
Robust Appointment Scheduling
Shashi Mittal1, Andreas S. Schulz2, and Sebastian Stiller3

1 Amazon.com, Inc., Seattle, WA, USA
mshashi@alum.mit.edu

2 Massachusetts Institute of Technology, Cambridge, MA, USA
schulz@mit.edu

3 TU Berlin, Berlin, Germany
stiller@math.tu-berlin.de

Abstract
Health care providers are under tremendous pressure to reduce costs and increase quality of their
services. It has long been recognized that well-designed appointment systems have the potential
to improve utilization of expensive personnel and medical equipment and to reduce waiting times
for patients. In a widely influential survey on outpatient scheduling, Cayirli and Veral (2003)
concluded that the “biggest challenge for future research will be to develop easy-to-use heuristics.”
We analyze the appointment scheduling problem from a robust-optimization perspective, and we
establish the existence of a closed-form optimal solution–arguably the simplest and best ‘heuristic’
possible. In case the order of patients is changeable, the robust optimization approach yields a
novel formulation of the appointment scheduling problem as that of minimizing a concave function
over a supermodular polyhedron. We devise the first constant-factor approximation algorithm
for this case.

1998 ACM Subject Classification G.2.1 Combinatorics – Combinatorial Algorithms, G.1.6 Op-
timization – Nonlinear programming, I.1.2 Algorithms – Analysis of Algorithms

Keywords and phrases Robust Optimization, Health Care Scheduling, Approximation Algo-
rithms

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2014.356

1 Introduction

We study the problem of appointment scheduling in a robust optimization framework. The
appointment scheduling problem arises in many service operations where customers are
served sequentially, service times of customers are uncertain, and one needs to assign time
slots for serving the customers in advance. Arguably the most relevant practical setting
where this problem arises is in health care services. Modern health care involves the usage of
several high-cost devices and facilities such as MRI installations, CT scanners and operation
rooms, in addition to highly trained and well-paid personnel. For health care providers,
appointment scheduling is vital to ensure a high utilization of their resources as well as
a high quality of service.1 For example, consider the problem of scheduling surgeries for
outpatients in an operation room at a hospital. The information about which surgeries are
to be performed on a particular day is known in advance. However, the time needed to
perform each surgery can vary. Typically on the preceding day, the hospital manager needs
to decide the time at which a particular surgery is scheduled to start, and how much time to

1 Excessive waiting times are often the major reason for patients’ dissatisfaction in outpatient services.
Nowadays, reasonable waiting times are expected in addition to clinical competence [5].

© Shashi Mittal, Andreas S. Schulz, and Sebastian Stiller;
licensed under Creative Commons License CC-BY

17th Int’l Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX’14) /
18th Int’l Workshop on Randomization and Computation (RANDOM’14).
Editors: Klaus Jansen, José Rolim, Nikhil Devanur, and Cristopher Moore; pp. 356–370

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62919148?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.356
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Mittal, A. S. Schulz, and S. Stiller 357

assign to that surgery. If the manager assigns a rather small time interval for a surgery, then
it is more likely that the actual time of the surgery will exceed its assigned duration, thus
delaying the next surgery. The inconvenience and costs resulting from the delay of both the
patients and the staff constitute the overage cost of that surgery. If on the other hand, the
hospital manager assigns an excessively long interval to a particular surgery, then chances
are that the surgery may end early and the operation room will be left idle until the next
surgery commences. In that case, the hospital incurs underage cost, which corresponds to
the under-utilization of the resources in the operation room. Therefore, an ideal appointment
schedule should achieve the right trade-off between the underage and the overage costs.

Existing models in the literature for the appointment scheduling problem include queueing
models [20, 21], continuous stochastic models [6, 13, 17] and discrete stochastic models [1, 2].
In the stochastic models, the processing times of the jobs2 are assumed to be independent
random variables, and the objective is to find an appointment schedule that minimizes the
expected cost. In all these models, one assumes complete knowledge about the distribution
of the processing times of the jobs. However, in many service settings the distributions
may not be known accurately, limiting the utility of the stochastic models. There might
not be sufficient historical data of the processing times of the jobs to get a reasonable
estimate of the probability distributions. Furthermore, because the cost function in the
stochastic model is the expectation of a non-linear function of several random variables, the
computational cost of finding an optimal schedule is significantly high. As a consequence,
the methods employed to solve the problem are usually based on heuristics with no provable
bounds on the running time of the algorithm or on the quality of the solutions they generate.
Other methods require the use of advanced techniques such as Monte-Carlo simulations or
submodular function minimization. Such techniques may not necessarily be practical in
many situations. The drawbacks of the stochastic models mentioned above are not limited
to the appointment scheduling problem, but are encountered in many situations in which
there is uncertainty. Robust optimization is an alternative framework to address uncertainty.
In robust optimization, the uncertainty in the input parameters is handled using uncertainty
sets instead of random variables (see e. g. [3, 4]). Robust optimization models are often more
tractable when compared to the corresponding stochastic optimization models.

Robust optimization models appear to be particularly useful in health care, as they
attempt to reduce the cost and stress level of a bad day, rather than taking into account only
the average. For example, stochastic models often give a “dome shaped” schedule, reckoning
on the small probability of delays accumulating in the morning. But in case of several early
delays such a schedule incurs a high cost as these delays spill over on a large part of the day.
A robust schedule is not “dome shaped,” but assigns some slack time in the morning as well.

The main contributions of this paper can be summarized as follows.

Robust Formulation of the Problem. We propose to look at the appointment scheduling
problem in a robust optimization framework. For each job we only need the following
information: the minimum and the maximum possible time the job will take to complete,
the underage cost if the job finishes early, and the overage cost if the job finishes late. The
objective in the robust model is to find a schedule for which the cost in the worst-case scenario
of the realized processing times of the jobs is minimized. For simplicity of presentation, we

2 From now on, we use the term ‘job’ to refer to the kind of service provided in any one specific context;
for instance, in the health care setting, a job could correspond to a surgery.

APPROX/RANDOM’14

358 Robust Appointment Scheduling

focus on the important case where all underage cost coefficients are equal, i. e., they represent
the opportunity cost of the facility.

A Closed-form Solution. We propose an intuitive method for scheduling jobs that aims to
balance the maximum possible underage cost of a job with the maximum possible overage
cost due to that job. This approach yields an optimal solution to the robust model. Its
biggest advantage is that it gives a simple, easy to compute, closed-form solution for the
optimal duration assigned to each job. Unlike existing, stochastic methods for appointment
scheduling, our solution is simple enough that it can be implemented in a spreadsheet, thus
greatly enhancing its practical value.

Ordering Problem. In health care, one finds both, applications in which the ordering is
fixed, and applications where reshuffling jobs is possible to further reduce the cost [5]. Despite
the relevance of the case where reordering jobs is possible, most research on methods to solve
appointment scheduling neglect the optimization potential of ordering. One reason may be
that most methods are already involved even without considering the ordering problem. We
show that the closed-form expression for the optimal solution for the fixed-ordering problem
can be used to derive constant-factor approximation algorithms for the ordering problem.

Related Work
An overview of the appointment scheduling problem is given in [5]. The existing literature
on appointment scheduling can roughly be divided into three categories: queueing models,
stochastic optimization models and stochastic models which use notions of discrete convexity,
for example, submodular functions over an integer lattice. We discuss the relevant literature
for all three models below.

Wang [20] proposes a queueing model for the problem, in which the processing times
of the jobs are assumed to be independent and identically distributed random variables
with exponential distribution. Both static and dynamic problems (i. e. the case when all the
information about the jobs is not known in advance) are considered in this model, and an
optimal schedule is obtained by solving a set of non-linear equations. In [21], the model is
generalized to the case where the jobs can have different mean processing times. For this
model, it is shown that the optimal sequence of the execution of the jobs is to process them
in the increasing order of their mean processing times.

Denton and Gupta [6] formulate the problem as a two-stage stochastic linear program, and
then use a sequential bounding algorithm to solve the corresponding stochastic optimization
problem. They also give general upper bounds on the cost of a schedule which do not depend
on the particular distribution of the processing times or the cost parameters of the jobs.
Robinson and Chen [17] use a Monte Carlo integration technique to compute near-optimal
solutions for the appointment scheduling problem. They show that an optimal schedule
for this model has a “dome shaped” structure. That is, the allowances for the assigned
durations for the jobs first increase, and then decrease steadily for jobs in the end of the
sequence. They also give heuristics which approximate this dome shaped structure of the
optimal schedule. Green et al. [8] consider the problem of outpatient appointment scheduling
in which serving emergency patients is also permitted. They formulate the problem as a
dynamic stochastic control problem and establish properties of an optimal policy for real-time
scheduling and capacity allocation. Yet another way of computing an appointment schedule
is using local search: Kandoorp and Koole [13] show that a local search algorithm converges
to an optimal schedule. Gupta [9] considers the problem of optimally sequencing two jobs,

S. Mittal, A. S. Schulz, and S. Stiller 359

and establishes the optimality of an ordering when a stochastic dominance condition holds
for the distribution of the processing durations of the two jobs.

More recently, Begen and Queyranne [2] show that when the processing times of the jobs
are discrete random variables with finite integer support, then there is an optimal schedule
which is integral (i. e. the assigned starting times of the jobs have integer values in the optimal
solution). They also show that under very general conditions, the cost function with respect
to an integer appointment schedule is submodular. An optimal solution can then be found
using well known algorithms for submodular function minimization (e. g. [12, 15]). This idea
has also been extended to a get a near-optimal schedule for a data driven model [1], where
the processing time distributions of the jobs are not known in advance, but instead one uses
the past data of the realized processing times of the jobs to approximate the distributions.

2 Appointment Scheduling and Ordering

The appointment scheduling problem consists of determining starting times for a fixed
sequence of jobs with uncertain processing times. When the appointment schedule is executed
and the exact processing times materialize, each jobs starts at its planned appointment time
or at the completion time of its predecessor, whichever comes later. The goal is to minimize
a weighted sum of idle times of the server and delays of the jobs. In the scheduling and
ordering version of the problem, one also decides on the order in which the jobs are processed.

Formally, instances of both the robust appointment scheduling and ordering problem and
the robust appointment scheduling problem are given by an n-tuple of jobs and a positive
value u, the cost per unit of idle time. Each job i is characterized by [p

i
, pi], an interval of

(non-negative) possible processing times, and a positive value oi, the per unit-time cost for
the delay of job i.

A solution to the robust appointment scheduling problem is a vector of appointments
A = (A1, . . . , An+1). Here, A1 = 0 is the scheduled start time of job 1, An+1 is the
planned completion time of job n, and Ai is the planned completion time of job i − 1
(and, simultaneously, the planned start time of job i), for all 2 ≤ i ≤ n. A solution (π,A)
to the robust appointment scheduling and ordering problem is a permutation π : [n] →
[n] of the jobs’ indices, and an appointment vector for this permutation as above, i. e.,
(Aπ−1(1), . . . , Aπ−1(n+1)).3

A scenario is any vector P = (p1, . . . , pn) of processing times within the given intervals:
pi ∈ [p

i
, pi]. We call P =

∏n
i=1[p

i
, pi] the scenario set. In the following definitions we focus

on the scheduling and ordering problem. Fixing the permutation π to the identity (i. e.,
ignoring it in the formulas) gives the definitions for completion time and cost in the version
of the problem without ordering.

For a solution (π,A), the completion time of job π−1(i) in a scenario P is

Cπ−1(i) = max(Aπ−1(i), Cπ−1(i−1)) + pπ−1(i).

The cost of a solution (π,A) in a scenario P is

F
(
(π,A), P

)
=

n∑
i=1

max
(
u(Aπ−1(i+1) − Cπ−1(i)), oπ−1(i)(Cπ−1(i) −Aπ−1(i+1))

)
.

3 As usual, [n] denotes the set {1, 2, . . . , n}. In a slight abuse of notation, Aπ−1(n+1) refers to the planned
completion time of the last job.

APPROX/RANDOM’14

360 Robust Appointment Scheduling

We call the first argument of the maximum the underage cost, and the second the overage
cost. We say a job is underaged, respectively, overaged depending on which of the two terms
is positive.4 The cost of a solution (π,A) is

F (π,A) := sup
P∈P

F
(
(π,A), P

)
= max

P∈P
F
(
(π,A), P

)
,

where the second equality holds because F is continuous in P [2].
It is helpful to use ai := Ai+1−Ai as a short-hand notation for the time assigned to job i.

We will sometimes identify the schedule A by the vector of assigned times a = (a1, . . . , an). For
convenience, let us also introduce the following notation: o≥i :=

∑
j≥i oj and ∆i := pi − pi.

The robust appointment model allows for a number of structural and algorithmic insights.
In this extended abstract, we focus on two main results:

I Theorem 1. The robust appointment scheduling problem has a closed-form optimal solution.

In addition to the obvious practical implications, Theorem 1 is also essential in deriving the
next result.

I Theorem 2. The robust appointment scheduling and ordering problem admits a polynomial-
time approximation algorithm with constant-factor performance guarantee.

We first design a (2 + ε)-approximation algorithm that is of interest in its own right and
provides very good insights into the essential structure of the robust appointment scheduling
and ordering problem. We also give a polynomial-time approximation scheme, which is based
on a new formulation of the robust appointment scheduling and ordering problem as that of
minimizing a concave function over a supermodular polyhedron.

3 Robust Appointment Scheduling (with Fixed Job Order)

In this section, we consider the problem of finding optimal appointment times for the robust
appointment scheduling problem when the job order is fixed to 1, 2, . . . , n. We prove the
optimality of an appointment schedule that is based on the following idea: charge each part
of the total cost to the job that caused it. For the total underage cost, responsibilities are
clear: in case Ai+1−Ci > 0, we want to charge job i for u(Ai+1−Ci) of the total cost. Note
that Ai+1 − Ci ≤ ai − pi.

The overage cost of job i, i. e., oi(Ci −Ai+1) > 0, can be caused by job i itself, namely in
case ai < pi, and by jobs j preceding i that initially cause a delay, i. e., aj < pj , which spills
over to i. We want to distribute the cost oi(Ci −Ai+1) to those jobs that initially caused it.
Note that Ci −Ai+1 ≤

∑
j≤i(pj − aj)+ and, by reordering of summation,∑

i

oi
∑
j≤i

(pj − aj)+ =
∑
j

o≥j(pj − aj)+ ≤
∑

j overaged

o≥j(pj − aj).

Hence, we can distribute the entire cost of schedule A in any scenario P by attributing
to each underaged job i at most u(ai − pi) of underage cost and to each overaged job i at
most o≥i(pi − ai) of overage cost. Formally, we have

4 In the model considered here, the cost caused by the overage of the i-th job in the sequence depends
only on that job. All of our results remain to hold true if the overage cost of the i-th jobs is determined
by the (i + 1)-st job in the sequence.

S. Mittal, A. S. Schulz, and S. Stiller 361

I Lemma 3. For any appointment schedule A and any scenario P ∈ P, the cost F (A,P) is
bounded as follows:

F (A,P) ≤
n∑
i=1

max
(
u(ai − pi), o≥i(pi − ai)

)
.

Note that the expression on the right-hand side does not depend on P .
This is a very pessimistic perspective. Still, our solution is guided by this pessimism:

Every job i shall minimize the maximum over its own maximal underage cost, namely
u(ai − pi), and the maximum total increase in overage cost job i can cause: o≥i(pi − ai).
Setting these two terms equal, i. e., balancing the potential underage cost and the potential
responsibility for overage cost, yields the ai of the balanced schedule.

I Definition 4. For an instance of the robust appointment scheduling problem, the balanced
schedule AB is defined by

aBi =
up

i
+ o≥ipi

u+ o≥i

for all i = 1, . . . , n.

In this section we show that the balanced schedule is optimal and determine its cost,
which gives a refined version of Theorem 1.

I Theorem 5. For any instance of the robust appointment scheduling problem the corre-
sponding balanced schedule AB is an optimal solution. The cost of the balanced schedule AB
is

F (AB) =
n∑
i=1

uo≥i∆i

u+ o≥i
.

The pessimistic cost terms balanced in AB are the actual costs of jobs in scenarios with
the following properties: All jobs are either at maximal or minimal length, and if job i is at
maximal length, then so are all jobs after job i. We prove Theorem 5 by showing that this
set of n+ 1 scenarios is the set of worst-case scenarios for any optimal solution.

In the rest of this section, we will prove Theorem 5. The following intuitive lemma helps
to eliminate some pathological cases from further consideration.

I Lemma 6. There exists an optimal appointment schedule A for which p
i
≤ ai ≤ pi.

Proof. The first part of the inequality was proved in [2]. For the second part, suppose that
in an optimal solution A, the duration assigned to some job i is greater than pi. Let i be
the largest index of a job for which this is the case. Let δ = Ai+1 −Ai − pi. By assumption,
δ > 0. Note that we can focus on i > 1. Otherwise we could simply reduce each Aj by δ, for
j = 2, 3, . . . , n, and the resulting schedule would have lower cost, which is a contradiction to
the optimality of A. We claim that changing Ai to Ai + δ does not increase the cost in any
scenario. We consider two cases:
Case 1: Job i− 1 is underaged. In this situation, job i is underaged as well. If Ai is changed
to Ai + δ, then the underage cost of job i − 1 increases, but the underage cost of job i

decreases by the same amount.
Case 2: Job i− 1 is overaged. Let Ci−1 be the completion time of job i− 1. Then Ci−1 > Ai.
If Ci−1 −Ai ≥ δ, then increasing Ai to Ai + δ only decreases the overage cost of job i− 1,

APPROX/RANDOM’14

362 Robust Appointment Scheduling

and changes nothing else. If Ci−1 − Ai < δ, then after increasing Ai to Ai + δ, job i − 1
becomes underaged. However, any increase in the underage cost of job i− 1 is neutralized by
the decrease in the underage cost of job i. The net effect is a decrease in the overall cost, as
the overage cost that job i− 1 was incurring in the earlier schedule has disappeared in the
new schedule.

As a result, the cost in every scenario either remains the same, or decreases upon increasing
Ai by δ. Therefore, the new schedule is still optimal, and the largest index of some job
violating the claim of the lemma is now smaller than i. Iterating the argument, if necessary,
completes the proof. J

From now on, we will focus on optimal appointment schedules that satisfy the condition
in Lemma 6. Let P denote the set of all scenarios P such that pi ∈ {pi, pi} for all jobs i. We
call these scenarios the extremal scenarios. We can show constructively that the cost of any
scenario does not decrease by shifting it to an extremal scenario. This eventually shows that
we can limit our attention to a finite scenario set.

I Lemma 7. Let A∗ be any schedule that has the lowest worst-case scenario cost, when only
the scenarios in the set P are considered. Then A∗ is an optimal appointment schedule.

For the proof of Lemma 7 we need some preparation.

I Definition 8. For an appointment schedule A and a realization of the processing times of
jobs P , a chain is defined as:

A single job that is not overaged, or
A sequence of jobs i, i+ 1, . . . , j, such that jobs i to j − 1 are overaged and job j is not
overaged, or
A sequence of jobs i, i+ 1 . . . , j all of which are overaged and job j is the last job.

Note that, given an appointment schedule A, the actual execution of the jobs for a given
realization of the processing times of jobs P is a union of consecutive chains.

I Lemma 9. For any given appointment schedule A, there exists a worst-case scenario P
such that pi ∈ {pi, pi} for all jobs i.

Proof. Let P be a worst-case scenario for the given appointment schedule A. Suppose P
does not satisfy pi ∈ {pi, pi}. Let i be the smallest job index for which this property is
violated. We will convert P to a new scenario P ′, such that p′i is either pi or pi, and the cost
corresponding to P ′, F (A,P ′), is at least F (A,P). For such a job i, there are the following
cases to consider:
Case 1: Job i is not overaged. In this case, setting p′i = p

i
and p′j = pj for all other

jobs j results in increasing the cost of job i, and changes nothing else for other jobs. Thus
F (A,P ′) ≥ F (A,P).
Case 2: Job i is overaged, and it is the last job. Then setting p′i = pi and p′j = pj for all
other jobs j increases the cost of the last job, and the cost of all other jobs remains the same.
Thus F (A,P ′) ≥ F (A,P) in this case as well.
Case 3: Job i is overaged, and it is not the last job. Consider the chain which job i is part of
in the realization P . Let i, . . . , j be the sequence of jobs including and following i in this
chain. There are three sub-cases to consider:

Job j is overaged. This means that the chain of which i is a part of is the last chain. In
this case, all the jobs from job i onwards are overaged. Let p′i = pi and p′k = pk for all
other jobs k. Then the overage cost of all the jobs i and onwards is higher in P ′ than in
P , while the cost of all the other jobs remains unchanged. Therefore F (A,P ′) ≥ F (A,P).

S. Mittal, A. S. Schulz, and S. Stiller 363

Job j is underaged and oi+ . . .+oj−1 ≤ u. Suppose we reduce the processing time of job i
by a sufficiently small amount ε that keeps the chain which i is a part of intact. Then the
overage cost of jobs i, . . . , j − 1 decreases by (oi + . . .+ oj−1)ε, while the underage cost
of job j increases by uε. Since oi + . . .+ oj−1 ≤ u, the cost in the modified schedule is at
least as much as that in the original schedule. If ε can be chosen such that p′i = p

i
, we

are done. Otherwise, the chain that i was part of gets split into smaller chains. However,
setting p′i = p

i
and p′k = pk for all other jobs k still results in a realization P ′ for which

F (A,P ′) ≥ F (A,P).
Job j is underaged and oi + . . .+ oj−1 > u. In this case, let p′i = pi, and p′k = pk for all
other jobs k. It is possible that by doing so, the underage cost of some job k ≥ j decreases,
and it may even get overaged. Since oi+ . . .+oj−1 > u, it follows that oi+ . . .+ok−1 > u

as well. So even though the underage cost of job k decreases, it is more than compensated
by the increase in the overage cost of jobs i, . . . , k− 1. This holds true for any underaged
job k ≥ j. Therefore, the cost in the realization P ′ is at least as much as that in the
realization P .

We can continue this process for each job that is not extremal, and eventually we will
obtain a worst-case scenario in which each job is extremal, and whose realized cost is at least
as much as that of the original scenario. Thus, for any appointment schedule A, there exists
a worst-case scenario P such that pi ∈ {pi, pi} for all jobs i. J

Lemma 9 implies that in order to compute the worst-case scenario cost of an appointment
schedule, it suffices to consider extremal scenarios only:

I Lemma 10. For a given appointment schedule A, its cost F (A) is given by

F (A) = max
P∈P

F (A,P).

In turn, Lemma 10 completes the proof of Lemma 7. Recall that Lemma 7 states that
in order to compute an optimal appointment schedule, it suffices to consider the optimal
solution over extremal scenarios.

Proof of Lemma 7. Let A∗ be a schedule that has the lowest worst-case scenario cost, when
only the scenarios in the set P are considered. Suppose A∗ is not an optimal appointment
schedule. Let Â be an optimal appointment schedule. Lemma 10 implies that there exists
P̂ ∈ P such that F (Â) = F (Â, P̂). We have the following chain of inequalities:

max
P∈P

F (Â, P) = F (Â, P̂) = F (Â) < F (A∗) = max
P∈P

F (A∗, P).

Thus, we get maxP∈P F (Â, P) < maxP∈P F (A∗, P), which contradicts the optimality of A∗
over the scenarios in the set P. J

According to Lemma 7, it suffices to consider the 2n extremal scenarios when one wants
to compute an optimal appointment schedule. For a schedule A we denote by WA the set of
all extremal, worst-case scenarios. We will now determine the elements of WA completely for
optimal schedules A. The finiteness of the scenario set WA allows for ε-shifting arguments
that facilitate the derivation of the following two lemmata.

I Lemma 11. For any appointment schedule A, if job i is tight or underaged (i. e. Ci ≤ Ai+1)
in a worst-case scenario P , then pi = p

i
.

APPROX/RANDOM’14

364 Robust Appointment Scheduling

Proof. If job i is tight or underaged in a worst-case scenario P and the job is not at minimal
length, then reducing the length of i will give a higher cost, contradicting P being a worst-case
scenario. J

I Lemma 12. For an optimal appointment schedule A, and for each job i there is at least
one P ∈ WA where job i is not underaged, and at least one P ′ ∈ WA where job i is not
overaged.

Proof. Suppose job i is underaged for all scenarios in WA. As WA is finite and u is positive,
there is ε > 0 such that decreasing ai by ε gives a better solution, which is a contradiction.
The proof for the other case is similar. J

A slightly more involved proof, again by using shifting arguments that exploit the finiteness
of the worst-case scenario set, gives the following lemma.

I Lemma 13. Let A be an optimal appointment schedule. Then for all jobs i, 1 ≤ i ≤ n− 1,
there is a worst-case scenario P ∈ WA such that job i is not overaged and job i+ 1 is not
underaged.

Proof. Consider an arbitrary, but fixed job i, 1 ≤ i ≤ n− 1. By Lemma 12, there is at least
one scenario in WA in which i is not overaged. Suppose that all scenarios in WA in which
job i is not overaged, also have job i+ 1 underaged. Let c∗ be the worst-case scenario cost
of A. For a given ε > 0, let Aε be the appointment schedule in which Aεi+1 = Ai+1 + ε, and
Aεj = Aj for all other jobs j. As P is finite, and as F (A,P) is a continuous function in A,
there exists ε > 0 such that the schedule Aε satisfies the following properties:

For all P ∈ WA, F (Aε, P) ≤ F (A,P).
For all P ∈ WA such that job i is overaged in schedule A, F (Aε, P) < F (A,P).
For all P ∈ P \ WA, F (Aε, P) < c∗. In particular, the worst-case scenarios for the
appointment schedule Aε belong to the set WA.
For the schedule Aε, in no scenario from the set P does job i finish exactly at time Aεi+1.

Again, as P is finite and as the cost function is continuous with respect to the appointment
schedule, there is 0 < δ < ε such that decreasing aεi to aεi−δ lets no scenario in P \WAε reach
c∗, but all scenarios in which job i is underaged for schedule A have a lower cost as compared
to Aε. Thus, the worst-case scenario cost of the appointment schedule (aε1, . . . , aεi−1, a

ε
i −

δ, aεi+1, . . . , a
ε
n) is less than c∗, contradicting the optimality of the appointment schedule A. J

The next lemma establishes a crucial property of the worst-case scenarios of an optimal
schedule: any overaged job is followed by an overaged job.

I Lemma 14. For an optimal solution A, for every P ∈ WA, if job i, for some 1 ≤ i ≤ n−1,
is overaged, then so is job i+ 1.

Proof. Assume to the contrary, for some i there is P1 ∈ WA with job i overaged but
job i + 1 underaged or tight. By Lemma 13, there is a worst-case scenario P2 ∈ WA

with job i underaged or tight, and job i + 1 tight or overaged. Split the cost of P1 into
c(P1) = c≤i(P1) + c≥i+2(P1) + ci+1(P1), i. e., the cost of jobs up to and including job i, the
cost of jobs i+ 2 or later, and the underage cost of job i+ 1. In case i = n− 1, we set the
term c≥i+2(P1) equal to zero. For P2 we split c(P2) = c≤i(P2) + c≥i+1(P2). As both are
worst-case scenarios we have c(P1) = c(P2).

Claim: c≤i(P2) < c≤i(P1). Else, replace the jobs up to and including i in P1 by the
corresponding jobs in P2. This strictly increases the underage cost of i + 1, because i is

S. Mittal, A. S. Schulz, and S. Stiller 365

overaged in P1, and keeps c≥i+2(P1) as it is. This way we get a scenario with strictly higher
cost, contradicting P1 ∈ WA.

Because of the claim and c(P1) = c(P2) we must have c≥i+1(P2) > c≥i(P1) + ci+1(P1).
Now, construct a scenario P ′ using pj of P1 for all jobs 1 ≤ j ≤ i and, in case i ≤ n − 2,
using pj of P2 for all jobs j with i+ 2 ≤ j ≤ n. As i+ 1 must be shorter in P1 than in P2,
we can adjust pi+1 such that its completion time is the same as in scenario P2. Thereby, in
case i ≤ i− 2, the realized starting time of i+ 2 in P ′ is that of i+ 2 in scenario P2.

Now, P ′ has strictly higher cost than the worst-case scenarios P1 and P2, which contradicts
the assumption that P1 and P2 are worst-case scenarios for the optimal schedule A. Hence
the statement of the lemma holds. J

The following lemma is the overage analog of Lemma 11.

I Lemma 15. If for some optimal solution A and some worst-case scenario P ∈ WA job i
is overaged, then pi = pi.

Proof. If i is overaged, all jobs j ≥ i are overaged as well, by Lemma 14. But then, if one
could increase the length of job i, the cost of A would increase, which is not possible, because
P is a worst-case scenario. Hence pi = pi. J

The following lemma shows that many extremal scenarios are simultaneously worst case.

I Lemma 16. There exists an optimal appointment schedule for which at least n+1 extremal
scenarios are worst-case scenarios.

Proof. Let A∗ be an optimal solution of a given instance of the appointment scheduling
problem. For each P ∈ P, the cost of A∗ in the scenario P , F (A∗, P) is given by a linear
function fP (A). Here A corresponds to the assigned duration to each job. Consider the
following linear program:

min C

s. t. fP (A) ≤ C, for all P ∈ P.

Clearly, A∗ is a feasible solution of this linear program. By Lemma 7, an optimal solution of
this linear program yields an optimal solution of the appointment scheduling problem. The
linear program has n+ 1 variables, therefore in an optimal basic feasible solution, at least
n+ 1 constraints must be satisfied with equality. Hence there exists an optimal appointment
schedule in which at least n+ 1 extremal scenarios are worst-case scenarios. J

The next theorem characterizes the set of extremal worst-case scenarios for an optimal
appointment schedule.

I Theorem 17. There exists an optimal appointment schedule A for which the set of extremal
worst-case scenarios is given by

WA = {(p1, . . . , pi, pi+1, . . . , pn) : 1 ≤ i < n} ∪ {(p1, . . . , pn), (p1, . . . , pn)}.

Proof. Follows immediately from Lemmas 14, 15 and 16. J

We are now ready to prove the main theorem of this section.

APPROX/RANDOM’14

366 Robust Appointment Scheduling

Proof of Theorem 5. Equating the cost of the worst-case scenarios in which k−1 respectively
k is the last job at minimal length gives (ak − pk)u = (pk − ak)

∑n
i=k o≥i for all 1 < k ≤ n.

Equating the scenario with all jobs maximal with the one where only the first is minimal,
gives the equation also for k = 1. These n equations uniquely determine the optimal schedule
as the balanced schedule, AB . Direct calculation of the cost of AB for any of these scenarios
gives the result. J

4 Robust Appointment Scheduling and Ordering

Theorem 5 reduces the robust appointment scheduling and ordering problem to finding
a permutation π : [n] → [n] that minimizes the cost F (π) of the corresponding balanced
schedule:

min
π

n∑
i=1

u
∑
π−1(j)≥π−1(i) oπ−1(j)∆π−1(i)

u+
∑
π(j)≥π−1(i) oπ−1(j)

.

By scaling cost coefficients, we may assume u = 1. Using variables Θi := Θπ
i :=∑

π−1(j)≥π−1(i) oπ−1(j) and taking cues from single-machine scheduling with weighted-sum-of-
completion-times objective [16], we can restate the ordering problem as that of minimizing a
concave function over a supermodular polyhedron:

min
n∑
i=1

∆iΘi

1 + Θi
(1a)

s. t.
∑
j∈S

ojΘj ≥
1
2

(∑
j∈S

oj

)2
+ 1

2
∑
j∈S

o2
j for all S ⊆ N. (1b)

Here we use N to denote the set [n] = {1, 2, . . . , n} of all jobs.

I Lemma 18. Linear program 1 is an exact formulation of the ordering problem.

Proof. The objective function (1a) is strictly concave, which implies that an optimal solution
is attained at an extreme point of the polyhedron described by the inequalities (1b). This
polyhedron is supermodular (i. e., the right-hand side of (1b) viewed as a function of S ⊆ N
is supermodular). In particular, all extreme points are of the form (o≥σ(1), . . . , o≥σ(n)), where
σ : N → N is a permutation of jobs and o≥σ(i) =

∑
j≥i oσ(j) (see, e. g., [7]). This means

that an optimal ordering of the jobs can be found by solving for an optimal extreme point of
this formulation. Furthermore, if (Θ∗1, . . . ,Θ∗n) is an optimal extreme point, then an optimal
ordering of the jobs is given by a permutation σ which satisfies Θ∗σ(1) ≥ . . . ≥ Θ∗σ(n). J

The first result of this section is an ad hoc (2 + ε)-approximation algorithm for the robust
appointment scheduling and ordering problem. Observe that for Θi ≤ 1 we have Θi ≤ 2 Θi

1+Θi ,
whereas for Θi ≥ 1 we have 1 ≤ 2 Θi

1+Θi . In particular, this readily implies that if oi happens
to be larger than 1 for all jobs i, then so is Θi for any ordering, and any ordering is a
2-approximation. If, on the other hand,

∑n
i=1 oi ≤ 1, it is straightforward to show that

ordering by Smith’s rule [18], i.e, by non-decreasing ratios of ∆i

oi
, gives a 2-approximation.

We will have more to say about this rule later. We first show that the following optimization
problem, inspired by these two extremal cases, leads to a (2 + ε)-approximation in general:

min
S⊆N∑

i∈S

oi≤1

(∑
i/∈S

∆i + min
π:S→S

∑
i∈S

∆iΘπ
i

)
(2)

S. Mittal, A. S. Schulz, and S. Stiller 367

Note that after choosing S in Problem (2), Smith’s rule on the elements of S yields an
optimal order Θ for the “inner” minimization problem. Moreover, even though we do not
require

∑
i∈S oi + oj > 1 for all j not in S, any j for which this is not the case can be added

to S without increasing the objective function value. Therefore, we assume, for optimal or
approximate solutions, that S is maximal with respect to

∑
i∈S oi ≤ 1.

A solution S of Problem (2) can be turned into an ordering πS of all jobs in N as follows:

1. Schedule first the jobs not in S in arbitrary order.
2. Afterwards, schedule the jobs in S using Smith’s rule.

We first prove a lemma that establishes the connection between an approximate solution
to Problem (2) and an optimal solution of the ordering problem.

I Lemma 19. Let Sα be an α-approximate solution for Problem (2), and let πSα be the
sequence of jobs produced by the above algorithm, if called with input Sα. Then πSα is a
2α-approximate solution of the robust appointment scheduling and ordering problem.

Proof. Let S′ be an optimal solution to Problem (2), and let π∗ be an optimal ordering. We
construct a solution S∗ for Problem (2) from π∗ as the set of all jobs i for which Θ∗i ≤ 1.

F (πSα) =
∑
i∈N

Θα
i ∆i

1 + Θα
i

=

∑
i/∈Sα

Θα
i ∆i

1 + Θα
i

+
∑
i∈Sα

Θα
i ∆i

1 + Θα
i

≤
∑
i/∈Sα

∆i +
∑
i∈Sα

∆iΘα
i ≤ (3)

α

(∑
i/∈S′

∆i +
∑
i∈S′

∆iΘ′i

)
≤ α

(∑
i/∈S∗

∆i +
∑
i∈S∗

∆iΘ∗i

)
≤ (4)

2α
(∑
i/∈S∗

Θ∗i∆i

1 + Θ∗i
+
∑
i∈S∗

Θ∗i∆i

1 + Θ∗i

)
= 2α

∑
i∈N

Θ∗i∆i

1 + Θ∗i
= 2αF (π∗).

Inequality (3) is trivial as Θα
i ≥ 0. The inequality in changing to line (4) is given by the

approximation factor provided by the antecedent of the lemma. The inequality in line (4)
holds by the optimality of S′. The last inequality follows from the construction of S∗ because
we have 1 ≤ 2 Θ∗i

1+Θ∗
i
for all i not in S∗ and Θ∗i ≤ 2 Θ∗i

1+Θ∗
i
for all i in S∗. J

From Lemma 19, it follows that in order to obtain a 2α-approximation algorithm for the
ordering problem, it suffices to obtain an α-approximation algorithm for Problem (2). We
show that we can actually obtain an FPTAS for this optimization problem by re-casting it
as a modified knapsack problem.

Without loss of generality we assume that the jobs are sorted in the order of Smith’s rule,
i. e., ∆1/o1 ≤ . . . ≤ ∆n/on. Assuming rational input we can find integers Q and qi such that
oi = qi/Q for all i. Since the objective function in Problem (2) is linear, it suffices to consider
the optimization problem in which the objective function is scaled by Q. Problem (2) can
then be recast as follows:

min
n∑
i=1

∆i

n∑
j=i

qjxj +
n∑
i=1

Q∆i(1− xi) (5)

s. t.
n∑
i=1

qixi ≤ Q, (6)

xi ∈ {0, 1} for all i = 1, . . . , n. (7)

APPROX/RANDOM’14

368 Robust Appointment Scheduling

Let x′ be an optimal solution to the modified knapsack problem given by (5)-(7). Then
an optimal solution S′ of Problem (2) can be obtained as S′ = {i ∈ N : x′i = 1}. This
problem can be solved in pseudo-polynomial time using dynamic programming, as stated in
the following lemma.

I Lemma 20. The modified knapsack problem given by (5)-(7) can be solved in pseudo-
polynomial time by dynamic programming.

Proof. We reduce the problem of solving the modified knapsack problem to that of the
shortest path problem in a graph. For a problem instance corresponding to (5)-(7), we
construct the corresponding graph G as follows. The nodes in the graph are indexed by (i, v)
for 1 ≤ i ≤ n+ 1 and 0 ≤ v ≤ Q, where i corresponds to a job and v corresponds to the total
contribution to the overage cost based on whether we decide to select the jobs for set S or
not. From each node (i, v), there are at most two outgoing arcs:

1. Arc to node (i− 1, v + qi) of cost ∆i(v + qi), provided v + qi ≤ Q (this corresponds to
choosing job i for set S).

2. Arc to node (i− 1, v) of cost ∆iQ (this corresponds to not choosing job i for the set S).
All the nodes of the form (1, v) in the graph are connected to a terminal node T . The optimal
solution of the modified problem corresponds to a shortest path in graph G from the node
(n+ 1, 0) to the node T . Since there are O(nQ) nodes and arcs in the graph, the shortest
path problem (and hence the modified knapsack problem) can be solved in the same amount
of time. J

Similar to the FPTAS for the knapsack problem [11], we can obtain an FPTAS for the
modified knapsack problem.

I Lemma 21. There exists an FPTAS for the modified knapsack problem given by (5)-(7).

Proof. The objective function (5) can be written as g(x) =
∑n
i=1 aixi +

∑n
i=1 bi(1 − xi),

where ai = ∆i

∑i
j=1 qj and bi = ∆iQ for i = 1, . . . , n. Let C = maxi(ai, bi). Consider the

modified objective function given by

g′(x) =
n∑
i=1

a′ixi +
n∑
i=1

b′i(1− xi), (8)

where a′i = bain/εCc and b′i = bbin/εCc. In g′(x), all the coefficients have value at most n/ε.
Using the dynamic programming algorithm given in the proof of Lemma 20, the problem
with the modified objective function can be solved in O((n2/ε)) time, which is polynomial
in n and 1/ε. It remains to show that the optimal solution for the problem with objective
function g′(x) is a (1 + ε)-approximation to the optimal solution of the problem with the
original objective function g.

Let S∗ (resp. S′) correspond to the set of all jobs for which the corresponding variable
xi is 1 in the optimal solution for the objective function g(x) (resp. g′(x)). Then, an upper

S. Mittal, A. S. Schulz, and S. Stiller 369

bound on the objective function value of the solution S′ is given by

g(S′) =
∑
i∈S′

ai +
∑
i/∈S′

bi

= εC

n

∑
i∈S′

ain

εC
+ εC

n

∑
i/∈S′

bin

εC

≤ εC

n

∑
i∈S′

(⌊ain
εC

⌋
+ 1
)

+ εC

n

∑
i/∈S′

(⌊
bin

εC

⌋
+ 1
)

≤ εC

n
g′(S′) + εC

≤ εC

n
g′(S∗) + εC,

where the last inequality follows from the fact that S′ is an optimal solution for the objective
function g′. Further, a lower bound on the objective function value of the optimal solution
S∗ is as follows:

g(S∗) =
∑
i∈S∗

ai +
∑
i/∈S∗

bi

≥ εC

n

(∑
i∈S∗

⌊ain
εC

⌋
+
∑
i/∈S∗

⌊
bin

εC

⌋)

= εC

n
g′(S∗).

Putting both inequalities together, it follows that g(S′) ≤ g(S∗) + εC ≤ (1 + ε)g(S∗),
as g(S∗) ≥ C. Therefore, S′ is a (1 + ε)-approximate solution to the modified knapsack
problem. J

Putting the pieces together gives the first constant-factor approximation algorithm for
the ordering problem.

I Theorem 22. There is a (2 + ε)-approximation algorithm for the robust appointment
scheduling and ordering problem.

Proof. Follows from Lemma 19 and Lemma 21. J

An advantage of the (2 + ε)-approximation algorithm, apart from being ad hoc and
using problem-specific insights, is that the jobs in the “non-Smith" part of the sequence
can be scheduled in arbitrary order, which is especially appealing from a practical point of
view. Interestingly, Lemma 18 actually opens the door to the use of more general machinery
developed for the family of single-machine scheduling problems 1| |

∑
wjf(Cj). Indeed,

Lemma 18 implies that the robust appointment scheduling and ordering problem is equivalent
to a single-machine scheduling problem of this type, where f is increasing and concave. For
arbitrary concave f , it was shown in [19] that Smith’s rule yields an approximation guarantee
of (
√

3 + 1)/2. With the help of the theory developed in [10], one can actually get a refined
approximation factor of 1.137 for Smith’s rule for the particular concave function encountered
here. Moreover, it follows from recent work (see [19, 14]) on 1| |

∑
wjf(Cj) with concave

resp. non-decreasing functions f that there is in fact a PTAS for the robust appointment
scheduling and ordering problem.

We leave the computational complexity of the robust appointment scheduling and ordering
problem as an open problem, and note that it is also unknown whether minimizing (monotone)
concave functions over supermodular polyhedra is NP-hard.

APPROX/RANDOM’14

370 Robust Appointment Scheduling

Acknowledgments. The authors thank Mehmet Begen, Diwakar Gupta, Jim Orlin, Larry
Robinson, David Shmoys, and Jose Verschae for stimulating discussions.

References
1 Mehmet A. Begen, Retsef Levi, and M. Queyranne. A sampling-based approach to ap-

pointment scheduling. Technical report, Sauder School of Business, University of British
Columbia, 2008. Working Paper.

2 Mehmet A. Begen and Maurice Queyranne. Appointment scheduling with discrete random
durations. Mathematics of Operations Research, 36:240–257, 2011.

3 Aharon Ben-Tal and Arkadi Nemirovski. Robust optimization - methodology and applica-
tions. Mathematical Programming, 92:453–480, 2002.

4 Dimitris Bertsimas and Melvyn Sim. The price of robustness. Operations Research, 52:35–
53, 2004.

5 T. Cayirli and E. Veral. Outpatient scheduling in healthcare: a review of literature. Pro-
duction and Operations Management, 12:519–549, 2003.

6 Brian Denton and Diwakar Gupta. A sequential bounding approach for optimal appoint-
ment scheduling. IIE Transactions, 35:1003–1016, 2003.

7 Satoru Fujishige. Submodular Functions and Optimization, volume 58 of Annals of Discrete
Mathematics. Elsevier, 2005. 2nd edition.

8 Linda V. Green, Sergei Savin, and Ben Wang. Managing patient service in a diagnostic
medical facility. Operations Research, 54:11–25, 2006.

9 Diwakar Gupta. Surgical suites’ operations management. Productions and Operations
Management, 16:689–700, 2007.

10 Wiebke Höhn and Tobias Jacobs. On the performance of Smith’s rule in single-machine
scheduling with nonlinear cost. In LATIN, pages 482–493, 2012.

11 Oscar H. Ibarra and Chul E. Kim. Fast approximation algorithms for the knapsack and
sum of subset problems. Journal of the ACM, 22:463–468, 1975.

12 Satoru Iwata. Submodular function minimization. Mathematical Programming, 112:45–64,
2008.

13 Guido C. Kandoorp and Ger Koole. Optimal outpatient appointment scheduling. Health
Care Management Science, 10:217–229, 2007.

14 Nicole Megow and José Verschae. Dual techniques for scheduling on a machine with varying
speed. In ICALP, pages 745–756, 2013.

15 James B. Orlin. A faster strongly polynomial time algorithm for submodular function
minimization. Mathematical Programming, 118:237–251, 2009.

16 Maurice Queyranne. Structure of a simple scheduling polyhedron. Mathematical Program-
ming, 58:263–285, 1993.

17 Lawrence W. Robinson and Rachel R. Chen. Scheduling doctor’s appointments: Optimal
and empirically-based heuristic policies. IIE Transactions, 35:295–307, 2003.

18 W. E. Smith. Various optimizers for single-stage production. Naval Research Logistics
Quarterly, 3:59–66, 1956.

19 Sebastian Stiller and Andreas Wiese. Increasing speed scheduling and flow scheduling. In
ISAAC, pages 279–290, 2010.

20 P. Patrick Wang. Static and dynamic scheduling of customer arrivals to a single-server
system. Naval Research Logistics, 40:345–360, 1993.

21 P. Patrick Wang. Sequencing and scheduling n customers for a stochastic server. European
Journal of Operational Research, 119:729–738, 1999.

	Introduction
	Appointment Scheduling and Ordering
	Robust Appointment Scheduling (with Fixed Job Order)
	Robust Appointment Scheduling and Ordering

