
An Optimal Algorithm for Large Frequency
Moments Using O(n1−2/k) Bits∗†

Vladimir Braverman1, Jonathan Katzman2, Charles Seidell3, and
Gregory Vorsanger4

1 Johns Hopkins University, Department of Computer Science
vova@cs.jhu.edu

2 Johns Hopkins University
jkatzma2@jhu.edu

3 Johns Hopkins University
cseidel5@jhu.edu

4 Johns Hopkins University, Department of Computer Science
gregvorsanger@jhu.edu

Abstract
In this paper, we provide the first optimal algorithm for the remaining open question from the
seminal paper of Alon, Matias, and Szegedy: approximating large frequency moments. Given a
stream D = {p1, p2, . . . , pm} of numbers from {1, . . . , n}, a frequency of i is defined as fi = |{j :
pj = i}|. The k-th frequency moment of D is defined as Fk =

∑n
i=1 f

k
i .

We give an upper bound on the space required to find a k-th frequency moment of O(n1−2/k)
bits that matches, up to a constant factor, the lower bound of [48] for constant ε and constant
k. Our algorithm makes a single pass over the stream and works for any constant1 k > 3. It
is based upon two major technical accomplishments: first, we provide an optimal algorithm for
finding the heavy elements in a stream; and second, we provide a technique using Martingale
Sketches which gives an optimal reduction of the large frequency moment problem to the all heavy
elements problem. Additionally, this reduction works for any function g of the form

∑n
i=1 g(fi)

that requires sub-linear polynomial space, and it works in the more general turnstile model. As a
result, we also provide a polylogarithmic improvement for frequency moments, frequency based
functions, spatial data streams, and measuring independence of data sets.

1998 ACM Subject Classification F.2 Analysis of Algorithms And Problem Complexity

Keywords and phrases Streaming Algorithms, Randomized Algorithms, Frequency Moments,
Heavy Hitters

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2014.531

1 Introduction

The analysis of massive data sets has become an exciting topic of theoretical algorithms
research. As these datasets grow increasingly large, the need to develop new algorithms
which can run using sublinear memory has become paramount. It is often convenient to view
such datasets as data streams. In this paper we consider the following streaming model:

∗ This work was supported in part by DARPA grant N660001-1-2-4014. Its contents are solely the
responsibility of the authors and do not represent the official view of DARPA or the Department of
Defense.
† This work was supported in part by Pistritto Fellowship.
1 We stress that our bound only holds for k = O(1). In fact, the dependence on k is at least exponential.

See Section 1.1.

© Vladimir Braverman, Jonathan Katzman, Charles Seidell, and Gregory Vorsanger;
licensed under Creative Commons License CC-BY

17th Int’l Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX’14) /
18th Int’l Workshop on Randomization and Computation (RANDOM’14).
Editors: Klaus Jansen, José Rolim, Nikhil Devanur, and Cristopher Moore; pp. 531–544

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62919174?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.531
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

532 An Optimal Algorithm for Large Frequency Moments Using O(n1−2/k) Bits

I Definition 1. Let m and n be positive integers. A stream D = D(n,m) is a sequence of
integers p1, . . . , pm, where pi ∈ {1, . . . , n}. A frequency vector is a vector of dimensionality
n with non-negative entries fi, i ∈ [n] defined as:

fi = |{j : 1 ≤ j ≤ m, pj = i}|

A k-th frequency moment of a stream D is defined by Fk(D) =
∑
i∈[n] f

k
i . Also, F∞ =

maxi∈[n] fi and F0 = |{i : fi > 0}|.

In their celebrated paper, Alon, Matias, and Szegedy [1, 1] introduced the following
problem:

I Problem 2. What is the space complexity of computing a (1± ε)-approximation of Fk in
one pass over D?

In this paper we consider the case where k > 2. Many algorithms have been designed to
solve this particular problem, and we now provide a brief overview of the upper and lower
bounds provided. To begin, [1] gave a lower bound of Ω(n1−5/k) (for k ≥ 6) and an upper
bound of O(1

ε2n
1−1/k log(nm)). Bar-Yossef, Jayram, Kumar, and Sivakumar [4] improved

the lower bound and showed a bound of Ω(n1−(2+λ)/k) for their one pass algorithm where λ
is a small constant. They also showed a lower bound of Ω(n1−3/k) for a constant number of
passes. Chakrabarti, Khot, and Sun [19] showed a lower bound of Ω(n1−2/k) for one pass
and Ω(n1−2/k/(logn)) for a constant number of passes. Gronemeier [31] and Jayram [36]
extended the bound of [19] from one pass to multiple passes. Woodruff and Zhang [48] gave a
lower bound of Ω(n1−2/k/(ε(4/p)t)) for a t-pass algorithm. Ganguly [28] improved the result
of [48] for small values of ε and for t = 1. Price and Woodruff [44] gave a lower bound on
the number of linear measurements and Andoni, Nguyen, Polyanskiy, and Wu [3] showed
that Ω(n1−2/k logn) linear measurements are necessary.

In terms of upper bounds, Ganguly [26] and Coppersmith and Kumar [20] simultaneously
gave algorithms with space complexity2 Õ(n1−1/(k−1)). In their breakthrough paper, Indyk
and Woodruff [33] gave the first upper bound that is optimal up to a polylogarithmic factor.
Their bound was improved by a polylogarithmic factor by Bhuvanagiri, Ganguly, Kesh,
and Saha [7]. Monemizadeh and Woodruff [41] gave a bound of O(ε−2k2n1−2/k log5(n))
for a log(n)-pass algorithm. For constant ε, Braverman and Ostrovsky [13] gave a bound
of O(n1−2/k log2(n) log(c)(n)) where log(c)(n) is the iterated logarithm function. Andoni,
Krauthgamer, and Onak [2] gave a bound of O(k2ε−2−6/pn1−2/k log2(n)). Ganguly [27] gave
a bound of
O(k2ε−2n1−2/kE(k, n) log(n) log(nmM)/min(log(n), ε4/k−2)) where E(k, n) = (1−2/k)−1(1−
n−4(1−2/k)). Braverman and Ostrovsky [16, 15] gave a bound of O(n1−2/k log(n) log(c)(n)).

1.1 Main Result
For constant ε and k we provide a streaming algorithm with space complexity O(n1−2/k).
Thus, our upper bound matches the lower bound of Woodruff and Zhang [48] up to a constant
factor. Our algorithm makes a single pass over the stream and works for constant k > 3.

The main technical contribution is a new algorithm that finds heavy elements in a stream
of numbers. Then, combining this result with the Martingale Sketches technique we create
an algorithm to approximate Fk. In particular, we show:

2 The standard notation Õ hides factors that are polylogarithmic in terms of n,m and polynomial in
terms of the error parameter ε.

V. Braverman, J. Katzman, C. Seidell, and G. Vorsanger 533

I Theorem 3. Let ε be a constant and k ≥ 7. There exists an algorithm that outputs a
(1± ε)-approximation of Fk, makes three passes over the stream, uses O(n1−2/k) memory
bits, and errs with probability at most 1/3.

We now present the necessary definitions and theorems.

I Definition 4. Let D be a stream and ρ be a parameter. The index i ∈ [n] is a ρ-heavy
element if fki ≥ ρFk.

I Definition 5. A randomized streaming algorithm A is an Algorithm for Heavy Elements
(AHE) with parameters ρ and δ if the following is true: A makes three passes over stream D

and outputs a sequence of indices and their frequencies such that if element i is a ρ-heavy
element for Fk then i will be one of the indices returned3. A errs with probability at most δ.

I Theorem 6. Let k ≥ 7. There exists an absolute constant C ≤ 10 and an AHE algorithm
with parameters ρ and δ that uses

O(1
ρC

(F0(D))1−2/k log 1
δ

) (1)

bits.

I Theorem 7. Given Theorem 6, for any ε there exists an algorithm that uses

O(1
ε2C

(F0(D))1−2/k) (2)

memory bits, makes three passes over D, and outputs a (1 ± ε)-approximation of Fk with
probability at least 2/3. Here C is the constant from Theorem 6.

From here, we see that the main theorem, Theorem 3, follows directly from Theorem 7.
After establishing the matching bound with three passes, we improve our algorithm

further:

I Theorem 8. Let ε be a constant and k > 3. Assuming that m and n are polynomially far,
there exists an algorithm that outputs a (1± ε)-approximation of Fk, makes one pass over
the stream, uses O(n1−2/k) memory bits, and errs with probability at most 1/3.

We stress that our bound O(n1−2/k) only holds for k = O(1). In fact, the dependence on
k is at least exponential. This is because we (initially) assume that for the heavy element f1
it is true that fk1 ≥ C

∑
i>1 f

k
i for some large constant C ≥ 2Ψ where Ψ = Ω(k). Later, we

use a standard hashing technique to find heavy elements fk1 > ρFk for smaller values of ρ.

Additional Results
The previous theorems demonstrate the optimal reduction from the problem of computing
frequency moments for constant k > 2 to the problem of finding heavy elements with constant
error. The Martingale Sketches technique is an improvement over the previous method of
recursive sketches [16]. Thus, our method is applicable in a general setting of approximating
L1-norms of vectors which have entries obtained by applying entry-wise functions on the
frequency vector. As a result, we answer the main open question from [16] and improve
several applications in [16].

3 Indices of non-heavy elements can be reported as well.

APPROX/RANDOM’14

534 An Optimal Algorithm for Large Frequency Moments Using O(n1−2/k) Bits

Additionally, this reduction works for any function g of the form
∑n
i=1 g(fi) that requires

sub-linear polynomial space, and it works in the more general turnstile model. As a result,
we also provide a polylogarithmic improvement for frequency moments, frequency based
functions, spatial data streams, and measuring independence of data sets. We will provide a
detailed list of these results in the full version of the paper.

1.2 Related Work
Approximating Fk has become one of the most inspiring problems in streaming algorithms.
To begin, we provide an incomplete list of papers on frequency moments [32, 25, 1, 14, 8,
11, 4, 12, 19, 5, 33, 20, 22, 24, 26, 29, 39, 13, 37, 38, 43, 46, 6, 18, 34, 27, 28, 48, 35] and
references therein. These and other papers have produced many beautiful results, important
applications, and new methods. Below we will mention a few of the results that provide
relevant bounds. We refer a reader to [42, 47] and references therein for further details.

In [1], the authors observed that it is possible to approximate F2 in optimal polylogarithmic
space. Kane, Nelson and Woodruff [38] gave a space-optimal solution for F0. Kane, Nelson,
and Woodruff [37] gave optimal-space results for Fk, 0 < k < 2. In addition to the original
model of [1], a variety of different models of streams have been introduced. These models
include the turnstile model (that allows insertion and deletion) [32], the sliding window
model [10, 23, 17], and the distributed model [30, 48, 21]. In the turnstile model, where the
updates can be integers in the range [−M,M], the latest bound by Ganguly [27] is

O(k2ε−2n1−2/kE(k, n) log(n) log(nmM)/min(log(n), ε4/k−2))

where E(k, n) = (1−2/k)−1(1−n−4(1−2/k)). Recently, Li and Woodruff provided a matching
lower bound for ε < 1/(logn)O(1) [40]. The bound from [27] is roughly O(n1−2/k log2(n))
for constant ε, k and it matches the earlier result of Andoni, Krauthgamer, and Onak [2].
For the turnstile model, the problem has been solved optimally for ε < 1/(logn)O(1) [27, 40].
These results combined with our result demonstrate that the turnstile model is fundamentally
different from the model of Alon, Matias, and Szegedy.

2 Intuition

In this abstract we will provide a detailed but high-level explanation of the algorithms and
techniques that we employ in the proof of our main theorem. All of this description, as well
as the analysis required for a rigorous proof of this theorem, can be found in more detail in
the full version [9].

2.1 High Level Description of the Algorithm
We present a composite algorithm to estimate frequency moments. At the absolute lowest
degree of detail, we perform three steps. First, we determine the length of the stream. Second,
we use a new algorithm to efficiently find heavy elements. Finally, we use a new technique to
estimate the value of frequency moments from the weight of the found heavy elements. We
now describe the intuition of each of these parts in detail.

2.2 The Heavy Hitter Algorithm
The key step in our algorithm for frequency moment computation is a new technique to
compute the heavy hitters of a stream. In order to determine which elements are ρ-heavy

V. Braverman, J. Katzman, C. Seidell, and G. Vorsanger 535

in stream D, we present an algorithm that is implemented as a sequence of sub-algorithms,
and in general we will refer to each of these sub-algorithms as a “game”. In [15] it is shown
that O(n1−2/k) samples are sufficient to solve the problem. However, each sample requires
logn bits for counting the frequency (counters) and for identifying the elements (IDs). The
resulting bound is O(n1−2/k logn) bits. The goal of our algorithm, therefore, is to reduce
the space required for counters and IDs from logn to an amortized O(1) bits, achieving the
optimal bound.

First we will describe the workings of a single instance of the game, and then we will
describe the sequence of games that composes our heavy hitter algorithm. Each game in the
sequence will be run in parallel, and the cost of the sequence of games will form a geometric
series, which when evaluated will yield a total cost of O(n1−2/k) bits. The crucial observation
is that a heavy element in the stream will be returned by at least one of these games with
constant probability, and will be sufficiently frequent to stand out from the other returned
values as the true heavy hitter.

2.3 The Initial Algorithm
We will begin our solution by designing an algorithm for finding heavy elements in a stream
which conforms to several assumptions. The key step of the algorithm is a subroutine that
we call a game, which is described next. The algorithm will execute (in parallel) a sequence
of several games with different parameters α and β.

The winner of each (α, β)-game will compete against the others, and the overall winner
will be the output of the algorithm.

2.4 The Game
To find a heavy element of a stream and prove Theorem 6, we play a game using the stream
as input. First we split the stream into equally sized rows as we read it in, and assemble
them into a matrix M .

Figure 1 Transforming the stream into a matrix.

A single game is described colloquially as follows: for each row, we create a “team” that
is composed of a group of w = O(n1−2/k) players each competing to be the winner of that
game. To create these teams, we sample elements from the current row to act as the players
on each team, and give each player an ID number equal to one of the sampled elements. For

APPROX/RANDOM’14

536 An Optimal Algorithm for Large Frequency Moments Using O(n1−2/k) Bits

each player on a team, maintain a counter to track how often their ID number appears as we
move through the stream. If the player’s counter does not grow fast enough, that player is
removed from the game.

The γ-th round is played by each team after 2γ rows have passed since the team started
playing. In each round, we divide the players of each team into groups of size 3γ , the players
compete within these groups, and there is at most one winner per group, i.e. the surviving
player whose counter is highest. The winning player from each group continues to play
throughout the remainder of the game, competing in further rounds. Players who are not
winners withdraw from the game and do not compete in any further rounds.

At the end of the game, each team will have at most one winner. The winners from every
team then compete against each other, and the player with the highest overall counter is the
overall winner. Below is the general pseudocode for the initial “game” on a given stream
D = {d1, d2, . . . dm} in Algorithm 1:

Algorithm 1 The Game

1. Break the stream into rows, as described above.
2. For the i-th row, as it is read in:

a. Sample elements from the i-th row to act as team Ti for that row.
b. For each player ti on team Ti:

i. Get the initial count for that player by counting the rest of the occurrences of that
element in the i-th row.

ii. For each other team Tx with x < i, update the count of each player tx on team Tx
such that tx is equal to the current element.

c. Increment each other row’s rounds-since-formation.
d. For each other row, if 2γ rows have passed since this row’s formation:

i. Eliminate all players whose counters are less than 2γ
ii. Divide that row into groups of 3γ players.
iii. Compete among the players in each group.
iv. Eliminate all players from the row that did not win their groups.

3. At the end of the game compete among all remaining elements to determine the winner.

To illustrate the analysis, assume that Fk = O(n) and that 1 is a heavy element that
appears among every O(n1−1/k) elements. We can make two observations. First, the counter
of the player who samples 1 requires only O(γ) bits after seeing 2γn1−1/k elements of the
stream. Also, this counter will have a nice property of linear growth: after seeing 2γ intervals
the counter will be at least 2γ .

Second, we can observe that the sum of the frequencies of every element that is not 1 has
frequency larger than λ is at most Gk

λk−1 , where Gk = Fk − fk1 .
Thus, we can bound the number of intervals with many such elements. For example, fix

some constant C and let an element l be “γ-bad” if fl ≥ 2γ and consider an interval to be a
“γ-bad” interval if it contains more than n1−1/k

2Cγ distinct bad elements. There are at most
Gk

2(k−1)γ
2Cγ

n1−1/k such intervals.
Under the assumption that Fk = O(n), and for sufficiently large k, this number is bounded

by n1/k

2Cγ . We conclude that the majority of the intervals (e.g 0.95%) will not be γ-bad for
any γ. Let an interval that is not bad be called a good interval. Fix one such good interval
nd assume, w.l.o.g, that the first player samples the heavy element, 1. In the γ-th round
there are at most 3γ − 1 players that can compete with the first player. Then, because the

V. Braverman, J. Katzman, C. Seidell, and G. Vorsanger 537

interval is good the probability to sample any element with frequency ≥ 2γ is at most 3γ
2Cγ .

Summing over all γ, we conclude that, with a constant probability, the heavy hitter will not
compete with other players since they will expire at some earlier point in the game.

Unfortunately, the above observations are not true in general. First, the distribution
of the heavy element throughout the stream can be arbitrary. For example, half of the
appearances of the heavy element may occur in a single row and thus we need logn bits at
the time each player starts playing the game. Second, it is possible that Gk is much larger
than n in which case the number of bad intervals can be larger. It is possible that there exist
intervals with the number of 1s being 2i for every i = 0, 1, . . . , blog(n)c and they comprise
an equal percentage of the total frequency.

To overcome these problems we show that there exists a β such that there are a sufficiently
large number of intervals where the number of 1s in each interval is in the range [2β , 2β+1].

In general, our goal is to show that for any distribution of the heavy element in the
stream there exists some β such that
1. O

(
n1−2/k

2µβ

)
samples from each interval are needed to sample the heavy element with a

constant probability, where µ is a small constant,
2. Players that may compete with the heavy element will expire with high probability before

the competition.

The space bound implies that the problem can be solved without knowledge of the value
of β. To address the case when Fk > n we play an additional set of games to search for a
parameter α. This parameter α is used to define the number of columns in the matrix we
play the game on, specifically 2−αn1−1/k.

2.5 A Sequence of Games
An exhaustive search of the range of α, β, which we show in the full version of the paper,
[9], is at most logarithmic, and yields the sequence of games that eventually constitutes our
heavy hitter algorithm. The total cost of playing all of the games is still O(n1−2/k). As
stated before, we will prove that the cost for these games is geometric and, after some slight
modifications discussed in this paper, yields the desired overall cost.

Our proof of correctness will rely heavily on what we term the “Noisy Lemma” (see full
version of paper, [9]). In this lemma we aim to show that at least one event in a collection
of “good” events will come to pass with at least a certain probability, even if each event is
impeded by a number of “noisy” events that can prevent the event from occurring. This
lemma can then be applied to show that at least one player corresponding to the actual
heavy hitter will win overall, even if there is a chance that other players with large but not
heavy elements will win some games.

Having established this algorithm, we show we can eliminate the log factor associated
with storing counters. This is because we store O(γO(1)) bits per counter. It remains to
show that we can store the ID of each player in sufficiently small space to achieve our desired
bound. In order to do this, we will transfer the duty of tracking the identity of each player
from a deterministic ID to a hashed signature.

2.6 Signatures instead of IDs
Given a new element of the stream, our algorithm needs to be able to differentiate elements
for the following reasons:

If the new element has the same ID as one of the samples, then the stored counter of the
sample should be incremented.

APPROX/RANDOM’14

538 An Optimal Algorithm for Large Frequency Moments Using O(n1−2/k) Bits

If the new element has been chosen as a new sample for one of the players, it is necessary
to compare the IDs of the new elements and the current sample. If they are the same, we
increment the counter; if they are different, we have to replace the sample.

Since there are n possible elements, logn bits are required to identify all of the IDs
deterministically. Note that after O(log logn) rounds a team with initially w active players
will only have w

logΩ(1) n
active players. Thus, O(n1−2/k) bits are sufficient to store all IDs of

sampled elements in all tables for all old rows for which at least O(log logn) rounds have
passed.

Therefore, we only need to take care of the first log logn rounds each row plays. Our
goal is to reach O(γO(1)) bits per signature. To achieve this goal, we use random signatures.
Unfortunately, if we simply hash [n] into a range of [2γO(1)], the number of collisions per row
will still be polynomial in n for small γ’s.

In contrast, a small (constant) probability of collision can be shown for sets of small
cardinalities. Thus, to use signatures we have to reduce the cardinality of the set. We do so
by implementing a sampling procedure with an additional independent hash function. We
choose the function carefully so that in a game with parameter β the probability to sample
the heavy element for a row is preserved. First, we hash elements into a range g : [n] 7→ [t],
where t is the number of columns in our matrix, and allow only those elements with values
smaller than 2β to be sampled. We then compute signatures only for the elements in the
“pool” Γ of all elements that pass the g filter. With constant probability, |Γ| = O(2β) and no
element will have the same signature as the heavy element (See the next section for more
detail).

The same argument will work for any 2γ rows if the length of the signature is Ω(γ). Thus,
we can use γ bits to represent all of the IDs. Then, after log logn rounds, the cardinality
will be small enough such that we are able to switch our method and use the real ID of a
given player’s element. We implement this as follows: after log logn rounds, we take the full
ID of the first element that can be sampled and has a matching signature to the player, and
assign it as the new ID of the player. We then count the frequency of elements based on
this new ID. With constant probability this will be the same heavy element that we used to
generate the signature to begin with.

While this technique reduces the space required, the downside is that there will be
collisions for many of the w players and as a result we need to overcome two technical issues.
First, due to multiple IDs being hashed to the same signature, the counters of the players
can be larger than the frequency of the sampled element they are supposed to be counting.
Second, if the heavy element is sampled from row i it can now be incorrectly compared with
many non-heavy elements from rows {i, . . . , i+ 2γ} that collide with another value initially
sampled in row i. Intuitively, this can cause the counter for a given signature to be large due
to many non-heavy elements hashing to the same signature. Because much of the analysis
on the correctness of the algorithm is based on the counters of players who have sampled
non-heavy elements, this difference must be addressed as well. We overcome both of these
problems as follows.

First, after we have progressed far enough to assign the real ID in addition to the signature,
we will add a new counter. We will stop incrementing the old counter, and the new counter
will count only the frequency of elements with the chosen ID. Thus, we will no longer be
counting based on the signature, and we will separate the values counted by the signature
from the values counted by the ID. Then, after more rounds, we will switch to using only
the new counter and thus the first problem will be fixed. This change creates an additional
problem: some appearances of the heavy element might be discarded. We will ensure that

V. Braverman, J. Katzman, C. Seidell, and G. Vorsanger 539

the new counter will be polynomially larger than the old counter at the time when it will be
discarded. Thus, the change is negligible and will not affect the correctness.

Second, we prove in the full version of the paper [9], that the probability that the counter
of a non-heavy competitor will not increase by enough to alter the outcome of the game.
We thus show collisions between non-heavy elements does not affect the correctness of the
algorithm.

Therefore, by adding the use of hashed signatures to the way we differentiate elements
that we can bound the amount of bits used to store all ID numbers and all signatures by
O(n1−2/k).

2.7 Two Level Sampling

Figure 2 Two-Level Sampling.

In order to successfully use signatures instead of IDs, we also require a new method
of sampling. This new method, illustrated above, combines hashing and uniform random
sampling from the stream. Informally, we hash the stream and then sample uniformly from
the resulting substream. Formally, the algorithm is as follows:

Algorithm 2 Two-Level Sampling(Q,λ)

1. Generate pairwise independent hash function h : [n] 7→ {0, 1} such that P (h(i) = 1) = λ.
2. For every element of p ∈ Q: if h(q) = 1 then add q to a “pool” Γ.
3. In parallel, maintain a uniform random sample L from Γ using reservoir sampling [45].
4. Return L.

2.8 An Illustrative Example
In this section we will demonstrate the main steps of our method by considering a simplified
problem. Let D be a stream with the following promise: all non-zero frequencies are equal
to 1 with the exception of a single element i such that the frequency of i is fi ≥ n1/k.
Furthermore, m = Θ(n) and if we split D into intervals of length O(n1−1/k) then i appears
once in each interval. Clearly, i is the heavy element and the goal of the algorithm will be
to find the value of i. This simplified case is interesting because the same promise problem
is used for the lower bound in [19] and in many other papers. We will thus illustrate the
capability of our method by showing that a bound O(n1−2/k) is achievable in this case.

We will assume without loss of generality that i = 1. This assumption does not change
the analysis but simplifies our notation. In [15] it is shown that O(n1−2/k) samples are

APPROX/RANDOM’14

540 An Optimal Algorithm for Large Frequency Moments Using O(n1−2/k) Bits

sufficient to solve the problem. However, each sample requires logn bits for identification
(we will use a notion of “ID” to identify the value of i ∈ [n].) As well, any known algorithm
stores information about the frequency of the heavy element. This can be done by storing a
sketch or an explicit approximate counter. In the most direct implementation, logm bits are
required to store the counter. In this example we will assume that logn = Θ(logm) and we
will use a single parameter logn.

If n1−2/k independent samples are sampled from each interval then the probability to
sample 1 is a constant. Next, observe that most of the time only O(1) bits are needed for
the counters since all frequencies except i = 1 are either zero or one. Thus, it is sufficient to
reduce the bits for IDs.

The key idea is to replace IDs with signatures and uniform sampling with (appropriately
chosen) hashing. Combining signatures of constant length with hashing ensures that the
number of false positives is relatively small. Specifically, consider a hash function4 g : [n] 7→
[n1−1/k] and let the z-th sample of the i-th interval be defined as follows. Let

Γi,z = {j : g(pj) = z} (3)

where pj are elements from the i-th interval. To obtain the final sample, we sample one
element uniformly at random from Γi,z. This sampling schema is two-level sampling as
described in the previous section. The probability that 1 is sampled using the new sampling
method is still a constant. Now consider the case that each sample is represented using a
signature of length O(1). Suppose that we store signature SIG for the z-th sample in the
i-th interval. The comparison of the sample with another element q of the stream will be
defined by the following procedure. We say that they are equal if g(q) = z and the signature
of q is equal to SIG. Consider the case when we sample the heavy element. In this case the
consecutive appearances of 1 will always be declared equal to the sample. Then, consider
another case when l has been sampled and when fl = 1. The probability that there will be
any collision in the next interval is at most 2−|SIG|. Therefore we can exploit the probability
gap between these two cases.

Specifically, deleting samples with a small number of collisions allows for increasing
signatures for the remaining samples in the future intervals. After 2γ intervals, it is possible
to increase the signature by O(1) bits for γ = 1, 2, In the full version of the paper,
[9], we show that the heavy element will never be discarded and that the number of active
samples decreases exponentially with γ. Thus, the total expected space for storing the data is
O
(
n1−2/kγ

2Ω(γ)

)
. The aforementioned procedure is called the γ-th round for the i-th interval. At

any moment there are at most 2γ intervals in the γ-th round and the total space is O(n1−2/k).
For γ = Ω(log logn) storing IDs instead of signatures implies that if the heavy element is
not discarded then the correct answer is produced. The algorithm works in one pass and
uses O(n1−2/k) bits.

2.9 Martingale Sketches
Having established a streaming algorithm which can efficiently compute the heavy hitters
of a stream, we present a reduction of the problem of frequency moment approximation
to that of finding heavy hitters. In general, this analysis will show that the problem of
approximating the sum of am implicit vector is the same problem as finding the heavy

4 It is possible to show that g can be pairwise independent.

V. Braverman, J. Katzman, C. Seidell, and G. Vorsanger 541

elements of that vector, up to a constant factor. As a direct corollary, and using our new
heavy hitter algorithm, we obtain a new lowest bound on space required for this problem.

The intuition behind this method is as follows: consider a vector where the sum of its
elements cannot be computed directly. If the elements of the vector vary in magnitude, then
some elements will have a larger impact on the sum than others. Now consider a second
vector made from including or excluding each element of the first by the repeated flip of a
fair coin, and then doubling the value of every included element. The expected difference
between the sums of the two vectors is 0. But because of the disproportionate contribution of
heavy hitters, the actual difference will most likely not be 0. If we can find the heavy hitters
of the first vector, we can examine which ones were included and which were excluded in the
second vector. Intuitively, the excluded ones will increase the difference between the vector
sums, while the included heavy hitters will decrease it (because of the scaling up by a factor
of 2, and their already large contribution to the total sum). This allows us to approximate
the difference between the two vector sums. If we repeat this process for the second vector
and a new vector made from including or excluding each of its elements (with the included
elements having their values doubled), and so on, then the repeated differences along with
the sum of the final vector can be used together to accurately approximate the sum of the
first vector. Thus, finding a frequency moment is reducible to finding the heavy hitters of a
series of vectors.

While the overall idea of reducing a vector sum to its heavy hitters is not new, what our
algorithm provides is a cost function that is geometric by the nature of the given reduction.
Thus, the total space cost required for these computations matches the lower bound for
frequency computation, up to a constant factor.

3 Putting It All Together

At this point, we have provided an algorithm that finds heavy hitters in a stream which
conforms to certain assumptions. Due to the lack of space, we omit many technical details
from the main body of the paper in this abstract. In the full version of this paper,[9],
we provide detailed analysis showing that with only several small adjustments the slightly
modified version of our original algorithm will work on general streams. With these slight
modifications, the technical details of which are included in the appendix, we have succeeded
in providing an algorithm which proves Theorem 3.

We also explain how the first and third passes can be removed, and that we can get the
algorithm to work for any k > 3. Consequently, the reduction proven in the Martingale
Sketches section coupled with the AHE algorithm proves our main result, Theorem 8, by
providing an algorithm that computes frequency moments with k > 3 using O(n1−2/k) bits
of memory.

References
1 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the

frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.
2 Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Streaming algorithms via

precision sampling. In Proceedings of the 2011 IEEE 52nd Annual Symposium on Founda-
tions of Computer Science, FOCS’11, pages 363–372, Washington, DC, USA, 2011. IEEE
Computer Society.

3 Alexandr Andoni, Huy L. Nguyen, Yury Polyanskiy, and Yihong Wu. Tight lower bound
for linear sketches of moments. In Proceedings of the 40th International Conference on

APPROX/RANDOM’14

542 An Optimal Algorithm for Large Frequency Moments Using O(n1−2/k) Bits

Automata, Languages, and Programming – Volume Part I, ICALP’13, pages 25–32, Berlin,
Heidelberg, 2013. Springer-Verlag.

4 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics
approach to data stream and communication complexity. In Proceedings of the 43rd Sym-
posium on Foundations of Computer Science, FOCS’02, pages 209–218, Washington, DC,
USA, 2002. IEEE Computer Society.

5 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Counting
distinct elements in a data stream. In Proceedings of the 6th International Workshop on
Randomization and Approximation Techniques, RANDOM’02, pages 1–10, London, UK,
UK, 2002. Springer-Verlag.

6 Paul Beame, T. S. Jayram, and Atri Rudra. Lower bounds for randomized read/write
stream algorithms. In Proceedings of the thirty-ninth annual ACM symposium on Theory
of computing, STOC’07, pages 689–698, New York, NY, USA, 2007. ACM.

7 Lakshminath Bhuvanagiri, Sumit Ganguly, Deepanjan Kesh, and Chandan Saha. Simpler
algorithm for estimating frequency moments of data streams. In Proceedings of the sev-
enteenth annual ACM-SIAM symposium on Discrete algorithm, SODA’06, pages 708–713,
New York, NY, USA, 2006. ACM.

8 Vladimir Braverman, Ran Gelles, and Rafail Ostrovsky. How to catch l 2-heavy-hitters on
sliding windows. In Ding-Zhu Du and Guochuan Zhang, editors, Computing and Combina-
torics, volume 7936 of Lecture Notes in Computer Science, pages 638–650. Springer Berlin
Heidelberg, 2013.

9 Vladimir Braverman, Jonathan Katzman, Charles Seidell, and Gregory Vorsanger. Approx-
imating Large Frequency Moments with O(n1−2/k) Bits. CoRR, abs/1401.1763, 2014.

10 Vladimir Braverman and Rafail Ostrovsky. Smooth histograms for sliding windows. In
Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science,
FOCS’07, pages 283–293, Washington, DC, USA, 2007. IEEE Computer Society.

11 Vladimir Braverman and Rafail Ostrovsky. Effective computations on sliding windows.
SIAM J. Comput., 39(6):2113–2131, March 2010.

12 Vladimir Braverman and Rafail Ostrovsky. Measuring independence of datasets. In Pro-
ceedings of the 42nd ACM symposium on Theory of computing, STOC’10, pages 271–280,
New York, NY, USA, 2010. ACM.

13 Vladimir Braverman and Rafail Ostrovsky. Recursive sketching for frequency moments.
CoRR, abs/1011.2571, 2010.

14 Vladimir Braverman and Rafail Ostrovsky. Zero-one frequency laws. In Proceedings of the
42nd ACM symposium on Theory of computing, STOC’10, pages 281–290, New York, NY,
USA, 2010. ACM.

15 Vladimir Braverman and Rafail Ostrovsky. Approximating large frequency moments with
pick-and-drop sampling. Accepted to the 16th. International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems (APPROX’2013)., 2013.

16 Vladimir Braverman and Rafail Ostrovsky. Generalizing the layering method of Indyk and
Woodruff: Recursive sketches for frequency-based vectors on streams. Accepted to the
16th. International Workshop on Approximation Algorithms for Combinatorial Optimiza-
tion Problems (APPROX’2013)., 2013.

17 Vladimir Braverman, Rafail Ostrovsky, and Carlo Zaniolo. Optimal sampling from sliding
windows. J. Comput. Syst. Sci., 78(1):260–272, January 2012.

18 Amit Chakrabarti, Graham Cormode, and Andrew McGregor. Robust lower bounds for
communication and stream computation. In Proceedings of the 40th annual ACM sym-
posium on Theory of computing, STOC’08, pages 641–650, New York, NY, USA, 2008.
ACM.

V. Braverman, J. Katzman, C. Seidell, and G. Vorsanger 543

19 Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal lower bounds on
the multi-party communication complexity of set disjointness. In IEEE Conference on
Computational Complexity, pages 107–117, 2003.

20 Don Coppersmith and Ravi Kumar. An improved data stream algorithm for frequency
moments. In Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algo-
rithms, SODA’04, pages 151–156, Philadelphia, PA, USA, 2004. Society for Industrial and
Applied Mathematics.

21 Graham Cormode. Continuous distributed monitoring: a short survey. In Proceedings of the
First International Workshop on Algorithms and Models for Distributed Event Processing,
AlMoDEP’11, pages 1–10, New York, NY, USA, 2011. ACM.

22 Graham Cormode, Mayur Datar, Piotr Indyk, and S. Muthukrishnan. Comparing data
streams using hamming norms (how to zero in). IEEE Trans. on Knowl. and Data Eng.,
15(3):529–540, 2003.

23 Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream
statistics over sliding windows. SIAM J. Comput., 31(6):1794–1813, 2002.

24 J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. An approximate l1-difference
algorithm for massive data streams. In Proceedings of the 40th Annual Symposium on
Foundations of Computer Science, FOCS’99, pages 501–, Washington, DC, USA, 1999.
IEEE Computer Society.

25 Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base
applications. J. Comput. Syst. Sci., 31(2):182–209, September 1985.

26 Sumit Ganguly. Estimating frequency moments of data streams using random linear com-
binations. In APPROX-RANDOM, pages 369–380, 2004.

27 Sumit Ganguly. Polynomial estimators for high frequency moments. CoRR, abs/1104.4552,
2011.

28 Sumit Ganguly. A lower bound for estimating high moments of a data stream. CoRR,
abs/1201.0253, 2012.

29 Sumit Ganguly and Graham Cormode. On estimating frequency moments of data streams.
In Proceedings of the 10th International Workshop on Approximation and the 11th Inter-
national Workshop on Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX’07/RANDOM’07, pages 479–493, Berlin, Heidelberg, 2007. Springer-
Verlag.

30 Phillip B. Gibbons and Srikanta Tirthapura. Distributed streams algorithms for sliding
windows. In Proceedings of the fourteenth annual ACM symposium on Parallel algorithms
and architectures, SPAA’02, pages 63–72, New York, NY, USA, 2002. ACM.

31 Andre Gronemeier. Asymptotically optimal lower bounds on the nih-multi-party informa-
tion. CoRR, abs/0902.1609, 2009.

32 Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream
computation. J. ACM, 53(3):307–323, 2006.

33 Piotr Indyk and David Woodruff. Optimal approximations of the frequency moments of
data streams. In STOC’05: Proceedings of the thirty-seventh annual ACM symposium on
Theory of computing, pages 202–208, New York, NY, USA, 2005. ACM.

34 T. S. Jayram, Andrew McGregor, S. Muthukrishnan, and Erik Vee. Estimating statistical
aggregates on probabilistic data streams. In PODS’07: Proceedings of the twenty-sixth
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages
243–252, New York, NY, USA, 2007. ACM.

35 T. S. Jayram and David Woodruff. Optimal bounds for johnson-lindenstrauss transforms
and streaming problems with sub-constant error. In Proceedings of the Twenty-Second An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA’11, pages 1–10. SIAM, 2011.

APPROX/RANDOM’14

544 An Optimal Algorithm for Large Frequency Moments Using O(n1−2/k) Bits

36 T.S. Jayram. Hellinger strikes back: A note on the multi-party information complexity of
and. In Irit Dinur, Klaus Jansen, Joseph Naor, and José Rolim, editors, Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, volume 5687
of Lecture Notes in Computer Science, pages 562–573. Springer Berlin Heidelberg, 2009.

37 Daniel M. Kane, Jelani Nelson, and David P. Woodruff. On the exact space complexity
of sketching and streaming small norms. In Proceedings of the Twenty-First Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA’10, pages 1161–1178, Philadelphia, PA,
USA, 2010. Society for Industrial and Applied Mathematics.

38 Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the
distinct elements problem. In Proceedings of the twenty-ninth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, PODS’10, pages 41–52, New York,
NY, USA, 2010. ACM.

39 Ping Li. Compressed counting. In Proceedings of the twentieth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA’09, pages 412–421, Philadelphia, PA, USA, 2009.
Society for Industrial and Applied Mathematics.

40 Yi Li and DavidP. Woodruff. A tight lower bound for high frequency moment estima-
tion with small error. In Prasad Raghavendra, Sofya Raskhodnikova, Klaus Jansen, and
JoséD.P. Rolim, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, volume 8096 of Lecture Notes in Computer Science, pages 623–
638. Springer Berlin Heidelberg, 2013.

41 Morteza Monemizadeh and David P. Woodruff. 1passs relative-error lp-sampling with ap-
plications. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA’10, pages 1143–1160, Philadelphia, PA, USA, 2010. Society for Indus-
trial and Applied Mathematics.

42 S. Muthukrishnan. Data streams: algorithms and applications. Found. Trends Theor.
Comput. Sci., 1(2):117–236, 2005.

43 Jelani Nelson and David P. Woodruff. Fast Manhattan sketches in data streams. In
PODS’10: Proceedings of the twenty-ninth ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems of data, pages 99–110, New York, NY, USA, 2010. ACM.

44 Eric Price and David P. Woodruff. Applications of the shannon-hartley theorem to data
streams and sparse recovery. In ISIT, pages 2446–2450, 2012.

45 J. S. Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical
Software, v.11 n.1, pp.37–57, 1985.

46 David Woodruff. Optimal space lower bounds for all frequency moments. In Proceedings
of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, SODA’04, pages
167–175, Philadelphia, PA, USA, 2004. Society for Industrial and Applied Mathematics.

47 David P. Woodruff. Frequency moments. In Encyclopedia of Database Systems, pages
1169–1170. Springer, 2009.

48 David P. Woodruff and Qin Zhang. Tight bounds for distributed functional monitoring.
In Proceedings of the 44th symposium on Theory of Computing, STOC’12, pages 941–960,
New York, NY, USA, 2012. ACM.

	Introduction
	Main Result
	Related Work

	Intuition
	High Level Description of the Algorithm
	The Heavy Hitter Algorithm
	The Initial Algorithm
	The Game
	A Sequence of Games
	Signatures instead of IDs
	Two Level Sampling
	An Illustrative Example
	Martingale Sketches

	Putting It All Together

