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Abstract
Based on a non-rigorous formalism called the “cavity method”, physicists have made intriguing
predictions on phase transitions in discrete structures. One of the most remarkable ones is
that in problems such as random k-SAT or random graph k-coloring, very shortly before the
threshold for the existence of solutions there occurs another phase transition called condensation
[Krzakala et al., PNAS 2007]. The existence of this phase transition seems to be intimately
related to the difficulty of proving precise results on, e. g., the k-colorability threshold as well as
to the performance of message passing algorithms. In random graph k-coloring, there is a precise
conjecture as to the location of the condensation phase transition in terms of a distributional
fixed point problem. In this paper we prove this conjecture, provided that k exceeds a certain
constant k0.
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1 Introduction

Let G(n, p) denote the random graph on the vertex set V = {1, . . . , n} obtained by connecting
any two vertices with probability p ∈ [0, 1] independently. Throughout the paper, we are
concerned with the setting that p = d/n for a number d > 0 that remains fixed as n→∞. We
say that G(n, d/n) has a property with high probability (‘w.h.p.’) if its probability converges
to 1 as n→∞.

The study of random constraint satisfaction problems started with experimental work in the
1990s, which led to two hypotheses [5, 23]. First, that in problems such as random k-SAT or
random graph coloring there is a satisfiability threshold, i. e., a critical “constraint density”
below which the instance admits a solution and above which it does not w.h.p. Second,
that this threshold is associated with the algorithmic “difficulty” of actually computing a
solution, where “difficulty” has been quantified in various ways, albeit not in the formal sense
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of computational complexity. These findings have led to a belief that random instances of
k-SAT or graph k-colorability near the threshold for the existence of solutions are challenging
algorithmic benchmarks, at the very least.

These two hypotheses have inspired theoretical work. Short of establishing the existence
of an actual satisfiability threshold, Friedgut [13] and Achlioptas and Friedgut [1] proved
that in random k-SAT and random graph k-coloring there exists a sharp threshold sequence.
For instance, in the graph k-coloring problem, this is a sequence dk−col(n) that marks the
point where the probability of being k-colorable drops from 1 to 0.1 The dependence on n
allows for the possibility that this point might vary with the number of vertices, although
this is broadly conjectured not to be the case. In fact, proving that (dk−col(n))n≥1 converges
to a single number dk−col is a well-known open problem. So is determining the location of
dk−col(n) (or its limit), as [1] is a pure existence result.

In addition, inspired by predictions from statistical physics, the geometry of the set of
solutions of random k-SAT or k-colorability instances has been investigated [2, 27]. The
result is that at a certain point well before the satisfiability threshold the set of solutions
shatters into a multitude of well-separated “clusters”. Inside a typical cluster, all solutions
agree on most of the variables/vertices, the so-called “frozen" ones. The average degree
d at which these “frozen clusters” arise (roughly) matches the point up to which efficient
algorithms provably find solutions.2 Hence, on the one hand it is tempting to think that
there is a connection between clustering and the computational “difficulty” of finding a
solution [2, 27, 30]. On the other hand, physicists have suggested new message passing
algorithms specifically to cope with a clustered geometry [4, 26]. A satisfactory analysis of
these algorithms remains elusive.

Remarkably, the physics predictions are not merely circumstantial or experimental findings.
They derive from a non-rigorous but systematic formalism called the cavity method [25]. This
technique yields, among other things, a prediction as to the precise location of the k-SAT
or k-colorability threshold. But perhaps even more remarkably, according to the cavity
method shortly before the threshold for the existence of solutions there occurs another phase
transition called condensation [20]. This phase transition marks a further change in the
geometry of the solution space. While prior to the condensation phase transition each cluster
contains only an exponentially small fraction of all solutions, thereafter a sub-exponential
number of clusters contain a constant fraction of the entire set of solutions. As we will see
in Section 3 below, condensation seems to hold the key to a variety of problems, including
that of finding the k-colorability threshold and of analyzing message passing algorithms
rigorously. More generally, the physicists’ cavity method is extremely versatile. It has been
used to put forward tantalizing conjectures in a variety of areas, including coding theory,
probabilistic combinatorics, unsurprisingly, mathematical physics (see [25] for an overview)
or, more recently, compressed sensing [19]. Hence the importance of providing a rigorous
foundation for this technique.

2 Results

In this paper we prove that, indeed, a condensation phase transition occurs in random graph
coloring, and that it occurs at the precise location predicted by the cavity method. This is

1 Formally, for any k ≥ 3 there is a sequence (dk−col(n))n such that for any fixed ε > 0, G(n, p)
is k-colorable w.h.p. if p < (1 − ε)dk−col(n)/n, while G(n, p) fails to be k-colorable w.h.p. if p >
(1 + ε)dk−col(n)/n.

2 Actually the appearance of clusters does not quite match the appearance of frozen variables/vertices.
For a more detailed explanation on the connection between clusters, frozen variables and computational
hardness see [18, 21].
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the first rigorous result to determine the exact location of the condensation transition in a
model of this kind. Additionally, the proof yields a direct combinatorial explanation of how
this phase transition comes about.

2.1 Catching a Sharp Threshold
To state the result, let us denote by Zk(G) the number of k-colorings of a graph G. We
would like to study the “typical value” of Zk(G(n, d/n)) in the limit as n→∞. As it turns
out, the correct scaling of this quantity (to obtain a finite limit) is3

Φk(d) ≡ lim
n→∞

E[Zk(G(n, d/n))1/n].

In physics terminology, a “phase transition” is a point d0 where the function d 7→ Φk(d) is
non-analytic. However, the limit Φk(d) is not currently known to exists for all d, k.4 Hence,
we need to tread carefully. For a given k ≥ 3 we call d0 ∈ (0,∞) smooth if there exists ε > 0
such that

for any d ∈ (d0 − ε, d0 + ε) the limit Φk(d) exists, and
the map d ∈ (d0− ε, d0 + ε) 7→ Φk(d) has an expansion as an absolutely convergent power
series around d0.

If d0 fails to be smooth, we say that a phase transition occurs at d0.
For a smooth d0 the sequence of random variables (Zk(G(n, d0/n))1/n)n converges to

Φk(d0) in probability. This follows from a concentration result for the number of k-colorings
from [2]. Hence, Φk(d) really captures the “typical” value of Zk(G(n, d/n) (up to a factor of
exp(o(n))).

The above notion of “phase transition” is in line with the intuition held in combinatorics.
For instance, the classical result of Erdős and Rényi [11] implies that the function that
maps d to the limit as n→∞ of the expected fraction of vertices that belong to the largest
component of G(n, d/n) is non-analytic at d = 1. Similarly, if there actually is a sharp
threshold dk−col for k-colorability, then dk−col is easily seen to be a phase transition in the
above sense.5

As a next step, we state (an equivalent but slightly streamlined version of) the physics
prediction from [22] as to the location of the condensation phase transition. As most
predictions based on the “cavity method”, this one comes in terms of a distributional
fixed point problem. To be specific, let Ω be the set of probability measures on the set
[k] = {1, . . . , k}. We identify Ω with the k-simplex, i. e., the set of maps µ : [k] → [0, 1]
such that

∑k
h=1 µ(h) = 1, equipped with the topology and Borel algebra induced by Rk.

Moreover, we define a map B :
⋃∞
γ=1 Ωγ → Ω, (µ1, . . . , µγ) 7→ B[µ1, . . . , µγ ] by letting

B[µ1, . . . , µγ ](i) =


1/k if

∑
h∈[k]

∏γ
j=1 1− µj(h) = 0,∏γ

j=1
1−µj(i)∑

h∈[k]

∏γ

j=1
1−µj(h)

otherwise,
for any i ∈ [k] .

(2.1)

3 In the physics literature, one typically considers n−1 lnZ instead of Z1/n, where Z is the so-called
“partition function”. We work with the nth root because our “partition function” Zk may be equal to 0.

4 It seems natural to conjecture that the limit Φk(d) exists for all d, k, but proving this might be difficult.In
fact, the existence of the limit for all d, k would imply that dk−col(n) converges.

5 For d < dk−col, G(n, d/n) has a k-coloring w.h.p., and thus the number of k-colorings is, in fact,
exponentially large in n as there are Ω(n) isolated vertices w.h.p. Hence, if Φk(d) exists for d < dk−col,
then Φk(d) > 0. By contrast, for d > dk−col the random graph G(n, d/n) fails to be k-colorable w.h.p.,
and therefore Φk(d) = 0. Thus, Φk(d) cannot be analytic at dk−col.

APPROX/RANDOM’14
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φd,k(π) = φed,k(π) + 1
k

∑
i∈[k]

∞∑
γ1,...,γk=0

φvd,k(π; i; γ1, . . . , γk)
∏
h∈[k]

(
d

k − 1

)γh exp(−d/(k − 1))
γh! , where

φed,k(π) = − d

2k(k − 1)

k∑
h1=1

∑
h2∈[k]\{h1}

∫
Ω2

ln

1−
∑
h∈[k]

µ1(h)µ2(h)

 2⊗
i=1

dπhi(µi), (2.4)

φvd,k(π; i; γ1, . . . , γk) =


ln k if

∑k
i=1 γi = 0,∫

Ωγ1+···+γk
ln

 k∑
h=1

∏
h′∈[k]\{i}

γh′∏
j=1

1− µ(j)
h′ (h)

 ⊗
h′∈[k]

γh′⊗
j=1

dπh′(µ(j)
h′ ) if

∑k
i=1 γi > 0.

(2.5)

Figure 1 The function φd,k.

Further, let P be the set of all probability measures on Ω. For each µ ∈ Ω let δµ ∈ P
denote the Dirac measure that puts mass one on the single point µ. In particular, δk−11 ∈ P
signifies the measure that puts mass one on the uniform distribution k−11 = (1/k, . . . , 1/k).
For π ∈ P and γ ≥ 0 let

Zγ(π) =
k∑
h=1

(
1−

∫
Ω
µ(h)dπ(µ)

)γ
. (2.2)

Further, define a map Fd,k : P → P, π 7→ Fd,k[π] by letting

Fd,k[π] = exp(−d) · δk−11

+
∞∑
γ=1

γd exp(−d)
γ! · Zγ(π)

∫
Ωγ

 k∑
h=1

γ∏
j=1

1− µj(h)

 · δB[µ1,...,µγ ]

γ⊗
j=1

dπ(µj). (2.3)

Thus, in (2.3) we integrate a function with values in P, viewed as a subset of the Banach
space 6 of signed measures on Ω. The normalising term Zγ(π) ensures that Fd,k[π] really is
a probability measure on Ω.

The main theorem is in terms of a fixed point of the map Fd,k, i. e., a point π∗ ∈ P such
that Fd,k[π∗] = π∗. In general, the map Fd,k has several fixed points. Hence, we need to
single out the correct one. For h ∈ [k] let δh ∈ Ω denote the vector whose hth coordinate is
one and whose other coordinates are 0 (i. e., the Dirac measure on h). We call a measure
π ∈ P frozen if π({δ1, . . . , δk}) ≥ 2/3; in words, the total probability mass concentrated on
the k vertices of the simplex Ω is at least 2/3.

As a final ingredient, we need a function φd,k : P → R. To streamline the notation, for
π ∈ P and h ∈ [k] we write πh for the measure dπh(µ) = kµ(h)dπ(µ). With this notation,
φd,k is defined in Figure 1. The integrals in (2.4) and (2.5) are well-defined because the set
where the argument of the logarithm vanishes has measure zero.

I Theorem 1. There exists a constant k0 ≥ 3 such that for any k ≥ k0 the following holds.
If d ≥ (2k − 1) ln k − 2, then Fd,k has precisely one frozen fixed point π∗d,k. Further, the

6 To be completely explicit, the probability mass that a measurable set A ⊂ Ω carries under Fd,k [π] is

Fd,k[π](A) = exp(−d) · 1 1
k

1∈A +
∑
γ≥1

γd exp(−d)
γ! · Zγ(π)

∫ [ k∑
h=1

γ∏
j=1

1− µj(h)

]
· 1B[µ1,...,µγ ]∈A

γ⊗
j=1

dπ(µj),

where 1ν∈A = 1 if ν ∈ A and 1ν∈A = 0 otherwise.
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function

Σk : d 7→ ln k + d

2 ln(1− 1/k)− φd,k(π∗d,k) (2.6)

has a unique zero dk,cond in the interval [(2k − 1) ln k − 2, (2k − 1) ln k − 1]. For this number
dk,cond the following three statments hold.
(i) Any 0 < d < dk,cond is smooth and Φk(d) = k · (1− 1/k)d/2.
(ii) There occurs a phase transition at dk,cond.
(iii) If d > dk,cond, then

lim sup
n→∞

E[Zk(G(n, d/n))1/n] < k · (1− 1/k)d/2.

Thus, if d is smooth, then Φk(d) < k · (1− 1/k)d/2.

The key strength of Theorem 1 and the main achievement of this work is that we
identify the precise location of the phase transition. In particular, the result dk,cond is one
number rather than a “sharp threshold sequence” that might vary with n. Admittedly,
this precise answer is not exactly a simple one. But that seems unsurprising, given the
intricate combinatorics of the random graph coloring problem. That said, the proof of
Theorem 1 will illuminate matters. For instance, the fixed point π∗d,k turns out to have a
nice combinatorial interpretation and, perhaps surprisingly, π∗d,k emerges to be a discrete
probability distribution.

The above formulas are derived systematically via the cavity method [25]. For instance,
the functional φd,k is a special case of a general formula, the so-called “Bethe free entropy”.
Moreover, the map B is the distributional version of the “Belief Propagation” operator. In
effect, the predictions as to the condensation phase transitions in other problems look very
similar to the above. Consequently, it can be expected that the proof technique developed in
the present work carries over to many other problems.

While the main point of Theorem 1 is that it gives an exact answer, it is not difficult to
obtain a simple asymptotic expansion of dk,cond in the limit of large k. Namely, dk,cond =
(2k − 1) ln k − 2 ln 2 + εk, where εk → 0 as k →∞. This asymptotic formula was obtained
in [8] by means of a much simpler argument than the one developed in the present paper.
However, this simpler argument does not quite get to the bottom of the combinatorics behind
the condensation phase transition.

2.2 The Cluster Size
The proof of Theorem 1 allows us to formalise the physicists’ notion that as d tends to
dk,cond, the cluster size approaches the total number of k-colorings. Of course, we need to
formalise what we mean by “clusters” first. Thus, let G be a graph on n vertices. If σ, τ are
k-colorings of G, we define their overlap as the k × k-matrix ρ(σ, τ) = (ρij(σ, τ))i,j∈[k] with
entries

ρij(σ, τ) = |σ
−1(i) ∩ τ−1(j)|

n
,

i. e., ρij(σ, τ) is the fraction of vertices colored i under σ and j under τ . Now, define the
cluster of σ in G as

C(G, σ) = {τ : τ is a k-coloring of G and ρii(σ, τ) ≥ 0.51/k for all i ∈ [k]} . (2.7)

Suppose that σ, τ are such that |σ−1(i)|, |τ−1(i)| ∼ n/k for all i ∈ [k]; most k-colorings of
G(n, d/n) have this property w.h.p. [1, 7]. Then τ ∈ C(G, σ) means that a little over 50% of
the vertices with color i under σ also have color i under τ .

APPROX/RANDOM’14
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I Corollary 2. With the notation and assumptions of Theorem 1, the function Σk is con-
tinuous, strictly positive and monotonically decreasing on ((2k − 1) ln k − 2, dk,cond), and
limd→dk,cond Σk(d) = 0. Further, given that G(n, d/n) is k-colorable, let τ be a uniformly
random k-coloring of this random graph. Then

lim
ε↘0

lim
n→∞

P
[

1
n

ln |C(G(n, d/n), τ )|
Zk(G(n, d/n)) ≤ Σk(d) + ε

∣∣χ(G(n, d/n)) ≤ k
]

= 1, and

lim
ε↘0

lim sup
n→∞

P
[

1
n

ln |C(G(n, d/n), τ )|
Zk(G(n, d/n)) ≥ Σk(d)− ε

∣∣χ(G(n, d/n)) ≤ k
]
> 0.

We observe that our conditioning on the chromatic number χ(G(n, d/n)) being at most k
is necessary to speak of a random k-coloring τ but otherwise harmless. For the first part
of Theorem 1 implies that G(n, d/n) is k-colorable w.h.p. for any d < dk,cond. Indeed, if
d < dk,cond, then Φk(d) = k(1− 1/k)d/2 > 0 and thus Zk(G(n, d/n))1/n > 0 w.h.p. because
(Zk(G(n, d/n))1/n) converges to Φk(d) in probability.

In words, Corollary 2 states that there is a certain function Σk > 0 such that the total
number of k-colorings exceeds the number of k-colorings in the cluster of a randomly chosen
k-coloring by at least a factor of exp[n(Σk(d)+o(1))] w.h.p. However, as d approaches dk,cond,
Σk(d) tends to 0, and with a non-vanishing probability the gap between the total number of
k-colorings and the size of a single cluster is upper-bounded by exp[n(Σk(d) + o(1))].

3 Discussion and Related Work

In this section we discuss some relevant related work and also explain the impact of Theorem 1
on some questions that have come up in the literature.

3.1 The k-Colorability Threshold
The problem of determining the chromatic number of random graphs has attracted a great
deal of attention since it was first posed by Erdős and Rényi [11] (see [15] for a comprehensive
overview). In the case that p = d/n for a fixed real d > 0, the problem amounts to calculating
the threshold sequence dk−col(n). The best current bounds are

(2k−1) ln k−2 ln 2+εk ≤ lim inf
n→∞

dk−col(n) ≤ lim sup
n→∞

dk−col(n) ≤ (2k−1) ln k−1+δk, (3.1)

where εk, δk → 0 as k → ∞. The upper bound is by the “first moment” method [7]. The
lower bound rests on a “second moment” argument [8], which improves a landmark result of
Achlioptas and Naor [3].

While Theorem 1 allows for the possibility that dk,cond is equal to the k-colorability
threshold dk−col (if it exists), the physics prediction is that these two are different. More
specifically, the cavity method yields a prediction as to the precise value of dk−col in terms
of another distributional fixed point problem. An asymptotic expansion in terms of k leads
to the conjecture dk−col = (2k − 1) ln k − 1 + ηk with ηk → 0 as k → ∞. Thus, the upper
bound in (3.1) is conjectured to be asymptotically tight in the limit k →∞.

The present work builds upon the second moment argument from [8]. Conversely,
Theorem 1 yields a small improvement over the lower bound from [8]. Indeed, as we saw
above Theorem 1 implies that lim infn→∞ dk−col(n) ≥ dk,cond, thereby determining the
precise “error term” εk in the lower bound (3.1). In fact, dk,cond is the best-possible lower
bound that can be obtained via a certain “natural” type of second moment argument.
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3.2 “Quiet Planting?”

The notion that for d close to the (hypothetical) k-colorability threshold dk−col it seems
difficult to find a k-coloring of G(n, d/n) algorithmically could be used to construct a
candidate one-way function [2] (see also [14]). This function maps a k-coloring σ to a
random graph G(n, p′, σ) by linking any two vertices v, w with σ(v) 6= σ(w) with some p′
independently. The edge probability p′ could be chosen such that the average degree of the
resulting graph is close to the k-colorability threshold. The resulting distribution on graphs
is the so-called planted model.

If the planted distribution is close to G(n, d/n), one might think that the function
σ 7→ G(n, p′, σ) is difficult to invert. Indeed, it should be difficult to find any k-coloring of
G(n, p′, σ), not to mention the planted coloring σ. As shown in [2], the planted distribution
and G(n, d/n) are interchangeable (in a certain precise sense) iff Φk(d) = k(1−1/k)d/2. Hence,
dk,cond marks the point where these two distributions start to differ. In particular, Theorem 1
shows that at the k-colorability threshold, the two distributions are not interchangeable.

3.3 Message Passing Algorithms

The cavity method has inspired new “message passing” algorithms by the name of Belief/Sur-
vey Propagation Guided Decimation [26]. Experiments on random graph k-coloring instances
for small values of k show an excellent performance of these algorithms [4, 30, 22]. However,
whether these experimental results are reliable and/or extend to larger k remains shrouded
in mystery.

For instance, Belief Propagation Guided Decimation can most easily be described in
terms of list colorings. Suppose that G is a given input graph. Initially, the list of colors
available to each vertex is the full set [k]. The algorithm chooses a color for one vertex
at a time as follows. First, it performs a certain fixed point iteration to approximate for
each vertex the marginal probability of taking some color i in a randomly chosen proper list
coloring of G. Then, a vertex v is chosen, say, uniformly at random and a random color i is
chosen from the (supposed) approximation to its marginal distribution. The color list of v
is reduced to the singleton {i}, color i gets removed the lists of all the neighbors of v, and
we repeat. The algorithm terminates when either for each vertex a color has been chosen
(“success”) or the list of some vertex becomes empty (“failure”). Ideally, if at each step the
algorithm manages to compute precisely the correct marginal distribution, the result would
be a uniformly random k-coloring of the input graph. Of course, generating such a random
k-coloring is #P -hard in the worst case, and the crux is that the aforementioned fixed point
iteration may or may not produce a good approximation to the actual marginal distribution.

Perhaps the most plausible stab at understanding Belief Propagation Guided Decimation
is the non-rigorous contribution [28]. Roughly speaking, the result of the Belief Propagation
fixed point iteration after t iterations can be expected to yield a good approximation to the
actual marginal distribution iff there is no condensation among the remaining list colorings.
If so, one should expect that the algorithm actually finds a k-coloring if condensation does
not occur at any step 0 ≤ t ≤ n. Thus, we look at a two-dimensional “phase diagram”
parametrised by the average degree d and the time t/n. We need to identify the line that
marks the (suitably defined) condensation phase transition in this diagram. Theorem 1 deals
with the case t = 0, and it would be most interesting to see if the present techniques extend
to t ∈ (0, 1). Attempts at (rigorously) analysing message passing algorithms along these lines
have been made for random k-SAT, but the results have been far from precise [6, 9].

APPROX/RANDOM’14
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3.4 The Physics Perspective
In physics terminology the random graph coloring problem is an example of a “diluted
mean-field model of a disordered system”. The term “mean-field” refers to the fact that
there is no underlying lattice geometry, while “diluted” indicates that the average degree in
the underlying graph is bounded. Moreover, “disordered systems” reflects that the model
involves some degree of randomness (i. e., the random graph). Diluted mean-field models are
considered a better approximation to “real” disordered systems (such as glasses) than models
where the underlying graph is complete, the Sherrington-Kirkpatrick model [25]. From the
viewpoint of physics, the question of whether “disordered systems” exhibit a condensation
phase transition can be traced back to Kauzmann’s experiments in the 1940s [16]. In models
where the underlying graph is complete, physicsts predicted an affirmative answer in the
1980s [17], and this has long been confirmed rigorously [29].

With respect to “diluted” models, Coja-Oghlan and Zdeborova [10] showed that a
condensation phase transition exists in random r-uniform hypergraph 2-coloring. Furthermore,
[10] determines the location of the condensation phase transition up to an error εr that tends
to zero as the uniformity r of the hypergraph becomes large. By contrast, Theorem 1 is the
first result that pins down the exact condensation phase transition in a diluted mean-field
model.

Technically, we build upon some of the techniques that have been developed to study
the “geometry” of the set of k-colorings of the random graph, and add to this machinery.
Among the techniques that we harness is the “planting trick” from [2] (which, in a sense, we
are going to “put into reverse”), the notion of a core [2, 8, 27], techniques for proving the
existence of “frozen variables” [27], and a concentration argument from [10]. Additionally,
our proof directly incorporates some of the physics calculations from [22, Appendix C]. That
said, the cornerstone of the present work is a novel argument that allows us to connect
the distributional fixed point problem from [22] rigorously with the geometry of the set of
k-colorings.

4 Proof Outline

From now on we assume that k ≥ k0 for some large enough constant k0.

The proof of Theorem 1 is composed of two parallel threads. The first thread is to identify
an “obvious” point where a phase transition occurs or, more specifically, a critical degree
dk,crit where statements (i)-(iii) of the theorem are met. The second thread is to identify the
frozen fixed point π∗d,k of Fd,k and to interpret it combinatorially. Finally, the two threads
intertwine to show that dk,crit = dk,cond, i. e. that the “obvious” phase transition dk,crit is
indeed the unique zero of equation (2.6). The first thread is an extension of ideas developed
in [10] for random hypergraph 2-coloring to the (technically far more involved) random
graph coloring problem. The second thread and the intertwining of the two require novel
arguments.

4.1 The First Thread
Because the nth root sits inside the expectation, the quantity

Φk(d) = lim
n→∞

E[Zk(G(n, d/n))1/n]

is difficult to calculate for general values of d. However for d ∈ [0, 1), Φk(d) is easily
understood. In fact, the celebrated result of Erdős and Rényi [11] implies that for d ∈ [0, 1)
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the random graph G(n, d/n) is basically a forest. Moreover, the number of k-colorings of a
forest with n vertices and m edges is well-known to be kn(1− 1/k)m. Since G(n, d/n) has
m ∼ dn/2 edges w.h.p., we obtain

Zk(G(n, d/n))1/n ∼ k(1− 1/k)d/2 for d < 1. (4.1)

As Zk(G)1/n ≤ k for any graph on n vertices, (4.1) implies that

Φk(d) = lim
n→∞

E[Zk(G(n, d/n))1/n] = k(1− 1/k)d/2 for d < 1. (4.2)

Clearly, the function d 7→ k(1−1/k)d/2 is analytic on all of (0,∞). Therefore, the uniqueness
of analytic continuations implies that the least d > 0 where the limit Φk(d) either fails to
exist or differs from k(1− 1/k)d/2 is going to be a phase transition. Hence, we let

dk,crit = sup
{
d ≥ 0 : the limit Φk(d) exists and Φk(d) = k(1− 1/k)d/2

}
. (4.3)

I Fact 3. We have dk,crit ≤ (2k − 1) ln k.

Thus, dk,crit is a well-defined finite number, and there occurs a phase transition at dk,crit.
Moreover, the following proposition yields a lower bound on dk,crit and implies that dk,crit
satisfies the first condition in Theorem 1.

I Proposition 4. For any d > 0 we have lim supn→∞ E[Zk(G(n, d/n))1/n] ≤ k(1− 1/k)d/2.
Moreover, the number dk,crit satisfies

dk,crit = sup
{
d ≥ 0 : lim inf

n→∞
E[Zk(G(n, d/n))1/n] ≥ k(1− 1/k)d/2

}
≥ (2k−1) ln k−2. (4.4)

Thus, we know that there exists a number dk,crit that satisfies conditions (i)–(ii) in
Theorem 1. Of course, to actually calculate this number we need to unearth its combinatorial
“meaning”. As we saw in Section 2, if dk,crit really is the condensation phase transition,
then the combinatorial interpretation should be as follows. For d < dk,crit, the size of the
cluster that a randomly chosen k-coloring τ belongs to is smaller than Zk(G(n, d/n)) by an
exponential factor exp(Ω(n)) w.h.p. But as d approaches dk,crit, the gap between the cluster
size and Zk(G(n, d/n)) diminishes. Hence, dk,crit should mark the point where the cluster
size has the same order of magnitude as Zk(G(n, d/n)).

But how can we possibly get a handle on the size of the cluster that a randomly chosen
k-coloring τ of G(n, d/n) belongs to? No “constructive” argument (or efficient algorithm)
is known for obtaining a single k-coloring of G(n, d/n) for d anywhere close to dk,crit, let
alone for sampling one uniformly at random. Nevertheless, as observed in [2], in the case
that Φk(d) = k(1− 1/k)d/2, i. e., for d < dk,crit, it is possible to capture the experiment of
first choosing the random graph G(n, d/n) and then sampling a k-coloring τ uniformly at
random by means of a different, much more innocent experiment.

In this latter experiment, we first choose a map σ : [n]→ [k] uniformly at random. Then,
we generate a graph G(n, p′,σ) on [n] by connecting any two vertices v, w ∈ [n] such that
σ(v) 6= σ(w) with probability p′ independently. If p′ = dk/(k − 1) is chosen so that the
expected number of edges is the same as in G(n, d/n), then this so-called planted model
might be a good approximation to the “difficult” experiment of first choosing G(n, d/n) and
then picking a random k-coloring. In particular, we might expect that

E[|C(G(n, p′,σ),σ)|1/n] ∼ E[|C(G(n, d/n), τ )|1/n],

APPROX/RANDOM’14



458 The Condensation Phase Transition in Random Graph Coloring

i. e., that the suitably scaled cluster size in the planted model is about the same as the
cluster size in G(n, d/n). Hence, dk,crit should mark the point where E[|C(G(n, p′,σ),σ)|1/n]
equals k(1− 1/k)d/2. The following Proposition verifies that this is indeed so. Let us write
G = G(n, p′,σ) for the sake of brevity.

I Proposition 5. Assume that (2k − 1) ln k − 2 ≤ d ≤ (2k − 1) ln k and set

p′ = d′/n with d′ = dk

k − 1 . (4.5)

1. If

lim
ε↘0

lim inf
n→∞

P
[
|C(G,σ)|1/n ≤ k(1− 1/k)d/2 − ε

]
= 1, (4.6)

then d ≤ dk,crit.
2. Conversely, if

lim
ε↘0

lim inf
n→∞

P
[
|C(G,σ)|1/n ≥ k(1− 1/k)d/2 + ε

]
= 1, (4.7)

then lim supn→∞ E[Zk(G(n, d/n))1/n] < k(1− 1/k)d/2. In particular, d ≥ dk,crit.

4.2 The Second Thread
Our next aim is to “solve” the fixed point problem for Fd,k to an extent that gives the fixed
point an explicit combinatorial interpretation. This combinatorial interpretation is in terms
of a certain random tree process, associated with a concept of “legal colorings”. Specifically,
we consider a multi-type Galton-Watson branching process. Its set of types is

T = {(i, `) : i ∈ [k] , ` ⊂ [k] , i ∈ `} .

The intuition is that i is a “distinguished color” and that ` is a set of “available colors”. The
branching process is further parameterized by a vector q = (q1, . . . , qk) ∈ [0, 1]k such that
q1 + · · ·+ qk ≤ 1. Let d′ = dk/(k − 1) and

qi,` = 1
k

∏
j∈`\{i}

exp(−qjd′) ·
∏

j∈[k]\`

1− exp(−qjd′) for (i, `) ∈ T .

Then ∑
(i,`)∈T

qi,` = 1.

Further, for each (i, `) ∈ T such that |`| > 1 we define Ti,` as the set of all (i′, `′) ∈ T such
that ` ∩ `′ 6= ∅ and |`′| > 1. In addition, for (i, `) ∈ T such that |`| = 1 we set Ti,` = ∅.

The branching process GW(d, k, q) starts with a single individual, whose type (i, `) ∈ T
is chosen from the probability distribution (qi,`)(i,`)∈T . In the course of the process, each
individual of type (i, `) ∈ T spawns a Poisson number Po(d′qi′,`′) of offspring of type (i′, `′)
for each (i′, `′) ∈ Ti,`. In particular, only the initial individual may have a type (i, `) with
|`| = 1, in which case it does not have any offspring. Let 1 ≤ N ≤ ∞ be the progeny of the
process (i. e., the total number of individuals created).

We are going to view GW(d, k, q) as a distribution over trees endowed with some extra
information. Let us define a decorated graph as a graph T = (V,E) together with a map
ϑ : V → T such that for each edge e = {v, w} ∈ E we have ϑ(w) ∈ Tϑ(v). Moreover, a rooted
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decorated graph is a decorated graph (T, ϑ) together with a distinguished vertex v0, the root.
Further, an isomorphism between two rooted decorated graphs T and T ′ is an isomorphism
of the underlying graphs that preserves the root and the types of the vertices.

Given that N <∞, the branching process GW(d, k, q) canonically induces a probability
distribution over isomorphism classes of rooted decorated trees. Indeed, we obtain a tree
whose vertices are all the individuals created in the course of the branching process and
where there is an edge between each individual and its offspring. The individual from which
the process started is the root. Moreover, by construction each individual v comes with a
type ϑ(v). We denote the (random) isomorphism class of this tree by T d,k,q. (It is natural
to view the branching process as a probability distribution over isomorphism classes as the
process does not specify the order in which offspring is created.)

To proceed, we define a legal coloring of a decorated graph (G,ϑ) as a map τ : V (G)→ [k]
such that τ is a k-coloring of G and such that for any type (i, `) ∈ T and for any vertex
v with ϑ(v) = (i, `) we have τ(v) ∈ `. Combinatorially, if ϑ(v) = (i, `), then we think of `
as a list of colors available to v and of i as a “distinguished color”. Let Z(G,ϑ) denote the
number of legal colorings.

Since Z(G,ϑ) is isomorphism-invariant, we obtain the integer-valued random variable
Z(T d,k,q). We have Z(T d,k,q) ≥ 1 with certainty because a legal coloring τ can be constructed
by coloring each vertex with its distinguished color (i. e., setting τ(v) = i if v has type (i, `)).
Hence, lnZ(T d,k,q) is a well-defined non-negative random variable. Additionally, we write
|T d,k,q| for the number of vertices in T d,k,q.

Finally, consider a rooted, decorated tree (T, ϑ, v0) and let τ be a legal coloring of (T, ϑ, v0)
chosen uniformly at random. Then the color τ (v0) of the root is a random variable with
values in [k]. Let µT,ϑ,v0 ∈ Ω denote the distribution of this random variable. Clearly, µT,ϑ,v0

is invariant under isomorphisms. Consequently, the distribution µT d,k,q of the color of the
root of a tree in the random isomorphism class T d,k,q is a well-defined Ω-valued random
variable. Let πd,k,q ∈ P denote its distribution. Then we can characterise the frozen fixed
point of Fd,k as follows.

I Proposition 6. Suppose that d ≥ (2k − 1) ln k − 2.
1. The function

q ∈ [0, 1] 7→ (1− exp(−dq/(k − 1)))k−1 (4.8)

has a unique fixed point q∗ in the interval [2/3, 1]. Moreover, with

q∗ = k−1(q∗, . . . , q∗) ∈ [0, 1]k (4.9)

the branching process GW(d, k, q∗) is sub-critical. Thus, P[N <∞] = 1.
2. The map Fd,k has precisely one frozen fixed point, namely πd,k,q∗ .
3. We have φd,k(πd,k,q∗) = E

[
lnZ(T d,k,q∗ )
|T d,k,q∗ |

]
.

4. The function Σk from (2.6) is strictly decreasing and continuous on [(2k−1) ln k−2, (2k−
1) ln k − 1] and has a unique zero dk,cond in this interval.

4.3 Tying Up the Threads
To prove that dk,cond = dk,crit, we establish a connection between the random tree T d,k,q∗
and the random graph G with planted coloring σ. We start by giving a recipe for computing
the cluster size |C(G,σ)|, and then let the random tree process “cook" it.
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Computing the cluster size hinges on a close understanding of its combinatorial structure.
As hypothesised in physics work [25] and established rigorously in [2, 7, 27], typically many
vertices v are “frozen” in C(G,σ), i. e., τ(v) = τ ′(v) for any two colorings τ, τ ′ ∈ C(G,σ).
More generally, we consider for each vertex v the set

`(v) = {τ(v) : τ ∈ C(G,σ)}

of colors that v may take in colorings τ that belong to the cluster. Together with the “planted”
color σ(v), we can thus assign each vertex v a type ϑ(v) = (σ(v), `(v)). This turns G into a
decorated graph (G, ϑ).

By construction, each coloring τ ∈ C(G,σ) is a legal coloring of the decorated graph
G. Conversely, it turns out that w.h.p. any legal coloring of (G, ϑ) belongs to the cluster
C(G,σ). Hence, computing the cluster size |C(G,σ)| amounts to calculating the number
Z(G, ϑ) of legal colorings of G, ϑ.

This calculation is facilitated by the following observation. Let G̃ be the graph obtained
from G by deleting all edges e = {v, w} that join two vertices such that `(v) ∩ `(w) = ∅.
Then any legal coloring τ of G̃ is a legal coloring of G, because τ(v) ∈ `(v) for any vertex v.
Hence, Z(G, ϑ) = Z(G̃, ϑ).

Thus, we just need to compute Z(G̃, ϑ). This task is much easier than computing Z(G, ϑ)
directly because G̃ turns out to have significantly fewer edges than G w.h.p. More precisely,
w.h.p. G̃ (mostly) consists of connected components that are trees of bounded size. In fact,
in a certain sense the distribution of the tree components converges to that of the decorated
random tree T d,k,q∗ . In effect, we obtain

I Proposition 7. Suppose that d ≥ (2k − 1) ln k − 2 and let p′ be as in (4.5). Let q∗ be as
in (4.9). Then the sequence { 1

n ln |C(G,σ)|}n converges to E
[

lnZ(T d,k,q∗ )
|T d,k,q∗ |

]
in probability.

The proof of Proposition 7 is the centrepiece of this work. It is based on the precise
analysis of a further message-passing algorithm called Warning Propagation on the random
graph (G,σ) chosen from the planted model. The following section contains an outline of
this analysis Combining Propositions 5 and 7, we see that dk,crit is equal to dk,cond given by
Proposition 6. Theorem 1 then follows from Proposition 4.

5 The Cluster Size

5.1 Warning Propagation
A key step towards the proof of Proposition 7 is to determine the set

`(v) = {τ(v) : τ ∈ C(G,σ)}

of colors that a vertex v may take under a k-coloring in C(G,σ). In particular, we called a
vertex frozen if `(v) = {σ(v)}. To establish Proposition 7, we will first show that the sets
`(v) can be determined by means of a message-passing algorithm called Warning Propagation
(“WP”) [25]. WP has been previously analysed on planted k-SAT instances (where it is
similar to Unit Clause Propagation) to show that the algorithm actually finds a solution w.h.p.
under certain assumptions [12]. Moreover, the work [27] on frozen variables in k-coloring has
a WP flavour. But here we use WP to achieve an even more delicate objective: we aim to
figure out the number of solutions in the cluster of the planted k-coloring.

More precisely, we will see that WP yields color sets L(v) such that L(v) = `(v) for all
but o(n) vertices w.h.p. Crucially, by tracing WP we will be able to determine for any given
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type (i, `) how many vertices of that type there are. Moreover, we will show that the cluster
essentially consists of all k-colorings τ of G such that τ(v) ∈ L(v) for all v. In addition, the
number of such colorings τ can be calculated by considering a reduced graph GWP(σ). This
graphs turns out to be mainly a forest, and finally, informally speaking, w.h.p. the statistics
of the trees in this forest coincide with the distribution of the random tree T d,k,q∗ .

Let us begin by describing Warning Propagation on a general graph G endowed with
a k-coloring σ. For each edge e = {v, w} of G and any color i we define a sequence
(µv→w(i, t|G, σ))t≥1 such that µv→w(i, t|G, σ) ∈ {0, 1} for all i, v, w, t. The idea is that
µv→w(i, t|G, σ) = 1 indicates that in the tth step of the process vertex v “warns” vertex w
that the other neighbors u 6= w of v force v to take color i. We initialize this process by
having each vertex v emit a warning about its original σ(v) at t = 0, i. e.,

µv→w(i, 0|G, σ) = 1i=σ(v) (5.1)

for all edges {v, w} and all i ∈ [k]. Letting ∂v = ∂G(v) denote the neighborhood of v in G,
for t ≥ 0 we let

µv→w(i, t+ 1|G, σ) =
∏

j∈[k]\{i}

max {µu→v(j, t|G, σ) : u ∈ ∂v \ {w}} . (5.2)

That is, v warns w about color i in step t+ 1 iff at step t it received warnings from its other
neighbors u (not including w) about all colors j 6= i. Further, for a vertex v and t ≥ 0 we let

L(v, t|G, σ) =
{
j ∈ [k] : max

u∈∂v
µu→v(j, t|G, σ) = 0

}
and L(v|G, σ) =

∞⋃
t=0

L(v, t|G, σ).

Thus, L(v, t|G, σ) is the set of colors that vertex v receives no warnings about at step t. To
unclutter the notation, we omit the reference to G, σ where it is apparent from the context.

To understand the semantics of this process, observe that by construction the list
L(v, t|G, σ) only depends on the vertices at distance at most t + 1 from v. Further, if we
assume that the tth neighborhood ∂tv in G is a tree, then L(v, t|G, σ) is precisely the set
of colors that v may take in k-colorings τ of G such that τ(w) = σ(w) for all vertices w at
distance greater than t from v. (This can be verified by a straightforward induction on t.)
As we will see, this observation together with the fact that the random graph G contains
only few short cycles allows us to show that for most vertices v we have `(v) = L(v|G,σ)
w.h.p. In effect, the number of k-colorings τ of G with τ(v) ∈ L(v|G,σ) for all v will emerge
to be a very good approximation to the cluster size C(G,σ).

Counting these k-colorings τ is made possible by the following observation. For a graph
G together with a k-coloring σ, let us denote by GWP(t|σ) the graph obtained from G by
removing all edges {v, w} such that either |L(v, t)| < 2, |L(w, t)| < 2 or L(v, t) ∩ L(w, t) = ∅.
Furthermore, obtain GWP(σ) from G by removing all edges {v, w} such that L(v)∩L(w) = ∅.
We view GWP(t|σ) and GWP(σ) as decorated graphs in which each vertex v is endowed with
the color list L(v, t) and L(v) respectively. As before, we let Z denote the number of legal
colorings of a decorated graph. The key statement in this section is

I Proposition 8. W.h.p. we have lnZ(GWP(σ)) = ln |C(G,σ)|+ o(n).

We begin by proving that Z(GWP(σ)) is a lower bound on the cluster size w.h.p. First we
are going to argue that w.h.p. in G there are many of frozen vertices, and that thus all legal
colorings τ of GWP(σ) belong to the cluster C(G,σ) w.h.p. To exhibit frozen vertices, we
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consider an appropriate notion of a “core”. More precisely, assume that σ is a k-coloring of a
graph G. We denote by core(G, σ) the largest set V ′ of vertices with the following property.

If v ∈ V ′ and j 6= σ(v), then |V ′ ∩ σ−1(j) ∩ ∂v| ≥ 100. (5.3)

In words, any vertex in the core has at least 100 neighbors of any color j 6= σ(v) that also
belong to the core. The core is well-defined; for if V ′, V ′′ are two sets with this property,
then so is V ′ ∪ V ′′. The following is immediate from the definition.

I Fact 9. Assume that v ∈ core(G, σ). Then L(v, t) = {σ(v)} for all t.

The core has become a standard tool in the theory of random structures in general and
in random graph coloring in particular (e. g., [2, 8, 27]). Indeed, standard arguments show
that G has a very large core w.h.p.

I Proposition 10 ([8]). W.h.p. we have

|core(G,σ) ∩ σ−1(i)| ≥ n

k
(1− k−2/3) for all i ∈ [k]. (5.4)

Moreover, if v ∈ core(G,σ), then σ(v) = τ(v) for all τ ∈ C(G,σ).

I Corollary 11. W.h.p. we have |C(G,σ)| ≥ Z(GWP(σ)).

While Z(GWP(σ)) provides a lower bound on the cluster size, the two numbers do not
generally coincide. This is because for a few vertices v, the set L(v) produced by WP may be
a proper subset of `(v). (Bipartite sub-structures known as “Kempe chains” are for instance
responsable for this, cf. [27].) The origin of this problem is that we launched WP from
the initialization (5.1), which is the obvious choice but may be too restrictive. Thus, to
obtain an upper bound on the cluster size we will start WP from a different initialization.
Ideally, this starting point should be such that only vertices that are frozen emit warnings.
By Proposition 10, the vertices in the core meet this condition w.h.p. Thus, we are going to
compare the above instalment of Warning Propagation with the result of starting WP from
an initialization where only the vertices in the core send out warnings.

Thus, given a graph G together with a k-coloring σ we let

µ′v→w(i, 0|G, σ) = 1i=σ(v) · 1v∈core(G,σ),

µ′v→w(i, t+ 1|G, σ) =
∏

j∈[k]\{i}

max {µ′u→v(j, t|G, σ) : u ∈ ∂v \ {w}}

for all edges {v, w} of G, all i ∈ [k] and all t ≥ 0. Furthermore, let

L′(v, t|G, σ) =
{
j ∈ [k] : max

u∈∂(v)
µ′u→v(j, t|G, σ) = 0

}
and L′(v|G, σ) =

∞⋂
t=0

L′(v, t|G, σ).

As before, we drop G, σ from the notation where possible.
Similarly as before, we can use the lists L′(v, t) to construct a decorated reduced graph

denoted by G′WP(t|σ) and G′WP(σ). Proceeding much as above, we obtain

I Lemma 12. W.h.p. we have |C(G,σ)| ≤ Z(G′WP(σ)).

Combining Corollary 11 and Lemma 12, we see that Z(GWP(σ)) ≤ |C(G, σ)| ≤
Z(G′WP(σ)) w.h.p. To complete the proof of Proposition 8, we are going to argue that
lnZ(G′WP(σ)) = lnZ(GWP(σ)) + o(n) w.h.p.

To this end, we need one more general construction. Let G be a graph and let σ be a
k-coloring of G. Let t ≥ 0 be an integer. For each vertex v of G we define a rooted, decorated
graph T (v, t|G, σ) as follows.
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The graph underlying T (v, t|G, σ) is the connected component of v in GWP(t|σ).
The root of T (v, t|G, σ) is v.
The type of each vertex w of T (v, t|G, σ) is (σ(w), L(w, t|G, σ)).

Analogously we obtain a rooted, decorated graph T (v|G, σ) from GWP(σ), T ′(v, t|G, σ) from
G′WP(t|σ) and T ′(v|G, σ) from G′WP(σ). By carefully coupling our two versions of WP, we
obtain

I Lemma 13. W.h.p. G,σ is such that T (v|G,σ) = T ′(v|G,σ) for all but o(n) vertices v.

5.2 Counting Legal Colorings
Proposition 8 reduces the proof of Proposition 7 to the problem of counting the legal colorings
of the reduced graph GWP(σ). For a rooted, decorated tree T let HT be the number of
vertices v in GWP(σ) such that T (v|G,σ) ∼= T . Let us write T = T d,k,q∗ for the sake of
brevity. Recall that T is an isomorphism class of rooted, decorated trees; thus, it makes
sense to write T ∈ T . To complete the proof of Proposition 7 we need to show the following.

I Proposition 14. For any T the sequence ( 1
nHT )n≥1 converges to P [T ∈ T ] in probability.

This can be shown by proving that the number q∗ from Proposition 6 provides a good
approximation to the number of vertices v such that L(v|G,σ) = {i} for any i. As a next
step, it can be argued that WP “converges quickly”. More specifically, for most vertices v
the component T (v|G,σ) is already completely determined after just a bounded number t
of iterations of WP. This reduces the proof of Proposition 14 to the problem of studying
the statistics of the trees T (v, t|G,σ) with t ≥ 0 (large but) fixed as n→∞. This problem
is much simpler than the original one, because we only need to iterate WP for t rounds.
Finally, Proposition 7 follows from Propositions 8 and 14.
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