
Space Pseudorandom Generators by
Communication Complexity Lower Bounds∗

Anat Ganor1 and Ran Raz1,2

1 Weizmann Institute of Science, Rehovot, Israel
{anat.ganor,ran.raz@weizmann.ac.il}@weizmann.ac.il

2 Institute for Advanced Study, Princeton, New Jersey

Abstract
In 1989, Babai, Nisan and Szegedy [2] gave a construction of a pseudorandom generator for
logspace, based on lower bounds for multiparty communication complexity. The seed length of
their pseudorandom generator was 2Θ(

√
logn), because the best lower bounds for multiparty com-

munication complexity are relatively weak. Subsequently, pseudorandom generators for logspace
with seed length O(log2 n) were given by [19] and [15].

In this paper, we show how to use the pseudorandom generator construction of [2] to obtain a
third construction of a pseudorandom generator with seed length O(log2 n), achieving the same
parameters as [19] and [15]. We achieve this by concentrating on protocols in a restricted model
of multiparty communication complexity that we call the conservative one-way unicast model and
is based on the conservative one-way model of [8]. We observe that bounds in the conservative
one-way unicast model (rather than the standard Number On the Forehead model) are sufficient
for the pseudorandom generator construction of [2] to work.

Roughly speaking, in a conservative one-way unicast communication protocol, the players
speak in turns, one after the other in a fixed order, and every message is visible only to the
next player. Moreover, before the beginning of the protocol, each player only knows the inputs
of the players that speak after she does and a certain function of the inputs of the players that
speak before she does. We prove a lower bound for the communication complexity of conservat-
ive one-way unicast communication protocols that compute a family of functions obtained by
compositions of strong extractors. Our final pseudorandom generator construction is related to,
but different from the constructions of [19] and [15].
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1 Introduction

Derandomizing space bounded computations has attracted a lot of attention over the last
few decades. The most important problem is to simulate randomized logspace machines with
deterministic ones. Savitch [26] result on nondeterministic machines implies that RL ⊆ L2.
Subsequently, this problem was studied, for example, by [1], [2], [19], [15] and [22]. Currently,
the best derandomization of general logspace machines is due to Saks and Zhou [25], proving
that BPL ⊆ L3/2.
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One way to simulate a randomized, space bounded computation with a deterministic
one is using a space pseudorandom generator. Roughly speaking, a space pseudorandom
generator converts, efficiently, a short truly random seed into a long string that looks random
to machines with limited space. A major open problem in the theory of pseudorandomness
is to construct an explicit pseudorandom generator that stretches a seed of length O(logn)
to n bits that cannot be distinguished from uniform by any logspace machine with input
length n. Such a generator would imply that RL = L. Nisan [19] constructed space
pseudorandom generators that convert O(log2 n) random bits to poly(n) bits that look
random to any logspace machine. Subsequently, [15] showed a different construction with the
same parameters. Since [19] and [15], no better seed length was obtained for derandomizing
general logspace machines. There were other constructions of space pseudorandom generators
for more restricted classes of space bounded computations, such as [23], [5], [6], [18], [14], [3]
and [24].

In this paper, we give a new construction of a space pseudorandom generator for general
logspace machines, with seed length O(log2 n), achieving the same parameters as [19] and
[15]. Our pseudorandom generator construction is based on a lower bound for a certain
model of multiparty communication complexity, relying on the pseudorandom generator
construction of Babai, Nisan and Szegedy [2]. The pseudorandom generator of [2] has seed
length 2Θ(

√
logn). The proof that their construction gives a pseudorandom generator relies

on a lower bound for multiparty communication complexity. [2] gave a lower bound for
the multiparty communication complexity of protocols in the Number On the Forehead
(NOF) model with blackboard communication. In this model, each player knows all inputs
except her own input and the communication is done by writing messages on a blackboard
(broadcast) so that every player sees all the previous communication. For this model, [2]
gave a lower bound of Ω( n2k ) (where n is the length of each input and k is the number of
players). Improving this lower bound is a major open problem.

We observe that the pseudorandom generator construction of [2] can be based on lower
bounds for a restricted model of multiparty communication complexity. For this model we
are able to obtain improved lower bounds, resulting in a pseudorandom generator with seed
length O(log2 n).

I Definition 1 (Conservative One-way Unicast Communication Protocol). Let P be a de-
terministic, multiparty communication protocol for k players p1, . . . , pk. For a function
f : B ×A1 × · · · × Ak → B, we say that P is a conservative one-way unicast communication
protocol with respect to f if for an input b, a1, . . . , ak ∈ B×A1× · · · ×Ak the following holds:
1. For every i ∈ [k], before the beginning of the protocol, the ith player only knows

ai+1, . . . , ak and the (truth table1 of the) function fi : Ai × · · · × Ak → B, defined by:

fi(zi, . . . , zk) = f(b, a1, . . . , ai−1, zi, . . . , zk)

for every zi, . . . , zk ∈ Ai × · · · × Ak.
2. The players communicate one after the other in the fixed order p1, p2, . . . , pk.
3. For every 1 ≤ i < k, the ith message is visible only to pi+1. The message of the last

player is the output of the protocol.
Usually, we will take f to be the function that the players are trying to compute. Note that the
ith player doesn’t know b, a1, . . . , ai−1 as in the NOF model, but she does know the relevant in-

1 The truth table is not counted as part of the length of the input.
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694 Space Pseudorandom Generators by Communication Complexity Lower Bounds

formation on b, a1, . . . , ai−1 that is needed to compute the function f(b, a1, . . . , ai−1, zi, . . . , zk)
for every zi, . . . , zk ∈ Ai × · · · × Ak.

Our definition of conservative one-way unicast communication protocols is based on
definitions by Damm, Jukna and Sgall [8]. [8] defined conservative communication protocols
as protocols satisfying item (1) in Definition 1, and conservative one-way communication
protocols as protocols satisfying items (1),(2) in Definition 1, where the communication
is done by writing messages on a blackboard (broadcast) so that every player sees all the
previous communication. The motivation of [8] to study the conservative one-way model was
different than ours. They studied this model as an interesting communication model in its
own right, without relating it to pseudorandom generators for logspace computations.

[8] proved lower bounds for the communication complexity of conservative one-way
(blackboard) communication protocols that compute the pointer jumping problem. For
k = O((n/logn)1/3), [8] proved a lower bound of Ω(n/k2), and for k ≤ log∗ n − ω(1), they
proved a lower bound of n log(k−1) n(1− o(1)) (where k is the number of players and n is the
length of each input). The conservative one-way model was further studied by Chakrabarti
in [7], where the Ω(n/k2) lower bound due to [8] was extended so that it applies for all k.

The unicast setting, where the players communicate by sending messages to each other
over private channels, was studied in the context of message-passing models of multiparty
communication. These models have been used extensively in distributed computing, for
example in [12], [16], [17], and [4]. Message passing models are also used to study privacy
and security in multiparty computations.

For conservative communication protocols (satisfying item (1) in Definition 1) it is
convenient to consider composed functions as we define next.

I Definition 2 (Composed Functions). For a function f : {0, 1}m × {0, 1}n → {0, 1}m and
1 < i ∈ N, the ith composition of f is a function f (i) : {0, 1}m+in → {0, 1}m defined for every
a0 ∈ {0, 1}m, a1, . . . , ai ∈ {0, 1}n as

f (i)(a0, a1, . . . , ai) = f(f (i−1)(a0, a1, . . . , ai−1), ai)

where f (1)(a0, a1) = f(a0, a1). In addition, we define f (0)(a0) = a0.

Let f (k) be the kth composition of a function f : {0, 1}m × {0, 1}n → {0, 1}m. Note
that for every input (a0, a1, . . . , ak) ∈ {0, 1}m+kn and every i ∈ [k], if the ith player knows
f (i−1)(a0, a1, . . . , ai−1), then she also knows the function f (k)

i defined in item (1) in Defini-
tion 1. Therefore, for the sake of proving lower bounds for the communication complexity of
conservative communication protocols with respect to f (k), it is enough to assume that for
an input (a0, a1, . . . , ak) ∈ {0, 1}m+kn, for every i ∈ [k], before the beginning of the protocol,
the ith player only knows ai+1, . . . , ak and f (i−1)(a0, a1, . . . , ai−1).

In our paper, we prove lower bounds for the communication complexity of conservative
one-way unicast communication protocols with respect to a certain composed function
f (k). Therefore, we replace item (1) in Definition 1 by the assumption that for an input
(a0, a1, . . . , ak) ∈ {0, 1}m+kn, for every i ∈ [k], before the beginning of the protocol, the ith
player only knows ai+1, . . . , ak and f (i−1)(a0, a1, . . . , ai−1).

An Example – The Pointer Jumping Problem
In the pointer jumping problem for k players, the input is k functions Π1, . . . ,Πk : [r]→ [r]
and an additional input i0 ∈ [r]. The players need to output Πk ◦ · · · ◦Π1(i0). Let Sr denote
the set of all functions from [r] to [r] and let f : [r]× Sr → [r] be the function defined by
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f(i,Π) = Π(i) for every i ∈ [r] and Π ∈ Sr. Note that the pointer jumping problem for k
players is the kth composition of f . In a conservative communication protocol (satisfying
item (1) in Definition 1) for the pointer jumping problem, for every i ∈ [k], before the
beginning of the protocol, the ith player only knows Πi+1, . . . ,Πk and f i−1(i0,Π1, . . . ,Πi−1) =
Πi−1 ◦ · · · ◦Π1(i0).2

1.1 Main Result
We say that a communication protocol P computes a function f : {0, 1}n → {0, 1}m with
bias δ > 0 if

Pr
x∈R{0,1}n

[f(x) = P (x)] ≥ 2−m + δ

We denote the length of the longest message sent during the execution of P by L(P ) (on the
worst case input, not including the last message which is the output of the protocol).

Let Ext : {0, 1}m × {0, 1}n → {0, 1}m be a (t, ε) strong extractor (see Definition 10). We
refer to the kth composition of Ext, denoted Ext(k), as a (t, ε) composed strong extractor.
Composed strong extractors are closely related to alternating extractors, which are used in
[10], with cryptographic applications.

Our lower bound is for the length of the longest message communicated during any
conservative one-way unicast communication protocol that computes a composed strong
extractor with bias δ > 0.

I Theorem 3. Let Ext(k) : {0, 1}m+nk → {0, 1}m be a (t, ε) composed strong extractor and
let P be a conservative one-way unicast communication protocol with respect to Ext(k) that
computes Ext(k) with bias δ > 0, such that ε < δ · 2−(k+2). Then,

L(P ) ≥ n− t− k − log 1
δ
− 2

In fact, we prove a slightly stronger version of Theorem 3 in which we consider projections
of the composed strong extractor (see Theorem 17). Using this lower bound together with
the pseudorandom generator construction of Babai, Nisan and Szegedy [2], we obtain a
space pseudorandom generator that converts O(log2 n) random bits to poly(n) bits that look
random to any logspace machine (see Section 4).

Comparison with [19] and [15]
The pseudorandom generator construction of [15] is also based on a recursive composition of
extractors. However, their generator is different from the one presented here. The recursive
composition used in [15] is different from the composition in Definition 2. Moreover, [15] use
extractors that output O(log2 n) bits, whereas here we use extractors that output O(logn)
bits.

The pseudorandom generator construction of [19] is based on a recursive composition of
hash functions. This is done by a composition similar to the one in Definition 2. We note
that hashing can be viewed as an application of an extractor. However, when viewing the
hashing as an application of an extractor, the composition of [19] does not fit our definition of
a composed extractor. In particular, in our definition of a composed extractor, the recursion

2 In this case, knowing Πi−1 ◦ · · · ◦ Π1(i0) is equivalent to knowing the function fi defined in item (1) in
Definition 1.
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696 Space Pseudorandom Generators by Communication Complexity Lower Bounds

is done by replacing the seed of the extractor with the output of the extractor from the
previous composition, whereas in [19], the recursion is done by replacing the source of the
extractor with the output of the extractor from the previous composition.

2 Preliminaries

2.1 General Notation

Let [n] be the set of numbers {1, 2, . . . , n}. For a binary string x ∈ {0, 1}∗ and an index
i ∈ N, let xi be the ith bit of x. For a set of indexes S = {i1, . . . , ik} ⊆ [|x|], let xS be the
string xi1 , . . . , xik .

2.1.1 Functions

For a function f : {0, 1}n → {0, 1}m and a subset S ⊆ [m] of size m′, where m′ ≤ m,
the projection of f on S, denoted fS , is a function from {0, 1}n to {0, 1}m′ defined as
fS(x) = (f(x))S for every x ∈ {0, 1}n. To simplify notation, for i ∈ [m], we define fi = f{i}.
For two functions f : A → B and h : B → C, let h ◦ f be the function from A to C defined as
h(f(a)) for every a ∈ A.

2.1.2 Distributions and Random Variables

We write x ∈R X if x is chosen uniformly at random from X . For a distribution D and a
subset S of the support of D, let D(S) be the sum

∑
s∈S D(s). For a random variable X

and an event E, we write X|E to denote X conditioned on E. We write X ∈ X if X is
distributed over the set X . For two random variables X and Y , we write X ∼ Y if X and Y
have the same distribution. Slightly abusing notation, given a random variable X, we let
x ∼ X indicate the sampling of x from the distribution of X.

2.2 Statistical Distance

I Definition 4 (Statistical Distance). Let D1 and D2 be two distributions over the same
space Ω. Their statistical distance is

‖D1 −D2‖ = max
S⊆Ω
|D1(S)−D2(S)| = 1

2
∑
x∈Ω
|D1(x)−D2(x)|

For two random variables X1, X2 ∈ Ω distributed according to D1 and D2 respectively, we
define ‖X1 −X2‖ = ‖D1 −D2‖.

I Proposition 5. Let X,X ′ ∈ X be two random variables and let f : X → Y be any
deterministic function. Then,

‖f(X)− f(X ′)‖ ≤ ‖X −X ′‖

I Proposition 6. Let X ∈ X , Y ∈ Y and Z ∈ Z be three random variables, and let U be
uniform over X , independent of X, Y and Z. Then,

‖(Z,X)− (Z,U)‖ ≤ ‖(Y,Z,X)− (Y,Z, U)‖
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2.3 Space Pseudorandom Generators

A deterministic, space s(n) Turing machine uses s(n) space on any input of size n. A
non-uniform, space s(n) statistical test is a deterministic, space s(n) Turing machine M and
an infinite sequence of binary strings a = (a1, . . . , an, . . . ) called the advice strings, where the
length of an is exp(s(n)), for every n ∈ N. The result of the test on input x, denoted Ma(x),
is the result of running M on x when it has access to the advice a|x|. The machine M reads
the advice as if it is on a normal input tape, and it has a one-way access to the input x (i.e.,
it can access the next bit of x but it cannot go “back" and review bits it already read). A
pseudorandom generator for space bounded computations is required to produce strings that
can be used instead of truly random strings in randomized, space bounded computations
(while introducing only small additional error). Therefore, a pseudorandom generator must
produce strings that look random to any non-uniform, bounded space statistical test. The
following is a formal definition. For more information see e.g. [2].

I Definition 7. G =
{
Gn : {0, 1}m(n) → {0, 1}n

}
is an ε pseudorandom generator for space

s(n) if for every non-uniform, space s(n) statistical test Ma it holds that∣∣∣∣ Pr
x∈R{0,1}n

[Ma(x) = 1]− Pr
y∈R{0,1}m(n)

[Ma(G(y)) = 1]
∣∣∣∣ ≤ ε

The following is an alternative definition (which is equivalent upto a multiplicative factor
of n change in ε).

I Definition 8. G =
{
Gn : {0, 1}m(n) → {0, 1}n

}
is an ε pseudorandom generator for space

s(n) if for every i ∈ [n] and for every non-uniform, space s(n) statistical test Ma it holds
that∣∣∣∣ Pr

y∈R{0,1}m(n)
[Ma(first i− 1 bits of G(y)) = ith bit of G(y)]− 1

2

∣∣∣∣ ≤ ε
In this paper, we use Definition 8.

2.4 Strong Extractors

The notion of weak source was first defined by Nisan and Zuckerman [21].

I Definition 9 (Min-Entropy). For a random variable X, the min-entropy of X is

H∞(X) = − log max
x

Pr[X = x]

An (n, t) source is a random variable in {0, 1}n that has min-entropy at least t.

I Definition 10 (Strong Extractor [22]). A function Ext : {0, 1}m × {0, 1}n → {0, 1}` is a
(t, ε) strong extractor if for every (n, t) source X and every seed S uniformly distributed over
{0, 1}m it holds that

‖(S,Ext(S,X))− U‖ ≤ ε

where U is uniformly distributed over {0, 1}m+`.

APPROX/RANDOM’14



698 Space Pseudorandom Generators by Communication Complexity Lower Bounds

2.4.1 Average Min-Entropy and Average-Case Extractors
The following definitions and lemmas appear in [9].

I Definition 11 (Average Min-Entropy). For two random variables X ∈ X and Y ∈ Y, the
average min-entropy of X given Y is

H̃∞(X|Y ) = − log E
y∼Y

max
x∈X

Pr[X = x|Y = y] = − log E
y∼Y

[
2−H∞(X|Y=y)

]
I Lemma 12. Let X,Y and Z be random variables. If Y has at most 2` possible values,
then

H̃∞(X|(Y,Z)) ≥ H̃∞((X,Y )|Z)− ` ≥ H̃∞(X|Z)− `

I Definition 13 (Average-case Strong Extractor). A function Ext : {0, 1}m×{0, 1}n → {0, 1}`
is an average-case (t, ε) strong extractor if for every pair of random variables (W, I) such
that W ∈ {0, 1}n and H̃∞(W |I) ≥ t, and every seed S uniformly distributed over {0, 1}m, it
holds that

‖(I, S,Ext(S,W ))− (I, U)‖ ≤ ε

where U is uniformly distributed over {0, 1}m+`.

I Lemma 14. For any γ > 0, if Ext is a (t− log 1/γ, ε) strong extractor, then Ext is also
an average-case (t, ε+ γ) strong extractor.

3 Lower Bounds for Conservative One-way Unicast Communication
Protocols

For the construction of the pseudorandom generator in Section 4, we will need a lower
bound for the communication complexity of a function that outputs a single bit. To this end
we consider also projections of composed strong extractors (see notation for projections in
Section 2.1).

I Definition 15. A function g : {0, 1}m+nk → {0, 1}m′ is called a (t, ε) projection of a
composed strong extractor (PCSE) if g = Ext

(k)
S , where S ⊆ [m] is a subset of size m′ for

m′ ≤ m and Ext(k) : {0, 1}m+nk → {0, 1}m is a (t, ε) composed strong extractor.

The following lemma is the main technical part of our paper. The proof is related to the
proof of the “alternating extraction theorem" in [10], which uses ideas from [11]. See also
lecture notes [29].

I Lemma 16. Let Ext(k)
S : {0, 1}m+nk → {0, 1}m′ be a (t, ε) PCSE and let A0 ∈ {0, 1}m,

A1, . . . , Ak ∈ {0, 1}n be uniformly and independently distributed. Let P be a conservative
one-way unicast communication protocol with respect to Ext(k), and let M1, . . . ,Mk be the
messages sent during the execution of P on inputs A0, . . . , Ak, where the ith player sends Mi,
for i ∈ [k]. Fix γ > 0 and assume that M1, . . . ,Mk−1 ∈ {0, 1}`, for ` ≤ n− t− log 1

γ . Then,

‖(Mk, Ext
(k)
S (A0, A1, . . . , Ak))− (Mk, U

′)‖ ≤ 2k+1(ε+ γ)

where U ′ is uniformly distributed over {0, 1}m′ .
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Proof. To simplify notation, for every i ∈ [k] we write Ext(i) instead of Ext(i)(A0, A1, . . . , Ai)
and let Ai = (Ai, . . . , Ak). For i > k we define Ai to be the empty string. Let U be uniformly
distributed over {0, 1}m. Recall that U ′ is uniformly distributed over {0, 1}m′ . Then, for
every z ∈ {0, 1}m′ , by Proposition 5,

‖(Ext(k)
S |Mk = z)− U ′‖ ≤ ‖(Ext(k)|Mk = z)− U‖

Therefore, it is enough to prove that

‖(Mk, Ext
(k))− (Mk, U)‖ ≤ 2k+1(ε+ γ) (1)

By the definition of a conservative one-way unicast communication protocol with respect to
Ext(k), for every i ∈ [k] it holds that

Mi = gi(Ai+1,Mi−1, Ext
(i−1)) (2)

where gi is some (deterministic) function, and M0 = 0`. We prove by induction on i, that for
every 0 ≤ i ≤ k,

‖(Ai+1,Mi, Ext
(i))− (Ai+1,Mi, U)‖ ≤

i∑
j=0

2j(ε+ γ)

Substituting i = k we get equation (1) as required. For i = 0 we have that ‖(A1,M0, Ext
(0))−

(A1,M0, U)‖ = 0, and the claim holds. Assume that the claim holds for some 0 ≤ i < k and
let ∆ = ‖(Ai+2,Mi+1, Ext

(i+1))− (Ai+2,Mi+1, U)‖. By equation (2) and Proposition 5,

∆ ≤ ‖(Ai+2,Mi, Ext
(i), Ext(i+1))− (Ai+2,Mi, Ext

(i), U)‖

By the definition of Ext(i+1),

∆ ≤ ‖(Ai+2,Mi, Ext
(i), Ext(Ext(i), Ai+1))− (Ai+2,Mi, Ext

(i), U)‖

Let S be uniformly distributed over {0, 1}m. By the triangle inequality,

‖(Ai+2,Mi, Ext
(i), Ext(Ext(i), Ai+1))− (Ai+2,Mi, Ext

(i), U)‖ ≤

‖(Ai+2,Mi, Ext
(i), Ext(Ext(i), Ai+1))− (Ai+2,Mi, S, Ext(S,Ai+1))‖+ (3)

‖(Ai+2,Mi, S, Ext(S,Ai+1))− (Ai+2,Mi, S, U)‖+ (4)

‖(Ai+2,Mi, S, U)− (Ai+2,Mi, Ext
(i), U)‖ (5)

By Lemma 14, Ext is also an average-case (t+ log 1/γ, ε+ γ) strong extractor. By Lemma 12,

H̃∞(Ai+1|Ai+2,Mi) ≥ H̃∞(Ai+1|Ai+2)− ` = H∞(Ai+1)− ` = n− ` ≥ t+ log 1/γ

and therefore, by Definition 13, (4) ≤ ε+ γ. By Propositions 5 and 6,

(3), (5) ≤ ‖(Ai+1,Mi, Ext
(i))− (Ai+1,Mi, S)‖

By the inductive hypothesis, ‖(Ai+1,Mi, Ext
(i))− (Ai+1,Mi, S)‖ ≤

∑i
j=0 2j(ε+ γ). Putting

it together we get that

∆ ≤ ε+ γ + 2 ·
i∑

j=0
2j(ε+ γ) =

i+1∑
j=0

2j(ε+ γ)

as required. J

APPROX/RANDOM’14
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Finally, we give a lower bound for the length of the longest message in a conservative
one-way unicast communication protocol that computes a projection of a composed strong
extractor.

I Theorem 17. Let Ext(k)
S : {0, 1}m+nk → {0, 1}m′ be a (t, ε) PCSE and let P be a

conservative one-way unicast communication protocol with respect to Ext(k) that computes
Ext

(k)
S with bias δ > 0, such that ε < δ · 2−(k+2). Then,

L(P ) ≥ n− t− k − log 1
δ
− 2

Proof. Let A0 ∈ {0, 1}m, A1, . . . , Ak ∈ {0, 1}n be uniformly and independently distributed
and let M1, . . . ,Mk be the messages sent during the execution of the protocol P on inputs
A0, . . . , Ak, where the ith player sends Mi, for i ∈ [k]. To simplify notation, we write Ext(k)

S

instead of Ext(k)
S (A0, A1, . . . , Ak). Since the protocol P computes Ext(k)

S with bias δ,

δ + 2−m
′
≤ Pr
Ā∈R{0,1}m+nk

[
Mk = Ext

(k)
S

]
Let U ′ be uniformly distributed over {0, 1}m′ . Since Mk = Ext

(k)
S is a statistical test on the

distribution (Mk, Ext
(k)
S ), and the same statistical test on (Mk, U

′) passes with probability
2−m′ ,3∣∣∣∣ Pr

Ā∈R{0,1}m+nk

[
Mk = Ext

(k)
S

]
− 2−m

′
∣∣∣∣ ≤ ‖(Mk, Ext

(k)
S )− (Mk, U

′)‖

Assume for simplicity and without loss of generality, that all messages M1, . . . ,Mk−1 have
the same length, denoted `. Fix γ = δ · 2−(k+2) and assume towards a contradiction that
` < n− t− log 1

γ . Then, by Lemma 16,

‖(Mk, Ext
(k)
S )− (Mk, U

′)‖ ≤ 2k+1(ε+ γ)

We get that δ ≤ 2k+1(ε+γ) and therefore, γ ≥ δ ·2−(k+1)−ε > δ ·2−(k+2), which contradicts
our choice of γ. J

4 Logspace Pseudorandom Generators

We review the construction of the pseudorandom generator of Babai, Nisan and Szegedy [2].
The generator is based on a function f that takes k arguments, each r bits long, and has
high multiparty communication complexity. The ε multiparty communication complexity of
f , denoted Cε(f), is the communication complexity of the best deterministic communication
protocol in the NOF model with blackboard communication that computes f with bias at
least ε.

The input to the generator consists of t random strings of length r each. Fix k ≤ t and
let S1, S2, . . . , S(t

k) be all k-subsets of the input strings in anti-lexicographic order (i.e., each
Si is a set of k strings, each string is r bits long, and Si appears before Sj if the last string
in the symmetric difference of Si and Sj belongs to Sj). The output of the generator is
f(S1), f(S2), . . . , f(S(t

k)).
The proof of the following lemma appears in [2]. We give it for completeness in Appendix A.

3 We can assume, without loss of generality, that Mk is of length m′.
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I Lemma 18. For every ε > 0, every function f : {0, 1}rk → {0, 1} and every s < Cε(f)/k,
the above construction gives an ε pseudorandom generator for space s (see Definition 8).

We make few observations on Lemma 18 and its proof, that will allow us to use our lower
bound from Section 3:
1. In the multiparty communication protocol used for the proof, the players communicate

in a fixed order. Hence, we can consider communication protocols that satisfy item (2) in
Definition 1.

2. In the multiparty communication protocol used for the proof, for every i < k, the ith
message, sent by the ith player, is used only by player i+ 1. Therefore, the blackboard
is not required and we can consider communication protocols that satisfy item (3) in
Definition 1.

3. In the multiparty communication protocol used for the proof, for every j ∈ [k], if the jth
player needs to compute f(T ) during the simulation, then it holds that the set T comes
before the set S in the anti-lexicographic order, and yi1 , . . . , yij−1 ∈ T and yij /∈ T . For
every such a set T , the jth player can compute f(T ) without knowing yi1 , . . . , yij−1 . It
suffices that she knows the strings that were fixed, the input strings yij+1 , . . . , yik and the
function f(yi1 , . . . , yij−1 , zj , . . . , zk) for every zj , . . . , zk ∈ {0, 1}r. Hence, we can consider
communication protocols that satisfy item (1) in Definition 1.

4. In the multiparty communication protocol used for the proof, all messages have the same
length. Hence, we can use a lower bound for the length of the longest message sent during
the execution of the protocol.

Note that the function f from Definition 1 has an additional input string b ∈ B. We
can think of b as if it is added to all subsets S1, S2, . . . , S(t

k). Formally, our adjusted
construction is as follows. The input to the generator consists of t random strings of length
r each and an additional random string b ∈ {0, 1}m. Let S1, S2, . . . , S(t

k) be all k-subsets of
the input strings (not including the string b) in anti-lexicographic order, as in the original
construction. For every 1 ≤ j ≤

(
t
k

)
, let Sj = {yij,1 , . . . , yij,k

}, where ij,1 > ij,2 > · · · > ij,k.
Then, the jth bit in the output of the generator is f1(b, yij,1 , . . . , yij,k

). Recall that f1 returns
the first bit of the function f (see notation for projections in Section 2.1).

We get the following lemma.

I Lemma 19. Fix ε > 0 and a function f : {0, 1}m+kr → {0, 1}m, such that for every
conservative one-way unicast communication protocol with respect to f that computes f1 with
bias ε, the length of the longest message is at least C. Then, for every s < C, the adjusted
construction gives an ε pseudorandom generator for space s.

I Corollary 20. For every constant c > 0, there exists an (explicitly given) n−c pseudorandom
generator for logspace which converts O(log2 n) random bits to poly(n) bits.

Proof. Let m = O(logn), r = O(logn) and let f : {0, 1}m+r → {0, 1}m be a (t′, ε) strong
extractor, such that t′ < r− 2 logn− c logn− 2 and ε < 1/4nc+1. For an explicit construction
of a strong extractor with such parameters see Theorem 4.2 in [13] (for more information
see e.g. [20], [27] and [28]). Let δ = n−c, k = logn and let P be a conservative one-way
unicast communication protocol with respect to f (k) that computes f (k)

1 with bias δ. Since
ε < δ · 2−(k+2) = 1/4nc+1, Theorem 17 guarantees that L(P ) ≥ r − t′ − k − log 1

δ − 2 =
r − t′ − logn− c logn− 2 > logn. By Lemma 19, using the adjusted construction with the
PCSE f

(k)
1 and t = k · 2c′ for any constant c′ > 1, we get a δ pseudorandom generator for

space logn, that on a seed of length m+ tr = O(log2 n) produces a pseudorandom string of
length

(
t
k

)
≥ nc′ . J
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A Proof of Lemma 18

Fix f : {0, 1}rk → {0, 1}, ε > 0 and s < Cε(f)/k. Assume towards a contradiction that the
ith bit of the output of the generator can be predicted by a non-uniform, space s statistical
test. That is, there exists a non-uniform, space s statistical test Ma such that

Pr
y∈R{0,1}tr

[Ma(first i− 1 bits of G(y)) = ith bit of G(y)]− 1
2 > ε

where G is the generator that is defined by the construction above. Fix y = (y1, . . . , yt) ∈
({0, 1}r)t and let the ith bit of the output of the generator on input y be f(S), where
S = {yi1 , yi2 , . . . , yik} and i1 > i2 > · · · > ik. By an averaging argument, we can fix all
input strings from y that are not in S, such that the prediction bias of Ma is preserved. We
describe a multiparty communication protocol for k players, that computes f(S) with bias ε.
The model of this multiparty communication protocol is the NOF model with blackboard
communication, in which the jth player knows all input strings except yij , for j ∈ [k], and
the players broadcast their messages. The players simulate the running of Ma on the first
i− 1 bits of G(y) as follows. The first player starts the simulation and continues it for as
long as she can, that is, as long as she has access to the input bits that the test reads. Then,
the first player sends the state of Ma (i.e., all the memory space used by the machine) to
the second player. The second player continues the simulation for as long as she can, and so
on. Note that for every j ∈ [k], the jth player can simulate Ma until the simulation requires
the value f(T ) for a set T that contains yij . Moreover, because the sets used to compute the
bits of the generator are ordered in anti-lexicographic order, every set that appears after T ,
until S appears, contains yij . Therefore, the kth player can continue the simulation until it
reaches a set that contains yi1 , yi2 , . . . , yik , which must be the set S, when the simulation
ends and the prediction is made. Sending the space used by the machine k − 1 times, by
each of the first k − 1 players, results in less than ks communicated bits. Since ks < Cε(f),
we get a contradiction.
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