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Abstract
The expansion of a hypergraph, a natural extension of the notion of expansion in graphs, is defined
as the minimum over all cuts in the hypergraph of the ratio of the number of the hyperedges cut
to the size of the smaller side of the cut. We study the Hypergraph Small Set Expansion problem,
which, for a parameter δ ∈ (0, 1/2], asks to compute the cut having the least expansion while
having at most δ fraction of the vertices on the smaller side of the cut. We present two algorithms.
Our first algorithm gives an Õ(δ−1√logn) approximation. The second algorithm finds a set with
expansion Õ(δ−1(

√
dmaxr−1 log r φ∗+φ∗)) in a r–uniform hypergraph with maximum degree dmax

(where φ∗ is the expansion of the optimal solution). Using these results, we also obtain algorithms
for the Small Set Vertex Expansion problem: we get an Õ(δ−1√logn) approximation algorithm
and an algorithm that finds a set with vertex expansion O

(
δ−1
√
φV log dmax + δ−1φV

)
(where

φV is the vertex expansion of the optimal solution).
For δ = 1/2, Hypergraph Small Set Expansion is equivalent to the hypergraph expansion

problem. In this case, our approximation factor of O(
√

logn) for expansion in hypergraphs
matches the corresponding approximation factor for expansion in graphs due to Arora, Rao, and
Vazirani.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Approximation Algorithms, Graph Expansion, Hypergraph Expansion,
Vertex Expansion

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2014.339

1 Introduction

The expansion of a hypergraph, a natural extension of the notion of expansion in graphs, is
defined as follows.

I Definition 1 (Hypergraph Expansion). Given a hypergraph H = (V,E) on n vertices (each
edge e ∈ E of H is a subset of vertices), we say that an edge e ∈ E is cut by a set S if
e ∩ S 6= ∅ and e ∩ S̄ 6= ∅ (i.e. some vertices in e lie in S and some vertices lie outside of S).
We denote the set of edges cut by S by Ecut(S). The expansion φ(S) of a set S ⊂ V (S 6= ∅,
S 6= V ) in a hypergraph H = (V,E) is defined as φ(S) = |Ecut(S)|

min(|S|,|S̄|) .
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Hypergraph expansion and related hypergraph partitioning problems are of immense
practical importance, having applications in parallel and distributed computing (Catalyurek
and Aykanat [5]), VLSI circuit design and computer architecture (Karypis et al. [8]), scientific
computing (Devine et al. [7]) and other areas. In spite of this, there has not been much
theoretical work on them. In this paper, we study a generalization of the Hypergraph
Expansion problem, namely the Hypergraph Small Set Expansion problem.

I Problem 2 (Hypergraph Small Set Expansion Problem). Given a hypergraph H = (V,E)
and a parameter δ ∈ (0, 1/2], the Hypergraph Small Set Expansion problem (H-SSE) is to
find a set S ⊂ V of size at most δn that minimizes φ(S). The value of the optimal solution
to H-SSE is called the small set expansion of H. That is, for δ ∈ (0, 1/2], the small set
expansion φ∗H,δ of a hypergraph H = (V,E) is defined as φ∗H,δ = min S⊂V

0<|S|≤δn
φ(S).

Note that for δ = 1/2, the Hypergraph Small Set Expansion Problem is the Hypergraph
Expansion Problem.

Small Set Expansion in graphs has attracted a lot of attention recently. The problem was
introduced by Raghavendra and Steurer [15], who showed that it is closely related to the
Unique Games problem. Raghavendra, Steurer and Tetali [16] designed an algorithm for SSE
that finds a set of size O(δn) with expansion O(

√
φ∗d log(1/δ)) in d regular graphs (where

φ∗ is the expansion of the optimal solution). Later Bansal, Feige, Krauthgamer, Makarychev,
Nagarajan, Naor, and Schwartz gave a O(

√
logn log(1/δ)) approximation algorithm for the

problem.
We present analogs of the results of Bansal et al. [4] and Raghavendra, Steurer and

Tetali [16] for hypergraphs. Our first result is an Õ(δ−1√logn) approximation algorithm1

for H-SSE (see Theorem 3). Our second result is an algorithm that finds a set with
expansion at most Õ

(
δ−1

(√
dmax

log r
r φ∗H,δ + φ∗H,δ

))
if H is an r–uniform hypergraph with

maximum degree dmax (see Theorem 4; the result also applies to non-uniform hypergraphs,
see Theorem 21).

We note that H-SSE can be reduced to SSE (small set expansion in graphs) if all
hyperedges have bounded size. Let r be the size of the largest hyperedge in H. Construct
an auxiliary (weighted) graph F on V as follows: pick a vertex in each hyperedge e and
connect it in F to all other vertices of e (i.e. replace e with a star); let the weight of an edge
f in F be the total weight of the hyperedges e ∈ E for which f is part of the representative
star of e. Then solve SSE in the graph F . It is easy to see that if we solve SSE using an α
approximation algorithm, then we get (r−1)α approximation for H-SSE. This approach gives
O(
√

logn log(1/δ)) approximation if r is bounded. However, if H is an arbitrary hypergraph,
we only get an O(n

√
logn log(1/δ)) approximation. The goal of this paper is to give an

approximation guarantee valid for hypergraphs with hyperedges of arbitrary size. We now
formally state our main results.

I Theorem 3. There is a randomized polynomial-time approximation algorithm for the
Hypergraph Small Set Expansion problem that given a hypergraph H = (V,E), and parameters
ε ∈ (0, 1) and δ ∈ (0, 1/2), finds a set S ⊂ V of size at most (1 + ε)δn such that

φ(S) ≤ Oε
(
δ−1 log δ−1 log log δ−1 ·

√
logn · φ∗H,δ

)
= Õε

(
δ−1√lognφ∗H,δ

)
,

(where the constant in the O notation depends polynomially on 1/ε). That is, the algorithm
gives O(

√
logn) approximation when δ and ε are fixed.

1 The Õ–notation hides a log δ−1 log log δ−1 term.
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We state our second result, Theorem 4, for r-uniform hypergraphs. We present and prove a
more general Theorem 21 that applies to any hypergraphs in Section 6.

I Theorem 4. There is a randomized polynomial-time algorithm for the Hypergraph Small
Set Expansion problem that given an r–uniform hypergraph H = (V,E) with maximum degree
dmax, and parameters ε ∈ (0, 1) and δ ∈ (0, 1/2) finds a set S ⊂ V of size at most (1 + ε)δn
such that

φ(S) ≤ Õε

(
δ−1

(√
dmax

log r
r

φ∗H,δ + φ∗H,δ

))
.

Our algorithms for H-SSE are bi-criteria approximation algorithms in that they output a
set S of size at most (1 + ε)δn. We note that this is similar to the algorithm of Bansal et
al. [4] for SSE, which also finds a set of size at most (1 + ε)δn rather than a set of size at
most δn. The algorithm of Raghavendra, Steurer and Tetali [16] finds a set of size O(δn).
The approximation factor of our first algorithm does not depend on the size of hyperedges in
the input hypergraph. It has the same dependence on n as the algorithm of Bansal et al. [4]
for SSE. However, the dependence on 1/δ is quasi-linear; whereas it is logarithmic in the
algorithm of Bansal et al. [4]. In fact, we show that the integrality gap of the standard SDP
relaxation for H-SSE is at least linear in 1/δ (Theorem 22). The approximation guarantee
of our second algorithm is analogous to that of the algorithm of Raghavendra, Steurer and
Tetali [16].

Small Set Vertex Expansion

Our techniques can also be used to obtain an approximation algorithm for Small Set Vertex
Expansion (SSVE) in graphs.

I Problem 5 (Small Set Vertex Expansion Problem). Given graph G = (V,E), the vertex
expansion of a set S ⊂ V is defined as

φV (S) = |{u ∈ S̄ : ∃ v ∈ S such that {u, v} ∈ E}|
|S|

Given a parameter δ ∈ (0, 1/2], the Small Set Vertex Expansion problem (SSVE) is to find a
set S ⊂ V of size at most δn that minimizes φV (S). The value of the optimal solution to
SSVE is called the small set vertex expansion of G. That is, for δ ∈ (0, 1/2], the small set
expansion φVG,δ of a graph G = (V,E) is defined as

φVG,δ = min
S⊂V

0<|S|≤δn

φV (S).

Small Set Vertex Expansion recently gained interest due to its connection to obtaining sub-
exponential-time, constant factor approximation algorithms for many combinatorial problems
like Sparsest Cut and Graph Coloring [1, 12]. Using a reduction from vertex expansion in
graphs to hypergraph expansion, we can get an approximation algorithm for SSVE having
the same approximation guarantee as that for H-SSE.

I Theorem 6. There exist absolute constants c1, c2 ∈ R+ such that for every graph G =
(V,E), there exists a polynomial time computable hypergraph H = (V ′, E′) such that c1φ∗H,δ ≤
φVG,δ ≤ c2φ∗H,δ. Also, ηHmax ≤ log2(dmax + 1), where dmax is the maximum degree of G (where
ηHmax is defined in Definition 20).

APPROX/RANDOM’14
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From this theorem, Theorem 3 and Theorem 21 we immediately get algorithms for SSVE.

I Theorem 7 (Corollary to Theorem 3 and Theorem 6). There is a randomized polynomial-time
approximation algorithm for the Small Set Vertex Expansion problem that given a graph
G = (V,E), and parameters ε ∈ (0, 1) and δ ∈ (0, 1/2)) finds a set S ⊂ V of size at most
(1 + ε)δn such that

φV (S) ≤ Oε
(√

logn δ−1 log δ−1 log log δ−1 · φVG,δ
)
,

That is, the algorithm gives O(
√

logn) approximation when δ and ε are fixed.

I Theorem 8 (Corollary to Theorem 21 and Theorem 6). There is a randomized polynomial-
time algorithm for the Small Set Vertex Expansion problem that given a graph G = (V,E) of
maximum degree dmax, parameters ε ∈ (0, 1) and δ ∈ (0, 1/2) finds a set S ⊂ V of size at
most (1 + ε)δn such that

φV (S) ≤ Oε
(√

φVG,δ log dmax · δ−1 log δ−1 log log δ−1 + δ−1φVG,δ

)
= Õε

(
δ−1
√
φVG,δ log dmax + δ−1φVG,δ

)
.

We note that the Small Set Vertex Expansion problem for δ = 1/2 is just the Vertex
Expansion problem. In that case, Theorem 8 gives the same approximation guarantee as the
algorithm of Louis, Raghavendra and Vempala [13].

Techniques. Our general approach to solving H-SSE is similar to the approach of Bansal et
al. [4]. We recall how the algorithm of Bansal et al. [4] for (graph) SSE works. The algorithm
solves a semidefinite programming relaxation for SSE and gets an SDP solution. The SDP
solution assigns a vector ū to each vertex u. Then the algorithm generates an orthogonal
separator. Informally, an orthogonal separator S with distortion D is a random subset of
vertices such that
(a) If ū and v̄ are close to each other then the probability that u and v are separated by S

is small; namely, it is at most αD‖ū− v̄‖2, where α is a normalization factor such that
Pr (u ∈ S) = α‖ū‖2.

(b) If the angle between ū and v̄ is larger than a certain threshold, then the probability that
both u and v are in S is much smaller than the probability that one of them is in S.

Bansal et al. [4] showed that condition (b) together with SDP constraints implies that S is
of size at most (1 + ε)δn with sufficiently high probability. Then condition (a) implies that
the expected number of cut edges is at most D times the SDP value. That means that S is
a D–approximate solution to SSE.

If we run this algorithm on an instance of H-SSE, we will still find a set of size at most
(1 + ε)δn, but the cost of the solution might be very high. Indeed, consider a hyperedge e.
Even though every two vertices u and v in e are unlikely to be separated by S, at least one
pair out of

(|e|
2
)
pairs of vertices is quite likely to be separated by S; hence, e is quite likely

to be cut by S. To deal with this problem, we develop hypergraph orthogonal separators. In
the definition of a hypergraph orthogonal separator, we strengthen condition (a) by requiring
that a hyperedge e is cut by S with small probability if all vertices in e are close to each
other. Specifically, we require that

Pr (e is cut by S) ≤ αD max
u,v∈e

‖ū− v̄‖2. (1)
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We show that there is a hypergraph orthogonal separator with distortion proportional to√
logn (the distortion also depends on parameters of the orthogonal separator). Plugging

this hypergraph orthogonal separator in the algortihm of Bansal et al. [4], we get Theorem 3.
We also develop another variant of hypergraph orthogonal separators, `2–`22 orthogonal
separators. An `2–`22 orthogonal separator with `2–distortion D`2(r) and `22–distortion D`2

2
satisfies the following condition2

Pr (e is cut by S) ≤ αD`2(|e|) · min
w∈E
‖w̄‖ · max

u,v∈e
‖ū− v̄‖+ αD`2

2
· max
u,v∈e

‖ū− v̄‖2. (2)

We show that there is an `2-`22 hypergraph orthogonal separator whose `2 and `22 distortions
do not depend on n (in contrast, there is no hypergraph orthogonal separator whose distortion
does not depend on n). This result yields Theorem 4.

We now give a brief conceptual overview of our construction of hypergraph orthogonal
separators. We use the framework developed by Chlamtac, Makarychev, and Makarychev
in [6, Section 4.3] for (graph) orthogonal separators. For simplicity, we ignore vector
normalization steps in this overview; we do not explain how we take into account vector
lengths. Note, however, that these normalization steps are crucial. We first design a procedure
that partitions the hypergraph into two pieces (the procedure labels every vertex with either 0
or 1). In a sense, each set S in the partition is a “very weak” hypergraph orthogonal separator.
It satisfies property (1) with D0 ∼

√
logn log log(1/δ) and α0 = 1/2 and a weak variant of

property (b): if the angle between vectors ū and v̄ is larger than the threshold then events
u ∈ S and v ∈ S are “almost” independent. We repeat the procedure l = log2(1/δ) +O(1)
times and obtain a partition of graph into 2l = O(1/δ) pieces. Then we randomly choose one
set S among them; this set S is our hypergraph orthogonal separator. Note that by running
the procedure many times we decrease exponentially in l the probability that two vertices,
as in condition (b), belong to S. So condition (b) holds for S. Also, we affect the distortion
in (1) in two ways. First, the probability that the edge is cut increases by a factor of l. That
is, we get Pr (e is cut by S) ≤ l × α0D0 maxu,v∈e ‖ū− v̄‖2. Second, the probability that we
choose a vertex u goes down from ‖ū‖2/2 to Ω(δ)‖ū‖2 since roughly speaking we choose
one set S among O(1/δ) possible sets. That is, the parameter α of S is Ω(δ). Therefore,
Pr (e is cut by S) ≤ α(α0lD0/α) maxu,v∈e ‖ū− v̄‖2. That is, we get a hypergraph orthogonal
separator with distortion (α0lD0/α) ∼ Õ(δ−1√logn). The construction of `2–`22 orthogonal
separators is similar but a bit more technical.

Organization. We present our SDP relaxation and introduce our main technique, hyper-
graph orthogonal separators, in Section 2. We describe our first algorithm for H-SSE in
Section 3, and then describe an algorithm that generates hypergraph orthogonal separators
in Section 4. We define `2–`22 hypergraph orthogonal separators, give an algorithm that
generates them, and then present our second algorithm for H-SSE in Section 5 and Section 6.
Finally, we show a simple SDP integrality gap for H-SSE in Section 7. This integrality gap
also gives a lower bound on the quality of m-orthogonal separators. We give a proof of
Theorem 6 in Section 8.

2 It may look strange that we have two terms in the bound. One may expect that we can either have
only term D`2

2
maxu,v∈e ‖ū− v̄‖2 (as in the previous definition) or only term D`2 (|e|) ·minw∈E ‖w̄‖ ·

maxu,v∈e ‖ū− v̄‖. However, the latter is not possible — there is no `2–`2
2 separator with D`2

2
= 0.

APPROX/RANDOM’14
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minimize
∑
e∈E

max
u,v∈e

‖ū− v̄‖2 (3)

subject to:∑
v∈V
〈ū, v̄〉 ≤ δn · ‖ū‖2 for every u ∈ V (4)∑

u∈V
‖ū‖2 = 1 (5)

‖ū− v̄‖2 + ‖v̄ − w̄‖2 ≥ ‖ū− w̄‖2 for every u, v, w ∈ V (6)
0 ≤ 〈ū, v̄〉 ≤ ‖u‖2 for every u, v ∈ V. (7)

Figure 1 SDP relaxation for H-SSE.

2 Preliminaries

2.1 SDP Relaxation for Hypergraph Small Set Expansion
We use the SDP relaxation for H-SSE shown in Figure 1. There is an SDP variable ū for
every vertex u ∈ V .

Every combinatorial solution S (with |S| ≤ δn) defines the corresponding (intended) SDP
solution: ū = e√

|S|
, if u ∈ S; ū = 0, otherwise, where e is a fixed unit vector. It is easy to

see that this solution satisfies all SDP constraints. Note that maxu,v∈e ‖ū− v̄‖2 is equal to
1/|S|, if e is cut, and to 0, otherwise. Therefore, the objective function equals∑

e∈E
max
u,v∈e

‖ū− v̄‖2 =
∑

e∈Ecut(S)

1
|S|

= Ecut(S)
S

= φ(S).

Thus our SDP for H-SSE is indeed a relaxation.

2.2 Hypergraph Orthogonal Separators
The main technical tool for proving Theorem 3 is hypergraph orthogonal separators. Orthogonal
separators were introduced by Chlamtac, Makarychev, and Makarychev [6] (see also Bansal
et al. [4], Louis and Makarychev [9], and Makarychev and Makarychev [14]) and were
previously used for solving Unique Games and various graph partitioning problems. In
this paper, we extend the technique of orthogonal separators to hypergraphs and introduce
hypergraph orthogonal separators. We then use hypergraph orthogonal separators to solve
H-SSE. In Section 5, we introduce another version of hypergraph orthogonal separators, `2–`22
hypergraph orthogonal separators, and then use them to prove Theorem 4 and Theorem 21.

I Definition 9 (Hypergraph Orthogonal Separators). Let {ū : u ∈ V } be a set of vectors in
the unit ball that satisfy `22–triangle inequalities (6) and (7). We say that a random set
S ⊂ V is a hypergraph m-orthogonal separator with distortion D ≥ 1, probability scale α > 0,
and separation threshold β ∈ (0, 1) if it satisfies the following properties.
1. For every u ∈ V , Pr(u ∈ S) = α‖ū‖2.
2. For every u and v such that ‖ū− v̄‖2 ≥ βmin(‖ū‖2, ‖v̄‖2)

Pr (u ∈ S and v ∈ S) ≤ αmin(‖ū‖2, ‖v̄‖2)
m

.

3. For every e ⊂ V , Pr (e is cut by S) ≤ αDmaxu,v∈e ‖ū− v̄‖2.
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The definition of a hypergraph m-orthogonal separator is similar to that of a (graph)
m-orthogonal separator: a random set S is an m-orthogonal separator if it satisfies proper-
ties 1, 2, and property 3′, which is property 3 restricted to edges e of size 2.

3′. For every (u, v), Pr (e is cut by S) ≤ αD‖ū− v̄‖2.
In this paper, we design an algorithm that generates a hypergraph m-orthogonal separator
with distortion Oβ(

√
logn ·m logm log logm). We note that the distortion of any hypergraph

orthogonal separator must depend on m at least linearly (see Section 7). We remark that
there are two constructions of (graph) orthogonal separators, “orthogonal separators via `1”
and “orthogonal separators via `2”, with distortions, Oβ(

√
logn logm) and Oβ(

√
logn logm),

respectively (presented in [6]). Our construction of hypergraph orthogonal separators uses
the framework of orthogonal separators via `1. We prove the following theorem in Section 4.

I Theorem 10. There is a polynomial-time randomized algorithm that given a set of vertices
V , a set of vectors {ū} satisfying `22–triangle inequalities (6) and (7), parameters m ≥ 2 and
β ∈ (0, 1), generates a hypergraph m-orthogonal separator with probability scale α ≥ 1/n and
distortion D = O(β−1m logm log logm×

√
logn).

3 Algorithm for Hypergraph Small Set Expansion

In this section, we present our algorithm for Hypergraph Small Set Expansion. Our algorithm
uses hypergraph orthogonal separators that we describe in Section 4. We use the approach
of Bansal et al. [4]. Suppose that we are given a polynomial-time algorithm that generates
hypergraph m-orthogonal separators with distortion D(m,β) (with probability scale α >
1/ poly(n)). We show how to get a D∗ = 4D(4/(εδ), ε/4) approximation for H-SSE.

I Theorem 11. There is a randomized polynomial-time approximation algorithm for the
Hypergraph Small Set Expansion problem that given a hypergraph H = (V,E), and parameters
ε ∈ (0, 1) and δ ∈ (0, 1/2) finds a set S ⊂ V of size at most (1 + ε)δn such that φ(S) ≤
4D(4/(εδ), ε/4) · φ∗H,δ.

Proof. We solve the SDP relaxation for H-SSE and obtain an SDP solution {ū}. Denote the
SDP value by sdp-cost. Consider a hypergraph orthogonal separator S with m = 4/(εδ) and
β = ε/4. Define a set S′:

S′ =
{
S, if |S| ≤ (1 + ε)δn,
∅, otherwise.

Clearly, |S′| ≤ (1 + ε)δn. Bansal et al. [4] showed that Pr(u ∈ S′) ∈
[
α
2 ‖ū‖

2, α‖ū‖2
]
for

every u ∈ V (see also Theorem A.1 in [14]). Note that

Pr (S′ cuts edge e) ≤ Pr (S cuts edge e) ≤ αD∗ max
u,v∈e

‖ū− v̄‖2.

where D∗ denotes D(4/(εδ), ε/4) for the sake of brevity. Let Z = |S′| − |Ecut(S′)|
4D∗·sdp-cost . We

have,

E [Z] = E [|S′|]− E [|Ecut(S′)|]
4D∗ · sdp-cost ≥

∑
u∈V

α

2 · ‖ū‖
2 −

∑
e∈E αD

∗maxu,v∈e ‖ū− v̄‖2

4D∗ · sdp-cost

= α

2 −
1

4D∗ · sdp-cost × αD
∗ sdp-cost = α

4 .

APPROX/RANDOM’14



346 Approximation Algorithms for Small Set Expansion Problems

Since Z ≤ |S′| ≤ (1+ε)δn < n (always), by Markov’s inequality, we have Pr (Z > 0) ≥ α/(4n)
and hence Pr (|Ecut(S′)|/|S′| < 4D∗ · sdp-cost) ≥ α/(4n).

We sample S independently 4n/α times and return the first set S′ such that |Ecut(S′)|
|S′| <

4D∗ · sdp-cost. This gives a set S′ such that |S′| ≤ (1 + ε)δn, and φ(S′) ≤ 4D∗φ∗H,δ. The
algorithm succeeds (finds such a set S′) with a constant probability. By repeating the
algorithm n times, we can make the success probability exponentially close to 1. J

In Section 4, we describe how to generate an m-hypergraph orthogonal separator with
distortion D = O

(√
logn × β−1m logm log logm

)
. That gives us an algorithm for H-SSE

with approximation factor Oε
(
δ−1 log δ−1 log log δ−1 ×

√
logn

)
.

4 Generating Hypergraph Orthogonal Separators

In this section, we present an algorithm that generates a hypergraph m-orthogonal separator.
At the high level, the algorithm is similar to the algorithm for generating orthogonal separators
from Section 4.3 in [6]. We use a different procedure for generating words W (u) (see below)
and set parameters differently; also the analysis of our algorithm is different.

In our algorithm, we use a “normalization” map ϕ from [6]. Map ϕ maps a set {ū} of
vectors satisfying `22–triangle inequalities (6) and (7) to Rn. It has the following properties.
1. For all vertices u, v, w, ‖ϕ(ū)− ϕ(v̄)‖22 + ‖ϕ(v̄)− ϕ(w̄)‖22 ≥ ‖ϕ(ū)− ϕ(w̄)‖22.
2. For all nonzero vertices u and v, 〈ϕ(ū), ϕ(v̄)〉 = 〈ū,v̄〉

max(‖ū‖2,‖v̄‖2) .
3. In particular, for every ū 6= 0, ‖ϕ(ū)‖22 = 〈ϕ(ū), ϕ(ū)〉 = 1. Also, ϕ(0) = 0.
4. For all non-zero vectors ū and v̄, ‖ϕ(ū)− ϕ(v̄)‖22 ≤

2 ‖ū−v̄‖2

max(‖ū‖2,‖v̄‖2) .

We also use the following theorem of Arora, Lee, and Naor [2] (see also [3]).

I Theorem 12 (Arora, Lee, and Naor (2005), Theorem 3.1). There exist constants C ≥ 1 and
p ∈ (0, 1/4) such that for every n unit vectors xu (u ∈ V ), satisfying `22–triangle inequalities
(6), and every ∆ > 0, the following holds. There exists a random subset U of V such that

for every u, v ∈ V with ‖xu − xv‖2 ≥ ∆, Pr
(
u ∈ U and d(v, U) ≥ ∆

C
√

logn

)
≥ p, where

d(v, U) = minu∈U ‖xu − xv‖2.

First we describe an algorithm that randomly assigns each vertex u a symbol, either 0 or
1. Then we use this algorithm to generate an orthogonal separator.

I Lemma 13. There is a randomized polynomial-time algorithm that given a finite set V ,
unit vectors ϕ(ū) for u ∈ V satisfying `22-triangle inequalities and a parameter β ∈ (0, 1),
returns a random assignment ω : V → {0, 1} that satisfies the following properties.

For every u and v such that ‖ϕ(ū)− ϕ(v̄)‖2 ≥ β, we have Pr (ω(u) 6= ω(v)) ≥ 2p, where
p > 0 is the constant from Theorem 12.
For every set e ⊂ V of size at least 2,

Pr (ω(u) 6= ω(v) for some u, v ∈ e) ≤ O(β−1√logn max
u,v∈e

‖ϕ(ū)− ϕ(v̄)‖2).

Proof. Let U be the random set from Theorem 12 for vectors xu = ϕ(ū) and ∆ = β. Choose
t ∈ (0, 1/(C

√
logn)) uniformly at random. Let

ω(u) =
{

0, if d(Ui, u) ≤ t,
1, otherwise.
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Consider first vertices u and v such that ‖ϕ(ū)− ϕ(v̄)‖2 ≥ β. By Theorem 12,

Pr
(
u ∈ U and d(v, U) ≥ ∆

C
√

logn

)
≥ p and Pr

(
v ∈ U and d(u, U) ≥ ∆

C
√

logn

)
≥ p.

Note that in the former case, when u ∈ U and d(v, U) ≥ ∆
C
√

logn
, we have ω(u) = 0 and

ω(v) = 1; in the latter case, when v ∈ U and d(u, U) ≥ ∆
C
√

logn
, we have ω(v) = 0 and

ω(u) = 1. Therefore, the probability that ω(u) 6= ω(v) is at least 2p.
Now consider a set e ⊂ V of size at least 2. Let τm = minw∈e d(U,ϕ(w̄)) and τM =

maxw∈e d(U,ϕ(w̄)). We have, τM − τm ≤ maxu,v∈e ‖ϕ(ū)−ϕ(v̄)‖2. Note that if t < τm then
ω(u) = 1 for all u ∈ e; if t ≥ τM then ω(u) = 0 for all u ∈ e. Thus ω(u) 6= ω(v) for some
u, v ∈ e only if t ∈ [τm, τM ). Since the probability density of the random variable t is at most
C
√

logn, we get,

Pr (∃u, v ∈ e : ω(u) 6= ω(v)) ≤ Pr (t ∈ [τm, τM )) ≤ C
√

logn
β

max
u,v∈e

‖ū− v̄‖2.

J

We now amplify the result of Lemma 13.

I Lemma 14. There is a randomized polynomial time algorithm that given V , vectors ϕ(ū)
and β ∈ (0, 1) as in Lemma 13, and a parameter m ≥ 2, returns a random assignment
ω̃ : V → {0, 1} such that:

For every u and v such that ‖ϕ(ū)− ϕ(v̄)‖2 ≥ β, Pr (ω̃(u) 6= ω̃(v)) ≥ 1/2− 1/ log2m.
For every set e ⊂ V of size at least 2,

Pr (ω̃(u) 6= ω̃(v) for some u, v ∈ e) ≤ O(β−1√logn · log logm · max
u,v∈e

‖ϕ(ū)− ϕ(v̄)‖2).

We independently sample K = max
(⌈

log2 log2 m
− log2(1−4p)

⌉
, 1
)

assignments ω1, . . . , ωK , and let
ω̃(u) = ω1(u)⊕ · · · ⊕ ωK(u) (where ⊕ denotes addition modulo 2). It is easy to see that the
assignment ω̃ satisfies the required properties. We defer the proof to the full version of the
paper [10, Section E].

We are now ready to present our algorithm.

1. Set l = dlog2m/(1− log2(1 + 2/ log2m))e = log2m+O(1).
2. Sample l independent assignments ω̃1, . . . , ω̃l using Lemma 14.
3. For every vertex u, define word W (u) = ω̃1(u) . . . ω̃l(u) ∈ {0, 1}l.
4. If n ≥ 2l, pick a word W ∈ {0, 1}l uniformly at random. If n < 2l, pick a random word

W ∈ {0, 1}l so that PrW (W = W (u)) = 1/n for every u ∈ V . This is possible since the
number of distinct words constructed in step 3 is at most n (we may pick a word W not
equal to any W (u)).

5. Pick r ∈ (0, 1) uniformly at random.
6. Let S =

{
u ∈ V : ‖ū‖2 ≥ r and W (u) = W

}
.

I Theorem 15. Random set S is a hypergraph m-orthogonal separator with distortion
D = O

(√
logn× m logm log logm

β

)
, probability scale α ≥ 1/n and separation threshold β.

Proof. We verify that S satisfies properties 1–3 in the definition of a hypergraphm-orthogonal
separator with α = max(1/2l, 1/n).
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Property 1. We compute the probability that u ∈ S. Observe that u ∈ S if and only if
W (u) = W and r ≤ ‖ū‖2 (these two events are independent). If n ≥ 2l, the probability
that W = W (u) is 1/2l since we choose W uniformly at random from {0, 1}l; if n < 2l the
probability is 1/n. That is, Pr (W = W (u)) = max(1/2l, 1/n) = α. The probability that
r ≤ ‖ū‖2 is ‖ū‖2. We conclude that property 1 holds.

Property 2. Consider two vertices u and v such that ‖ū− v̄‖2 ≥ βmin(‖ū‖2, ‖v̄‖2). Assume
without loss of generality that ‖ū‖2 ≤ ‖v̄‖2. Note that u, v ∈ S if and only if r ≤ ‖ū‖2
and W = W (u) = W (v). We first upper bound the probability that W (u) = W (v). We
have, 2〈ū, v̄〉 = ‖ū‖2 + ‖v̄‖2 − ‖ū − v̄‖2 ≤ (1 − β)‖ū‖2 + ‖v̄‖2 ≤ (2 − β)‖v̄‖2. Therefore,
2〈ū, v̄〉/‖v̄‖2 ≤ 2−β. Hence, ‖ϕ(ū)−ϕ(v̄)‖2 = 2−2〈ϕ(ū), ϕ(v̄)〉 = 2− 2〈ū,v̄〉

max(‖ū‖2,‖v̄‖2) ≥ β = ∆.
From Lemma 14 we get that Pr (ω̃i(u) 6= ω̃i(v)) ≥ 1

2 −
1

log2 m
for every i. The probability

that W (u) = W (v) is at most ( 1
2 + 1

log2 m
)l ≤ 1/m. Therefore we have as required,

Pr (u ∈ S, v ∈ S) = Pr
(
r ≤ min(‖ū‖2, ‖v̄‖2)

)
×Pr (W = W (u) = W (v) |W (u) = W (v))

× Pr (W (u) = W (v)) ≤ min(‖ū‖2, ‖v̄‖2) × α × (1/m).

Property 3. Let e be an arbitrary subset of V , |e| ≥ 2. Let ρm = minw∈e ‖w̄‖2 and
ρM = maxw∈e ‖w̄‖2. Note that ρM−ρm = ‖w̄1‖2−‖w̄2‖2 ≤ ‖w̄1−w̄2‖2 ≤ maxu,v∈e ‖ū− v̄‖2,
for some w1, w2 ∈ e. Here we used that SDP constraint (7) implies that ‖w̄1‖2 − ‖w̄2‖2 ≤
‖w̄1 − w̄2‖2.

Let A =
{
u ∈ e : ‖ū‖2 ≥ r

}
. Note that S ∩ e = {u ∈ A : W (u) = W}. Therefore, if e is

cut by S then one of the following events happens.
Event E1: A 6= e and S ∩ e 6= ∅.
Event E2: A = e and A ∩ S 6= ∅, A ∩ S 6= A.

If E1 happens then r ∈ [ρm, ρM ] since A 6= e and A 6= ∅. We have,

Pr (E1) ≤ Pr (r ∈ (ρm, ρM ]) ≤ |ρM − ρm| ≤ max
u,v∈e

‖ū− v̄‖2.

If E2 happens then (1) r ≤ ρm (since A = e) and (2) W (u) 6= W (v) for some u, v ∈ e. The
probability that r ≤ ρm is ρm. We now upper bound the probability that W (u) 6= W (v) for
some u, v ∈ e. For each i ∈ {1, . . . , l},

Pr (ω̃i(u) 6= ω̃i(v) for some u, v ∈ e) ≤ O(β−1√logn · log logm) max
u,v∈e

‖ϕ(ū)− ϕ(v̄)‖2

≤ O(β−1√logn · log logm) max
u,v∈e

2‖ū− v̄‖2

min(‖ū‖2, ‖v̄‖2)
≤ O(β−1√logn · log logm)× ρ−1

m × max
u,v∈e

‖ū− v̄‖2.

By the union bound over i ∈ {1, . . . , l}, the probability that W (u) 6= W (v) for some
u, v ∈ e is at most O(l × β−1√logn · log logm)× ρ−1

m ×maxu,v∈e ‖ū− v̄‖2. Therefore,

Pr (E2) ≤ ρm ×O(l × β−1√logn log logm)× ρ−1
m × max

u,v∈e
‖ū− v̄‖2

≤ O(β−1√logn logm log logm)× max
u,v∈e

‖ū− v̄‖2.

We get that the probability that e is cut by S is at most

Pr (E1) + Pr (E2) ≤ O(β−1√logn logm log logm)× max
u,v∈e

‖ū− v̄‖2.

For D = O(β−1√logn logm log logm)/α we get Pr (e is cut by S) ≤ αDmaxu,v∈e ‖ū− v̄‖2.
Note that α ≥ 1/2l ≥ Ω(1/m). Thus D ≤ O(β−1√lognm logm log logm). J
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5 `2–`2
2 Hypergraph Orthogonal Separators

In this section, we present another variant of hypergraph orthogonal separators, which we
call `2–`22 hypergraph orthogonal separators. The advantage of `2–`22 hypergraph orthogonal
separators is that their distortions do not depend on n (the number of vertices). Then in
Section 6, we use `2–`22 hypergraph orthogonal separators to prove Theorem 21 (which, in
turn, implies Theorem 4).

I Definition 16 (`2–`22 Hypergraph Orthogonal Separator). Let {ū : u ∈ V } be a set of vectors
in the unit ball. We say that a random set S ⊂ V is a `2–`22 hypergraph m-orthogonal
separator with `2–distortion D`2 : N → R, `22–distortion D`2

2
, probability scale α > 0, and

separation threshold β ∈ (0, 1) if it satisfies the following properties.
1. For every u ∈ V , Pr(u ∈ S) = α‖ū‖2.
2. For every u and v such that ‖ū− v̄‖2 ≥ βmin(‖ū‖2, ‖v̄‖2)

Pr (u ∈ S and v ∈ S) ≤ αmin(‖ū‖2, ‖v̄‖2)
m

.

3. For every e ⊂ V ,

Pr (e is cut by S) ≤ αD`2
2
· max
u,v∈e

‖ū− v̄‖2 + αD`2(|e|) ·min
w∈e
‖barw‖ · max

u,v∈e
‖ū− v̄‖.

(This definition differs from Definition 9 only in item 3.)

I Theorem 17. There is a polynomial-time randomized algorithm that given a set of vertices
V , a set of vectors {ū} satisfying `22–triangle inequalities, and parameters m and β generates
an `2–`22 hypergraph m-orthogonal separator with probability scale α ≥ 1/n and distortions:

D`2
2

= O(m) and D`2(r) = O(β−1/2√log rm logm log logm).

Note that distortions D`2
2
and D`2 do not depend on n.

The algorithm and its analysis are very similar to those in the proof of Theorem 10.
The only difference is that we use another procedure to generate random assignments
ω : V → {0, 1}. The following lemma is an analog of Lemma 13.

I Lemma 18. There is a randomized polynomial time algorithm that given a finite set V ,
vectors ϕ(ū) for u ∈ V , satisfying `22 triangle inequalities, and a parameter β ∈ (0, 1), returns
a random assignment ω : V → {0, 1} that satisfies the following properties.

For every set e ⊂ V of size at least 2,

Pr (ω(u) 6= ω(v) for some u, v ∈ e) ≤ O(β−1/2√log |e|)× max
u,v∈e

‖ϕ(ū)− ϕ(v̄)‖.

For every u and v such that ‖ϕ(ū)− ϕ(v̄)‖2 ≥ β, Pr (ω(u) 6= ω(v)) ≥ 0.3.

Proof. We sample a random Gaussian vector g ∼ N (0, In) (each component gi of g is
distributed as N (0, 1), all random variables gi are mutually independent). Let N be a
Poisson process on R with rate 1/

√
β. Let w(u) = 1 if N(〈g, u〉) is even, and w(u) = 0 if

N(〈g, ϕ(ū)〉) is odd. Note that ω(u) = ω(v) if and only if N(〈g, ϕ(ū)〉)−N(〈g, ϕ(v̄)〉) is even.
Consider a set e ⊂ V of size at least 2. Denote diam(e) = maxu,v∈e ‖ϕ(ū)− ϕ(v̄)‖. Let

τm = minw∈e〈g, ϕ(w̄)〉 and τM = maxw∈e〈g, ϕ(w̄)〉. Note that

N(τm) = min
w∈e

N(〈g, ϕ(w̄)〉) and N(τM ) = max
w∈e

N(〈g, ϕ(w̄)〉).
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If all numbers N(〈g, ϕ(ū)〉) are equal then ω(u) = ω(v) for all u, v ∈ e. Thus if ω(u) 6= ω(v)
for some u, v ∈ e then N(〈g, ϕ(ū)〉) 6= N(〈g, ϕ(v̄)〉) for some u, v ∈ e. In particular, then
N(τM ) − N(τm) > 0. Given g, N(τM ) − N(τm) is a Poisson random variable with rate
(τM − τm)/

√
β. We have,

Pr (ω(u) 6= ω(v) for some u, v ∈ e | g) ≤ Pr (N(τM )−N(τm) > 0 | g)

= 1− e−(τM−τm)/
√
β ≤ β−1/2(τM − τm).

Let ξuv = 〈g, ϕ(ū)〉 − 〈g, ϕ(v̄)〉 for u, v ∈ e (u 6= v). Note that ξuv are Gaussian random
variables with mean 0, and

Var[ξuv] = Var[〈g, ϕ(ū)〉 − 〈g, ϕ(v̄)〉] = ‖ϕ(ū)− ϕ(v̄)‖2 ≤ diam(e)2

Note that the expectation of the maximum of (not necessarily independent) N Gaussian
random variables with standard deviation bounded by σ is O(

√
logNσ). We have,

E [τM − τm] = E
[

max
u,v∈e

(ξuv)
]

= O(
√

log |e| diam(e))

since the total number of random variables ξuv is |e|(|e| − 1). Therefore,

Pr (ω(u) 6= ω(v) for some u, v ∈ e) ≤ β−1/2 E [τM − τm]

= O(β−1/2√log |e| max
u,v∈e

‖ϕ(ū) − ϕ(v̄)‖).

We proved that ω satisfies the first property. Now we verify that ω satisfies the second
condition. Consider two vertices u and v with ‖ϕ(ū) − ϕ(v̄)‖2 ≥ β. Given g, the random
variable Z = N(〈g, ϕ(ū)〉)−N(〈g, ϕ(v̄)〉) has Poisson distribution with rate λ = |〈g, ϕ(ū)〉)−
〈g, ϕ(v̄)〉|/

√
β. We have,

Pr (Z is even | g) =
∞∑
k=0

Pr (Z = 2k | g) =
∞∑
k=0

e−λλ2k

(2k)! = 1 + e−2λ

2 .

Note that λ is the absolute value of a Gaussian random variable with mean 0 and standard
deviation σ = ‖ϕ(ū)− ϕ(v̄)‖/

√
β ≥ 1. Thus Pr (Z is even) = E

[
1 + e−2σ|γ|] /2, where γ is

a standard Gaussian random variable, γ ∼ N (0, 1). We have,

Pr (ω(u) 6= ω(v)) = E
[

1− e−2σ|γ|

2

]
≥ E

[
1− e−2|γ|

2

]
≥ 0.3.

J

Now we use the algorithm from Theorem 10 to obtain `2–`22 hypergraph orthogonal
separators. The only difference is that we use the procedure from Lemma 18 rather than from
Lemma 13 to generate assignments ω. We obtain a `2–`22 hypergraph orthogonal separator.

I Theorem 19. Random set S is a hypergraph m-orthogonal separator with distortion

D`2
2

= O(m) and D`2(r) = O(β−1/2√log rm logm log logm),

probability scale α ≥ 1/n and separation threshold β ∈ (0, 1).
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Proof. The proof of the theorem is almost identical to that of Theorem 15. We first check
conditions 1 and 2 of `2–`22 hypergraph orthogonal separators in the same way as we checked
conditions 1 and 2 of hypergraph orthogonal separators in Theorem 15. When we verify
that property 3 holds, we use bounds from Lemma 18. The only difference is how we upper
bound the probability of the event E2.

If E2 happens then (1) r ≤ ρm (since A = e) and (2) W (u) 6= W (v) for some u, v ∈ e.
The probability that r ≤ ρm is ρm. We upper bound the probability that W (u) 6= W (v) for
some u, v ∈ e. For each i ∈ {1, . . . , l},

Pr (ω̃i(u) 6= ω̃i(v) for some u, v ∈ e) ≤ O(β−1/2√log |e| log logm) max
u,v∈e

‖ϕ(ū)− ϕ(v̄)‖

≤ O(β−1/2√log |e| log logm) max
u,v∈e

‖ū− v̄‖
min(‖ū‖, ‖v̄‖)

≤ O(β−1/2√log |e| log logm)× ρ−1/2
m × max

u,v∈e
‖ū− v̄‖.

By the union bound over i ∈ {1, . . . , l}, the probability that W (u) 6= W (v) for some
u, v ∈ e is at most O(l × β−1/2√log |e| log logm)× ρ−1/2

m ×maxu,v∈e ‖ū− v̄‖. Therefore,

Pr (E2) ≤ ρm ×O(l × β−1/2√log |e| log logm)× ρ−1/2
m × max

u,v∈e
‖ū− v̄‖

≤ O(l × β−1/2√log |e| log logm)× ρ1/2
m × max

u,v∈e
‖ū− v̄‖.

We get that the probability that e is cut by S is at most

Pr (E1) + Pr (E2) ≤ max
u,v∈e

‖ū− v̄‖2 +O(l × β−1/2√log |e| log logm) ρ1/2
m max

u,v∈e
‖ū− v̄‖

≤ max
u,v∈e

‖ū− v̄‖2 +O(l × β−1/2√log |e| log logm) min
w∈e
‖w̄‖ max

u,v∈e
‖ū− v̄‖.

For D`2
2

= 1/α and D`2(r) = O(β−1/2√log r logm log logm)/α, we get

Pr (e is cut by S) ≤ αD`2
2
· max
u,v∈e

‖ū− v̄‖2 + αD`2(|e|) ·min
w∈e
‖w̄‖ · max

u,v∈e
‖ū− v̄‖.

Note that α ≥ 1/2l ≥ Ω(1/m). Thus

D`2
2

= O(m) and D`2(r) = O(β−1/2√log rm logm log logm).

J

6 Algorithm for Hypergraph Small Set Expansion via `2–`2
2

Hypergraph Orthogonal Separators

In this section, we present another algorithm for Hypergraph Small Set Expansion. The
algorithm finds a set with expansion proportional to

√
φ∗G,δ. The proportionality constant

depends on degrees of vertices and hyperedge size but not on the graph size. Here, we present
our result for arbitrary hypergraphs. The result for uniform hypergraphs (Theorem 4) stated
in the introduction follows from our general result. In order to state our result for arbitrary
graphs, we need the following definition.

I Definition 20. Consider a hypergraph H = (V,E). Suppose that for every edge e we are
given a non-empty subset e◦ ⊆ e. Let

η(u) =
∑
e:u∈e◦

log2 |e|
|e◦|

and ηmax = max
u∈V

η(u).

Finally, let ηHmax be the minimum of ηmax over all possible choices of subsets e◦.
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I Claim 6.1. 1. ηHmax ≤ maxu∈V
∑
e:u∈e(log2 |e|)/|e|.

2. If H is a r-uniform graph with maximum degree dmax then ηHmax ≤ (dmax log2 r)/r.
3. Suppose that we can choose one vertex in every edge so that no vertex is chosen more

than once. Then ηHmax ≤ log2 rmax, where rmax is the size of the largest hyperedge in H.

Proof.
1. Let e◦ = e for every e ∈ E. We have, ηHmax ≤ maxu∈V

∑
e:u∈e(log2 |e|)/|e|.

2. By 1, ηHmax ≤ maxu∈V
∑
e:u∈e(log2 |e|)/|e| = maxu∈V

∑
e:u∈e(log2 r)/r = (dmax log2 r)/r.

3. For every edge e ∈ E, let e◦ be the set that contains the vertex chosen for e. Then
|e◦| = 1 and |{e : u ∈ e◦}| ≤ 1 for every u. We have,

ηHmax ≤ max
u∈V

∑
e:u∈e◦

log2 |e|
|e◦|

≤ max
u∈V

∑
e:u∈e◦

log2 rmax
1 = log2 rmax.

J

I Theorem 21. There is a randomized polynomial-time algorithm for the Hypergraph Small
Set Expansion problem that given a hypergraph H = (V,E), and parameters ε ∈ (0, 1) and
δ ∈ (0, 1/2], finds a set S ⊂ V of size at most (1 + ε)δn such that

φ(S) ≤ Oε
(
δ−1 log δ−1 log log δ−1

√
ηHmax · φ∗H,δ + δ−1φ∗H,δ

)
= Õε

(
δ−1

(√
ηHmaxφ

∗
H,δ + φ∗H,δ

))
,

In particular, if H is an r-uniform hypergraph with maximum degree dmax , then we have,

φ(S) ≤ Õε

(
δ−1

(√
dmax

log2 r

r
φ∗H,δ + φ∗H,δ

))
.

Proof. The proof is similar to that of Theorem 11. We solve the SDP relaxation for H-SSE
and obtain an SDP solution {ū}. Denote the SDP value by sdp-cost. Consider an `2–`22
hypergraph orthogonal separator S with m = 4/(εδ) and β = ε/4. Define a set S′:

S′ =
{
S, if |S| ≤ (1 + ε)δn,
∅, otherwise.

Clearly, |S′| ≤ (1 + ε)δn. As in the proof of Theorem 11, Pr(u ∈ S′) ∈
[
α
2 ‖ū‖

2, α‖ū‖2
]
. Note

that

Pr (S′ cuts edge e) ≤ Pr (S cuts edge e) ≤ αD`2 max
u,v∈e

‖ū−v̄‖2+αD`2(r) min
w∈e
‖w̄‖ max

u,v∈e
‖ū−v̄‖.

Let C = α−1E [|Ecut(S′)|]. Let Z = |S′| − |Ecut(S′)|
4C . We have,

E [Z] = E [|S′|]− E
[
|Ecut(S′)|

4C

]
≥
∑
u∈V

α

2 · ‖ū‖
2 = α

2 −
α

4 = α

4 .
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Now we upper bound C. Consider the optimal choice of e◦ for H in the definition of ηHmax.

C = α−1E [|Ecut(S′)|] ≤ α−1
∑
e∈E

Pr (e is cut by S)

≤ D`2
2

∑
e∈E

max ‖ū− v̄‖2 +
∑
e∈E

D`2(|e|) min
w∈e
‖w̄‖ max

u,v∈e
‖ū− v̄‖

≤ D`2
2
· sdp-cost +

∑
e∈E

D`2(|e|)
∑
w∈e◦

(
‖w̄‖
|e◦|

)
× max
u,v∈e

‖ū− v̄‖

≤ D`2
2
· sdp-cost +

∑
e∈E

∑
w∈e◦

D`2(|e|)‖w̄‖√
|e◦|

× maxu,v∈e ‖ū− v̄‖√
|e◦|

≤ D`2
2
· sdp-cost +

√∑
e∈E

∑
w∈e◦

D`2(|e|)2‖w̄‖2
|e◦|

√∑
e∈E

∑
w∈e◦

maxu,v∈e ‖ū− v̄‖2
|e◦|

≤ D`2
2
· sdp-cost +

√∑
w∈V

∑
e:w∈e◦

D`2(|e|)2

|e◦|
‖w̄‖2

√
sdp-cost.

For every vertex w,∑
e:w∈e◦

D`2(|e|)2

|e◦|
≤ Oβ(m logm log logm)2

∑
e:w∈e◦

log2 |e|
|e◦|

≤ Oβ(m logm log logm)2 × ηHmax.

and
∑
w∈V ‖w̄‖2 = 1. Therefore, C ≤ Oβ

(
m sdp-cost +m logm log logm

√
ηHmax · sdp-cost

)
.

By the argument from Theorem 11, we get that if we sample S′ sufficiently many times (i.e.,
(4n2/α) times), we will find a set S′ such that

|Ecut(S′)|
|S′|

≤ 4C ≤ Oβ
(
δ−1 log δ−1 log log δ−1

√
ηHmax · sdp-cost + δ−1 sdp-cost

)
with probability exponentially close to 1. J

7 SDP Intgrality Gap

In this section, we present an integrality gap for the SDP relaxation for H-SSE. We also give
a lower bound on the distortion of a hypergraph m-orthogonal separator.

I Theorem 22. For δ = 1/r, the integrality gap of the SDP for H-SSE is at least 1/(2δ) = r/2.

Proof. Consider a hypergraph H = (V,E) on n = r vertices with one hyperedge e = V (e
contains all vertices). Note that the expansion of every set of size δn = 1 is 1. Thus φ∗H,δ = 1.

Consider an SDP solution that assigns vertices mutually orthogonal vectors of length
1/
√
r. It is easy to see this is a feasible SDP solution. Its value is maxu,v∈e ‖ū− v̄‖2 = 2/r.

Therefore, the SDP integrality gap is at least r/2. J

Now we give a lower bound on the distortion of hypergraph m-orthogonal separators.

I Lemma 23. For every m > 4, there is an SDP solution such that every hypergraph
m-orthogonal separator with separation threshold β ≥ 0 has distortion at least dme/4.

Proof. Consider the SDP solution from Theorem 22 for n = r = dme. Consider a hypergraph
m-orthogonal separator S for this solution. Let D be its distortion. Note that condition
(2) from the definition of hypergraph orthogonal separators applies to any pair of distinct
vertices (u, v) since 〈ū, v̄〉 = 0.
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By the inclusion–exclusion principle, we have,

Pr (|S| = 1) ≥
∑
u∈S

Pr (u ∈ S)− 1
2

∑
u,v∈S,u 6=v

Pr (u ∈ S, v ∈ S)

≥
∑
u∈S

α‖ū‖2 − 1
2

∑
u,v∈S,u 6=v

αmin(‖ū‖2, ‖v̄‖2)
m

= α− αn(n− 1)
2mr ≥ α/2.

On the other hand, if |S| = 1 then S cuts e. We have,

Pr (|S| = 1) ≤ Pr (S cuts e) ≤ αD max
u,v∈e

‖ū− v̄‖2 = 2αD/r.

We get that α/2 ≤ 2αD/r and thus D ≥ r/4 = dme/4. J

8 Reduction from Vertex Expansion to Hypergraph Expansion

In the reduction from vertex expansion to hypergraph expansion, we will use the notion of
Symmetric Vertex Expansion. For a graph G = (V,E), and for a set S ⊂ V , we define its
outer neighborhood N(S) as follows.

N(S) = {u ∈ S̄ : ∃ v ∈ S such that {u, v} ∈ E}.

The symmetric vertex expansion of a set, denoted by ΦV (S), is defined as

ΦV (S) = |N(S̄) ∪N(S)|
min(|S|, |S̄|)

and ΦVG,δ = min
S⊂V

0<|S|≤δn

ΦV (S).

We will use the following reduction from vertex expansion to symmetric vertex expansion.

I Theorem 24 (Louis, Raghavendra and Vempala [13]). Given a graph G, there exists a graph
G′ such that c1φVG,δ ≤ ΦV

G′,δ ≤ c2φ
V
G,δ. where c1, c2 > 0 are absolute constants, and the

maximum degree of graph G′ is equal to the maximum degree of graph G. Moreover, there
exists a polynomial time algorithm to compute such graph G′.

Proof of Theorem 6. Starting with graph G, we use Theorem 24 to obtain a graph G′ =
(V ′, E′) such that c1φVG,δ ≤ ΦV

G′,δ ≤ c2φ
V
G,δ. Next we construct hypergraph H = (V ′, E′′)

as follows. For every vertex v ∈ V ′, we add the hyperedge {v} ∪N({v}) to E′′ (note that
N({v}) is the set of neighbors of v in G). Fix an arbitrary set S ⊂ V .

We first show that ΦV (S) ≤ φH(S). Consider the vertices N(S̄). Each vertex in v ∈ N(S̄)
has a neighbor, say u, in S̄. Therefore the hyperedge {v}∪N({v}) is cut by S in H. Similarly,
for each vertex v ∈ N(S), the hyperedge {v}∪N({v}) is cut by S in H. All these hyperedges
are disjoint by construction. Therefore, ΦV (S) = |N(S̄)|+|N(S)|

|S| ≤ |Ecut(S)|
|S| ≤ φH(S).

Now we verify that φH(S) ≤ ΦV (S). For any hyperedge ({v} ∪ N({v})) ∈ Ecut(S),
the vertex v has to belong to either N(S̄) or N(S). Therefore, φH(S) ≤ |Ecut(S)|

|S| ≤
|N(S̄)|+|N(S)|

|S| = ΦV (S). Thus, we get that φH(S) = ΦV (S) for every S ⊂ V , and hence
φ∗H,δ = ΦVG′,δ. Therefore, c1φVG,δ ≤ φ∗H,δ ≤ c2φVG,δ.

Finally, we upper bound ηHmax. We use part 3 of Claim 6.1. We choose vertex v in the
hyperedge {v}∪N({v}). By Claim 6.1, ηHmax ≤ log2 rmax, where rmax is the size of the largest
hyperedge. Note that | {v}∪N({v})| = deg v+1. Thus ηHmax ≤ log2 rmax ≤ log2(dmax+1) J
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