fh. This is a rank-metric code of rate k/n and minimum
distance n− k + 1.

We say that a rank-metric code C can be decoded from up to e rank errors if any codeword
M ∈ C can be recovered from M + E whenever E ∈ Fn×th has rank at most e. Gabidulin
codes can be uniquely decoded from (n− k)/2 rank errors by adapting algorithms for Reed-
Solomon decoding, as in [6, 7, 22], among others, but it is still open whether they can be
list-decoded from a larger fraction of errors. We recall that in the list-decoding problem the
decoder must output all codewords within the stipulated radius from the noisy codeword it
is given as input. It is known that Gabidulin codes cannot be list-decoded with a polynomial
list size from an error fraction exceeding 1−

√
R [4, 24]. However, as we show in this work,

we can explicitly pick a good subcode of the Gabidulin code, with only a minor loss in rate,
that enables efficient list-decoding all the way up to a fraction (1−R) of errors.

The primary difficulty in previous work on list-decoding Gabidulin codes has been the
fact that in contrast to Reed-Solomon codes, where the field size grows with the dimension of
the code, for Gabidulin codes, the dimension of the ambient space grows with the dimension
of the code. This forces us to work over fields whose size can be exponential in the code
dimension.

To address this, we show how to find linear list-decodable subcodes of certain Gabidulin
codes by adapting the subspace designs of [9] for use over large fields. The key observation,
first made in [14], is that although applying a linear-algebraic list-decoder gives a subspace
over a field which is too large, the subspace has additional structure which can then be
“evaded” using pseudorandom subcodes, yielding a polynomial list size.

We combine recent constructions of subspace designs [9] and subspace-evasive sets [1] in
order to give an explicit construction of a subcode (in fact, subspace) of the Gabidulin code
which has small intersection with the output of the linear-algebraic list-decoder of [14]. In
particular, we show (Theorem 12):

I Theorem (Main). For every field Fh, ε > 0 and integer s > 0, there exists an explicit Fh-
linear subcode of the Gabidulin code CG(h;n, t, k) with evaluation points α1, . . . , αn spanning
a subfield Fhn that has (i) rate (1− 2ε)k/n, and (ii) is list-decodable from s(n− k)/(s+ 1)
rank errors. The final list is contained in an Fh-subspace of dimension O(s2/ε2).

Note that the fraction of errors corrected approaches the information-theoretic limit
of (1 − R) (where R = k/n is the rate) as the parameter s grows. The authors of [14]
give a Monte Carlo construction of a subcode of the same Gabidulin code satisfying these
guarantees, in fact with a better list size of O(1/ε). We give an explicit subcode, with a
worse guarantee on the list size (which, however, is still bounded by a constant depending
only on ε).

We also note that the above theorem gives the first explicit construction of positive rate
rank-metric codes even for list-decoding from a number of errors which is more than half the
distance (and in particular for list decoding beyond a fraction (1−R)/2 of errors). Previous
explicit codes only achieved polynomially small rate [10].
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750 Evading Subspaces Over Large Fields and Explicit List-decodable Rank-metric Codes

Our techniques also imply analogous results for subspace codes, which can be thought of
as a basis-independent form of rank-metric codes. They were defined in [16] to address the
problem of non-coherent linear network coding in the presence of errors, and have received
much attention lately ([2, 20, 3], etc). The authors of [16] also define the Kötter-Kschischang
(KK) codes, which, like Gabidulin codes, are linearized variants of Reed-Solomon codes.
List-decoding of a folded variant of the KK code was considered in [10] and [21]. However,
both of these papers could only guarantee a polynomial list size when the rate of the code was
polynomially small, and the question of constructing constant rate list-decodable subspace
codes remained open. Note that [14] was able, similarly to the case of rank-metric codes, to
give a Monte Carlo construction of a constant rate list-decodable subcode.

In this work, we give the first explicit construction of high-rate subspace codes which are
list-decodable past the unique decoding radius (stated in Theorem 20). Our construction
does not use folding, but instead takes subcodes of certain KK codes.

Additionally, we use our ideas to list-decode a subcode of the folded Reed-Solomon code
where the folding parameter is of low order (see Corollary 16 for a formal statement). List-
decoding of the folded Reed-Solomon code up to list-decoding capacity where the folding
parameter is primitive was first shown in [11]. In [12], the authors use the linear-algebraic
method to list-decode folded Reed-Solomon codes when the folding parameter has order at
least the dimension of the code.

Paper Organization. In Section 2, we collect notation and definitions which will be used
throughout the paper. In Section 3, we define and construct “(s,A, t)-subspace designs,”
which is the new twist on the subspace designs of [9] that drives our results. In Section 4, we
show how these subspace designs can be used to construct list-decodable rank-metric codes.
In Section 5, we give a list-decodable subcode of folded Reed-Solomon codes with low folding
order. The construction of list-decodable subspace codes appears as Appendix A.

We conclude in Section 6 with some open problems.

2 Notation and Definitions
Throughout the presentation of rank-metric codes, Fh is a finite field of constant size. Fq :=
Fht extends Fh, and we will think of Fq as a vector space over Fh by fixing a basis. We will
also have n = mt, and the field Fhn := Fqm = Fhmt extending Fq.

In our final applications, s will be ≈ 1/ε, m will be ≈ s/ε, where for rate R, we will be
list decoding up to error fraction (1−R− ε), and t will grow.

We will be talking about subspaces over a field and its extension, so to avoid any confusion
about the underlying field, we will usually refer to a subspace over a field F as an F-subspace.

We recall some of the definitions of the pseudorandom objects concerning subspaces that
we require.

I Definition 1 (Strong subspace designs, [14]). A collection S of Fq-subspaces H1, . . . ,HM ⊆
Fmq is called a (s,A) subspace design if for every Fq-linear space W ⊂ Fmq of dimension s,

M∑
i=1

dimFq
(Hi ∩W ) 6 A.

I Definition 2 (Subspace-evasive sets, [12]). A subset V ⊆ Fkq is (s, L) subspace-evasive if
for every Fq-subspace S ⊂ Fkq of dimension s, |S ∩ V| 6 L.
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3 Subspace Designs

Throughout this section q and h will be prime powers with q = ht. In what follows, we will
think of subspaces W ⊆ Fmq as Fh-subspaces of Fmth via some fixed basis embedding.

I Definition 3. A collection S of Fh-subspaces H1, . . . ,HM ⊆ Ftmh is called a (s,A, t) Fh-
subspace design if for every Fht-linear space W ⊂ Fmht of dimension s,

M∑
i=1

dimFh
(Hi ∩W ) 6 A.

Note that in the above definition the dimension of the input W is measured as a subspace
over Fht whereas for the intersection, which is an Fh-subspace, the dimension is over Fh.

I Remark. When t = 1, these are the (strong) subspace designs of [9]. We will be interested
in settings where t = ω(1), so that considering W as a subspace of dimension st over Fh will
generally not give strong enough bounds.

3.1 Existential Bounds
The following proposition shows that good subspace designs exist; indeed, a random collec-
tion of subspaces works with high probability. The case t = 1 was established in [9].

I Proposition 4. Let ε > 0. Let S consist of M = hεtm/8 Fh-subspaces of codimension εtm
in Fmth , chosen independently at random. Then for any s < mε/2, with probability at least
1− q−ms, S is a (s, 8s/ε, t) Fh-subspace design. (Here q = ht.)

Proof. Set ` = 8s/ε, and let S = {H1, . . . ,HM}. For a fixed Fht subspace W of dimension
s and any j, the probability that dimFh

(W ∩ Hj) > a at most qsa · q−εma 6 q−εma/2, by
assumption on s.

Since the Hi are independent, for a fixed tuple (a1, . . . , aM ) of nonnegative integers
summing to ` = 8s/ε, the probability that dim(W ∩Hj) > aj for each j is at most q−εm`/2 =
q−4ms. Union bounding over the at most qms choices of W and

(
`+M
`

)
6 M2` choices of

(a1, . . . , aM ), the probability S is not a (s, 8s/ε, t) Fh-subspace design is at most

qmsM2` · q−4ms = qms · q2ms · q−4ms 6 q−ms . J

3.2 Constructive Bounds
In this section, we show how to construct an explicit large

(
s, 2(m − 1)s/ε, t

)
Fh-subspace

design consisting of Fh-subspaces of Ftmh of codimension 2εtm.
The idea, which is natural in hindsight, is to first use a subspace design over Fht to

ensure that the intersection with any Fht-subspace of dimension s has low dimension over
Fht , and then to use a subspace-evasive set to reduce the dimension further over Fh. The
final construction appears as Theorem 8.

3.2.1 Explicit Subspace-evasive Sets
We first describe the construction of explicit subspace-evasive sets which we will be using.

Let q > hm−1, and let γ1, . . . , γm be distinct elements of (Fq)∗. Let A be the s × m
matrix with Aij = γij . Then Dvir and Lovett [1] showed the following:

APPROX/RANDOM’14



752 Evading Subspaces Over Large Fields and Explicit List-decodable Rank-metric Codes

I Theorem 5. Let 1 6 s 6 m. Let d1 > d2 > · · · > dm > 1 be integers. Define f1, . . . , fs ∈
Fq[X1, . . . , Xm] as follows:

fi(x1, . . . , xm) =
m∑
j=1

Aijx
dj

j . (1)

Then:
The variety V = {x ∈ Fmq | f1(x) = · · · = fs(x) = 0} satisfies |V ∩ H| 6 (d1)s for all
s-dimensional affine subspaces H ⊂ Fmq .
If at least s of the degrees di are relatively prime to q − 1, then |V ∩ Fmq | = qm−s.

Additionally, the product set (V ∩ Fmq )n/m ⊆ Fn is (k, (d1)k)-subspace evasive for all k 6 s.

The below statement follows immediately from Theorem 5 and the fact that when the
dj ’s are powers of h, the polynomials fi defined in (1) are Fh-linear functions on Fmq .

I Corollary 6. Setting d1 = hm−1, d2 = hm−2, . . . , dm = 1, we obtain an explicit Fh-linear
set S of size q(m−s)n/m over Fnq which is (k, h(m−1)k) subspace-evasive for all 1 6 k 6 s.

I Remark. One can improve on the degree bounds and therefore the final intersection size via
a standard subspace-evasive set without the Fh-linearity requirement. For example, [1] gives
a construction of a (non-linear)

(
s, (s/ε)s

)
subspace-evasive set over Fn of size |F|(1−ε)n.

However, especially in applications for rank-metric codes, linearity is a property which
is desirable and often necessary.

3.2.2 Combining with Subspace Designs
The following theorem shows how to achieve our initial goal of ensuring small intersection
dimension over the larger field Fht .

I Theorem 7 ([9]). For ε ∈ (0, 1), positive integers s,m with s 6 εm/4, and q > m, there
is an explicit collection of M = qΩ(εm/s) subspaces in Fmq , each of codimension at most εm,
which form a (s, 2s/ε, 1) Fq-subspace design.

Combined with Corollary 6, we now have a construction of a (s, 2(m − 1)s/ε, t) Fh-
subspace design, summarized in the following statement.

I Theorem 8. For integers s 6 εm/4 and q > m, there exists an explicit set of qΩ(εm/s)

Fh-subspaces in Ftmh of codimension at most 2εtm forming a (s, 2(m− 1)s/ε, t) Fh-subspace
design.

Proof. Let V1, . . . , VM ⊆ Fmq be the elements of the (s, 2s/ε, 1) Fq-subspace design of The-
orem 7. For each i, define Hi = Vi ∩ S, where S ⊆ Fmq is the (s, h(m−1)s) subspace-evasive
set of Corollary 6. As S and the Vi’s are Fh-linear subspaces, Hi is as well. We claim that
the Hi’s form the desired Fh-subspace design.

For each i, Vi has codimension εtm, and S has codimension ts 6 εtm/4, so the codimen-
sion of Hi is at most 2εtm.

Now let W be an Fq-subspace of dimension s. By the Fq-subspace design property of
the Vi’s we have

M∑
i=1

dimFq (Vi ∩W ) 6 2s/ε . (2)
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For each i, we also have that dimFq
(W ∩ Vi) = si 6 s, so by the subsace evasive property of

S from Corollary 6, W ∩Hi = (W ∩ Vi) ∩ S has at most h(m−1)si elements. As W ∩Hi is
Fh-linear, we have

dimFh
(W ∩Hi) 6 (m− 1) dimFq

(W ∩ Vi) . (3)

Combining (2) and (3) we have∑
i

dimFh
(W ∩Hi) 6

∑
i

(m− 1) dimFq (W ∩ Vi) 6 (m− 1) · 2s/ε . J

The motivation for constructing the above subspace design is that they yield a sub-
space that has small intersection with so-called periodic subspaces arising in certain linear-
algebraic list decoding algorithms. We recall the definition from [14]. Below, for a string
x = (x1, x2, . . . , x`), we denote by proj[a,b](x) the substring (xa, xa+1, . . . , xb).

I Definition 9 (Periodic subspaces). For positive integers s,m, k and κ := mk, an affine
subspace H ⊂ Fκq is said to be (s,m, k)-periodic if there exists a subspace W ⊆ Fmq of
dimension at most s such that for every j = 1, 2, . . . , k, and every prefix a ∈ F(j−1)m

q , the
projected affine subspace of Fmq defined by

{proj[(j−1)m+1,jm](x) | x ∈ H and proj[1,(j−1)m](x) = a}

is contained in an affine subspace of Fmq given byW+va for some vector va ∈ Fm dependent
on a.

I Proposition 10. Let H be a (s,m, k)-periodic affine suspace of Fmkq , and H1, H2, . . . ,Hk ⊆
Fmth be distinct subspaces from a (s,A, t) Fh-subspace design. Then H ∩ (H1 × · · · ×Hk) is
an affine subspace over Fh of dimension at most A.

Proof. It is clear that H ∩ (H1 × · · · × Hk) is an affine subspace over Fh. Let W be the
subspace associated to H as in Definition 9. We will show by induction that |proj[1,im](H)∩

(H1 × · · · ×Hi)| 6 h

∑i

j=1
dimFh

(W∩Hj).
In the base case, since H1 is a subspace, proj[1,m](H) ∩ H1 = (W + v0) ∩ H1 is an

affine subspace whose underlying subspace lies in W ∩H1. In particular, its size is at most
hdim(W∩H1).

Continuing, fix an element a ∈ proj[1,im](H) ∩ (H1 × · · · × Hi). Because H is periodic
and Hi+1 is linear, the possible extensions of a in proj[im+1,(i+1)m](H) ∩ Hi+1 are given
by a coset of W ∩ Hi+1. Thus, there are at most hdim(W∩Hi+1) such extensions. Since by
induction there were h

∑i

j=1
dimFh

(W∩Hj) possibilities for the prefix a, the result follows.
In particular, H∩(H1×· · ·×Hk) has dimension over Fh which is at most

∑k
i=1 dim(W ∩

Hi) 6 A, by the subspace design property. J

4 Explicit List-decodable Rank-metric Codes

In this section, we show how to use the subspace designs of Theorem 8 in order to get explicit
list-decodable rank-metric codes of optimal rate for any desired error correction radius.

We first review rank-metric codes, and in particular the Gabidulin code [6], which is the
starting point of our construction.

APPROX/RANDOM’14
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Let h be a prime power, and let Mn×t(Fh) be the set of n × t matrices over Fh. The
rank distance between A,B ∈Mn×t(Fh) is d(A,B) = rank(A−B). A rank-metric code C is
a subset of Mn×t(Fh), with rate and distance given by

R(C) = logh|C|
nt

and d(C) = min
A 6=B∈C

{d(A,B)}.

The Gabidulin code encodes h-linearized polynomials by their evaluations at linearly
independent points. Recall that an h-linearized polynomial f over Fht is a polynomial of
the form

∑`
i=0 aiX

hi , with ai ∈ Fht . If a` 6= 0, then ` is called the h-degree of f . We write
Lh(t) for the set of h-linearized polynomials over Fht .

Let 0 < k 6 n 6 t be integers, and choose α1, . . . , αn ∈ Fht to be linearly independent
over Fh. For every h-linearized polynomial f ∈ Fht [X] of h-degree at most k − 1, we can
encode f by the column vector Mf =

(
f(α1), . . . , f(αn)

)T over Fht . By fixing a basis of Fht

over Fh, we can also think of Mf as an n× t matrix over Fh. This yields the Gabidulin code

CG(h;n, t, k) := {Mf ∈Mn×t(Fh) | f ∈ Lh(t), h-degree(f) 6 k − 1}.

If a rank-metric codewordX is transmitted, and a matrix Y is received, we say that rank(Y −
X) rank errors have occurred.

Suppose that t = nm for some integer m, so that Fht has a subfield Fhn =: Fq. In the
case when the evaluation points α1, . . . , αn of the Gabidulin code span Fhn , Guruswami and
Xing [14] show the following:

I Theorem 11 ([14]). Let f ∈ Fht [X] be an h-linearized polynomial with h-degree at most k−
1. Suppose that a codeword Mf =

(
f(α1), . . . , f(αn)

)T is transmitted and Y = (y1, . . . , yn)T
is received with at most e rank errors. If e 6 s(n − k)/(s + 1), then there is an algorithm
running in time poly(n,m, log q) outputting a (s − 1,m, k)-periodic subspace containing all
candidate messages f .

By Proposition 10, by restricting the message polynomials f =
∑
i fiX

qi to have coef-
ficients fi ∈ Hi+1 for 0 6 i < k, where H1, H2, . . . ,Hk are distinct elements of the sub-
space design in Theorem 8, the final list of candidate messages will have dimension at most
2(m − 1)s/ε over Fh, or size at most h2(m−1)s/ε. As one can take m = O(s/ε) for the ne-
cessary subspace design guaranteed by Theorem 8, we can conclude the following theorem,
which is our main result.

I Theorem 12. For every ε > 0 and integer s > 0, there exists an explicit Fh-linear subcode
of the Gabidulin code CG(h;n, t, k) with evaluation points spanning Fhn of rate (1− 2ε)k/n
which is list-decodable from s

s+1 · (n − k) rank errors. The final list is contained in an
Fh-subspace of dimension at most O(s2/ε2).

5 Application to Low-order Folding of Reed-Solomon Codes

In this section, we show how the idea of only evading subspaces over an extension field can
be used to give an algorithm for list-decoding (subcodes of) folded Reed-Solomon codes in
the case when the folding parameter has low (O(1)) order.

As in the case of KK codes, our decoding algorithm follows the framework of interpolating
a linear polynomial and then solving a linear system for candidate polynomials. Fix γ

generating F∗q . Let N = q−1
` , and let ζ = γN , which has order ` in Fq. Then the low-order
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folded Reed-Solomon code encodes a polynomial f of degree < k by

f 7→


f(1) f(γ) · · · f(γN−1)
f(ζ) f(ζγ) . . . f(ζγN−1)
...

...
. . .

...
f(ζ`−1) f(ζ`−1γ) . . . f(ζ`−1γN−1)

 .
Similarly to folded Reed-Solomon codes, this is a code of rate k

`N and distance N − (k−
1)/`.

5.1 Interpolation
Given a received word

y00 y01 . . . y0(N−1)
y10 y11 . . . y1(N−1)
...

...
. . .

...
y(`−1)0 y(`−1)1 . . . y(`−1)(N−1)

 ,

we would like to interpolate a (nonzero) polynomial

Q(X,Y1, . . . , Ys) = A0(X) +A1(X)Y1 + · · ·+As(X)Ys

such that

Q
(
γiN+j , yij , y(i+1)j , . . . , y(i+s−1)j

)
= 0 i ∈ {0, . . . , `− 1}, j ∈ {0, . . . , N − 1}, (4)

where all indices are taken modulo `.

We will require deg(A0) 6 D + k − 1, and deg(Ai) 6 D for i > 0.

I Lemma 13. Let

D =
⌊
`N − k + 1

s+ 1

⌋
.

Then a nonzero polynomial Q satisfying (4) exists (and can be found by solving a linear
system).

Proof. The number of interpolation conditions is `N . The quantity (D + 1)(s + 1) + k −
1 > `N is the number of degrees of freedom for the interpolation, and the conditions are
homogeneous, so a nonzero solution exists. J

I Lemma 14. If the number of agreements t is greater than D+k−1
` , then

Q
(
X, f(X), f(ζX), . . . , f(ζs−1X)

)
= 0. (5)

Proof. Q
(
X, f(x), . . . , f(ζs−1X)

)
is a univariate polynomial of degree D + k − 1, and each

correct column j yields ` distinct roots γiN+j for i ∈ {0, . . . , ` − 1}. Thus if t` > degD +
k − 1 > degQ, Q is the zero polynomial. J

For our choice of D, the requirement on t in Lemma 14 is met if t satisfies

t

N
>

1
s+ 1 + s

s+ 1R. (6)

APPROX/RANDOM’14
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I Remark. In ordinary folded Reed-Solomon codes, where the folding parameter is primitive
of order q − 1, the agreement fraction required to satisfy (5) is

t

N
>

1
s+ 1 + s

s+ 1
`R

`− s+ 1 ,

which is higher than (6). In our case, because ζ has low order, we are able to use interpolation
conditions that “wrap around,” allowing us to impose ` conditions per coordinate rather than
`− s+ 1. Therefore we can satisfy Equation (5) with lower agreement. On the other hand,
it is known how to list-decode folded Reed-Solomon codes themselves, whereas we are only
able to list-decode a subcode.

5.2 Decoding
In this section, we describe how to solve the system

Q
(
X, f(X), f(ζX), . . . , f(ζs−1X)

)
= 0 (5)

for candidate polynomials f .

I Proposition 15. Given an irreducible polynomial R(X) ∈ Fq[X] such that
degR > k, and
for some a, ζX ≡ Xqa (mod R).

Then the set of f of degree < k satisfying (5) is an Fqa-affine subspace of dimension at most
s− 1.

Proof. The condition (5) says

0 = A0(X) +A1(X)f(X) +A2(X)f(ζX) + · · ·+As(X)f(ζs−1X).

Then we have

A0(X) +A1(X)f(X) +A2(X)f(X)q
a

+ · · ·+As(X)f(X)q
(s−1)a

≡ 0 (mod R).

By dividing out the highest power of R which divides every Ai, Equation (5) is still
satisfied and we may assume that this equation is nonzero mod R.

In particular, this equation has at most q(s−1)a solutions for f mod R. When deg f <
k 6 degR, f is uniquely determined by its residue mod R and there are at most q(s−1)a

solutions for f .
The fact that the solution space is Fqa -affine follows from the fact that the terms in

which f(X) appears all have degree qai for some i. J

Because the output space is a subspace (over the large field Fqa), by picking the message
polynomials f to come from a subspace-evasive set, we can reduce the list size bound. More
specifically, if ` is at least s/ε, [1] gives a construction of a (s, (s/ε)s) subspace-evasive set
S over (Fqa)k/a of size q(1−ε)k. By precoding the messages to come from this set S, we are
able to both encode and compute the intersection of the code with the output subspace of
Proposition 15 in polynomial time.

Setting s = O(1/ε) and ` = O(s/ε), we obtain the following.

I Corollary 16. For every ε > 0 and R ∈ (0, 1), there is an explicit rate R subcode of
a low-order folded Reed-Solomon code which is list-decodable from a 1 − R − ε fraction of
errors with list size (1/ε)O(1/ε), given an irreducible polynomial satisfying the conditions of
Proposition 15.
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I Remark. By using Corollary 6 instead of the results of [1], we can give a similar guarantee
which yields a linear subcode, but with a larger list size guarantee of qpoly(1/ε).

The techniques of [14] using subspace designs could also be applied directly to the case of
low-order folding, with a resulting list size of npoly(1/ε). We are able to get an improvement
using the observation that the space of candidates is actually a low-dimensional subspace
over a much larger field.

5.3 Constructing High-degree Irreducibles
The decoding algorithm of the previous section relied on working modulo a high-degree
irreducible factor of Xqa − ζX. In what follows, we consider the problem of finding such a
factor efficiently.

I Proposition 17. For ζ ∈ Fq of order `, the irreducible factors over Fq[X] of

Xqa−1 − ζ

have degree dividing a`. In particular, all roots of Xqa−1 − ζ lie in Fqa` .

Proof. As X(qa−1)` ≡ 1 (mod Xqa−1− ζ), it is enough to see that (qa− 1)` divides qa`− 1.
This implies that Xqa−1 − ζ, and thus all of its irreducible factors, divides Xqa` −X.

As ` | q − 1, we have

qa` − 1
qa − 1 = qa(`−1) + qa(`−2) + · · ·+ qa + 1 ≡ 0 (mod `) . J

I Corollary 18. If a and ` with a > 2` are distinct primes, at least half of the roots of
Xqa−1 − ζ have irreducible polynomials of degree a`.

Proof. By Proposition 17, all of the irreducible factors of Xqa−1− ζ have degrees in the set
{1, a, `, a`}. No irreducible factor has degree 1 or a, because any irreducible of degree 1 or
a divides Xqa−1 − 1 and therefore does not divide Xqa−1 − ζ for ζ 6= 1.

Because Xqa−1− ζ has no repeated factors, it has at most q` roots which lie in Fq` (and
hence have irreducible polynomials of degree `.

Thus, under the assumptions on a and `, Xqa−1−ζ has at least (qa−q`−1) > q` roots of
degree a`. Thus at least half of of Xqa−1 − ζ’s roots have irreducible polynomials of degree
a`. J

In particular, by choosing a to be a prime in the range [k/`, 2k/`], we have k 6 a` 6 2k,
so that an irreducible factor of Xqa−1 − ζ will satisfy the conditions of Proposition 15. The
next section will show that we cannot hope to improve much on the value of a.

Given a value for a for which Xqa−1−ζ has many degree a` factors, the problem remains
to compute one. In what follows, we describe one randomized approach.

Recall that a and ` are primes, and that we are trying to find a degree a` factor of
Xqa−1 − ζ. The idea is to sample a root of X(qa−1)` − 1. Consider the following procedure:
1. Sample β ∈ (Fqa)∗ uniformly at random.
2. Compute the roots ρ1, . . . , ρ` of X` − β, which lie in Fqa` by Proposition 17. This

can be done in time Õ(n2 log(qa) log−1 ε) with failure probability ε using a variant of
Berlekamp’s algorithm (see, for example, [15]).

3. Compute ρq
a−1
i for each i and output the minimal polynomial of ρi over Fq if ρq

a−1
i = ζ.

APPROX/RANDOM’14
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First note that steps 1–2 sample each root of X(qa−1)`− 1 uniformly. Each ρi computed
in step 2 satisfies ρ`i ∈ (Fqa)∗, so ρi is a root of X(qa−1)` − 1. Conversely, each nonzero β
yields ` distinct roots of X` − β, which are distinct for distinct β, yielding (qa − 1)` roots.

Therefore, with probability 1/`, we will find a root ρ of Xqa−1 − ζ. By Corollary 18, ρ’s
minimal polynomial has degree a` with probability at least 1/2.

We can thus conclude that, with probability at least 1
2` − ε, we find an irreducible factor

of Xqa−1 − ζ of degree a`.

5.4 Relationship to Reed-Solomon List-decoding
The original motivation for studying low-order folding was the following reduction from
Reed-Solomon codes.

Given a polynomial f of degree < k/` evaluated at distinct points 1, γ`, γ2`, . . . , γN`, we
can think of it as a degree < k polynomial g(X) = f(X`). For ζ of order `, we have that
g(ζiX) = g(X) for every i. In particular, the associated low-order folded Reed-Solomon
codeword encoding g(X) is simply

f(1) f(γ`) . . . f(γN`)
f(1) f(γ`) . . . f(γN`)
...

...
. . .

...
f(1) f(γ`) . . . f(γN`)

 . (7)

Notice that if f(γi`) is correct, then the entire ith column is correct, so an algorithm to
list-decode the low-order folded RS code from an η fraction of errors will also list-decode the
Reed-Solomon code with evaluation points (1, γ`, . . . , γN`) from the same error fraction.

This reduction also helps to show that the precoding used to conclude Corollary 16 is
necessary for a polynomial list size. To see this, consider the behavior of the algorithm on a
transmitted codeword as in Equation (7). If there is enough agreement, the algorithm will
interpolate polynomials Ai(X) satisfying

0 = A0 +A1(X)g(X) +A2(X)g(ζX) + · · ·+As(X)g(ζs−1X) (8)

= A0(X) + g(X)
s∑
i=1

Ai(X). (9)

If
∑
i>0Ai(X) 6= 0, then g(X), and thus f(X), can be recovered uniquely by computing

A0(X)/
∑
i>0Ai(X); however, this will not be possible in general outside of the unique

decoding radius. If
∑
i>0Ai(X) is 0, then A0(X) = 0 as well and any function which is a

polynomial of X` satisfies Equation (9), and in particular the output list must have size at
least qk/`. Recall that ` is a constant in our application.

This implies that without precoding, the dimension of the list output by Proposition 15
over Fq must be Ω(k/`). Note that for the value a = θ(k/`) found in Section 5.3, the list
size before precoding would be O(ks/`).

6 Conclusion and Open Questions

We have given an explicit construction of list-decodable rank-metric and subspace codes,
which were obtained by restricting known codes to carefully chosen subcodes. However,
our results give no insight into whether the Gabidulin and KK codes can be themselves
list-decoded beyond half the minimum distance. We close with the following natural open
problems.
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Is it combinatorially feasible to list-decode Gabidulin codes themselves beyond half the
distance? We note that it was recently shown that there is no analog of the classical
Hamming-metric Johnson bound in the world of rank-metric codes always guaranteeing
list-decodability beyond half the minimum distance [24]. Therefore, a proof of list-
decodability past the unique decoding radius (say for the Gabidulin code) must account
for the code structure beyond just the minimum distance.
Assuming it is combinatorially feasible, can we give an efficient algorithm to list-decode
Gabidulin codes without using subcodes or special evaluation points?
Currently, for rate R codes, we do not know where in the range (1−

√
R, 1−R) the list-

decoding radius of Reed-Solomon codes lies, and where in the range [(1−R)/2, 1−
√
R]

the list-decoding radius of Gabidulin codes lies. Is there a relationship between these
questions?
Can one construct better subspace-evasive sets to give an explicit code that is list-
decodable from a fraction 1−R− ε of errors with poly(1/ε) list-size? We only known a
list-size upper bound that is exponential in 1/ε for current explicit constructions, whereas
a list-size of O(1/ε) can be obtained with a Monte Carlo construction [12, 13, 14]. This
question is open for errors in the usual Hamming metric also.

Acknowledgment. We thank Antonia Wachter-Zeh for bringing to our attention the lack
of a Johnson-type bound for list decoding rank-metric codes [24].
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A Explicit List-decodable Subspace Codes

A.1 The Operator Channel and Subspace Codes
For a vector space W , let P(W ) denote the set of all subspaces of W , and Pn(W ) the set of
all n-dimensional subspaces of W .

We recall the definition of the operator channel from [16].

I Definition 19. An operator channel C associated with the ambient space W is a channel
with input and output alphabet P(W ). The channel input V and output U are related by

U = Hk(V ) + E,

where k = dim(U∩V ), E is an error subspace (wlog E may be taken such that E∩V = {0}),
and Hk(V ) is an operator returning an arbitrary k-dimensional subspace of V .
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In transforming V to U , we say that operator channel commits r = dim(V )−k deletions
and t = dim(E) insertions.

A subspace code C is a subset of Pn(Ftq) for some n. We define the rate of a subspace
code to be

R(C) =
logq|C|
nt

.

A.2 The Kötter-Kschischang (KK) Code
Our constructions will be subcodes of the KK code (as introduced in [16]), which we now
define.

For n dividing t, let Fht extend Fh, and let α1, . . . , αn ∈ Fht generate the subfield
Fhn := Fq.

Set m = t/n. Then the (n, k, t) KK code encodes an Fh-linearized polynomial over
Fqm = Fht of q-degree < k by

f(X) 7→ span{(αi, f(αi)}ni=1.

The encoding of f is an n-dimensional vector space in the ambient space of dimension
n+ t over Fh.

When k < n, this code has distance 2(n− k + 1) and rate

logh qmk

n(n+ t) = k

n

(
1

1 + n/t

)
≈ k

n
(when n� t).

If the channel commits 6 µ deletions and 6 ρ insertions, where sµ + ρ < s(n − k + 1),
Guruswami and Xing [14] give a list-decoding algorithm which outputs a (s−1,m, k)-periodic
subspace in Fmkq containing all candidate messages.

A.3 List-decodable Subcodes
By restricting the coefficients of the message polynomial f to come from distinct H1, . . . ,Hk

from the
(
s, 2(m − 1)s/ε, t

)
-subspace design of Theorem 8, and setting m ≈ s/ε, we can

prune the list down to a Fh-subspace of dimension O(s2/ε2).
Notice that the Hi’s are Fh-linear subspaces, so the restricted subcode is linear. In

summary, we have:

I Theorem 20. For every ε > 0 and integer s > 0, there exists an explicit linear subcode of
the

(
n, k, sn/ε

)
KK code of rate (1− ε)k/n which is list-decodable from ρ insertions and µ

deletions, provided ρ+ sµ < s(n− k + 1).
Moreover, the output list is contained in an Fh-subspace of dimension O(s2/ε2).

APPROX/RANDOM’14
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