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Abstract
Given a lazy regular graph G, we prove that the expansion of Gt is at least Ω(

√
t) times the

expansion of G. This bound is tight and can be generalized to small set expansion. We show
some applications of this result.
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1 Introduction

Let G = (V,E,w) be an undirected weighted graph with n = |V | vertices. The expansion of
a set S ⊆ V is defined as

φ(S) := 1
|S|

∑
u∈S,v 6∈S

w(u, v),

and the expansion of G is defined as

φ(G) := min
S⊆V,|S|≤n/2

φ(S).

Graph expansion is a fundamental parameter with diverse applications in theoretical computer
science [4].

A well-known operation to improve the graph expansion is by taking the t-th power of G,
which has a natural correspondence to simulating the random walk on G for t steps. In our
setting, we assume that G is 1-regular, that is,

∑
v∈V w(u, v) = 1 for every u ∈ V . We also

assume that G is lazy, that is, w(u, u) ≥ 1
2 for every u ∈ V . Let A be the adjacency matrix

of G with Au,v = w(u, v) for any u, v ∈ V , which corresponds to the transition matrix of the
random walk on G. The t-th power of G, denoted by Gt, is defined as the undirected graph
with adjacency matrix At, which corresponds to the transition matrix of the t-step random
walk of G. Note that Gt is also 1-regular if G is.

The question we study is to prove lower bounds on φ(Gt) in terms of φ(G). Besides
being a basic graph theoretical question, proving lower bounds on φ(Gt) has applications in
hardness of approximation [3, 8]. Our main result is a tight lower bound on the expansion of
the graph power of a lazy 1-regular graph.

1.1 Previous Work
There is a spectral method to show that φ(Gt) is larger than φ(G) for large enough t. This
is based on the connection between the graph expansion and the second eigenvalue of the
adjacency matrix. Let 1 = α1 ≥ α2 ≥ . . . ≥ αn ≥ 0 be the eigenvalues of the adjacency
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matrix AG of G, where α1 = 1 because G is 1-regular and αn ≥ 0 because G is lazy. Let
LG := I − AG be the Laplacian matrix of G and 0 = λ1 ≤ λ2 ≤ . . . ≤ λn ≤ 1 be its
eigenvalues. Note that λi = 1− αi for 1 ≤ i ≤ n. Cheeger’s inequality [1] states that

1
2λ2 ≤ φ(G) ≤

√
2λ2.

Note that the eigenvalues of At is 1 = αt1 ≥ αt2 ≥ . . . ≥ αtn ≥ 0, and thus the i-th eigenvalue
of the Laplacian matrix of Gt is 1− αti = 1− (1− λi)t. Therefore, by Cheeger’s inequality,
we have

φ(Gt) ≥ 1
2(1− (1− λ2)t) ≥ 1

2(1− (1− 1
2 tλ2)) = 1

4 tλ2 ≥
1
8 t · φ(G)2 = Ω(t · φ(G)2),

where the second inequality follows from Fact 2.1 when tλ2 < 1/2.
Recently, the spectral method was extended to prove lower bounds on the small set

expansion of a graph. Given 0 < δ < 1/2, the small set expansion of G is defined as

φδ(G) := min
S⊆V,|S|≤δn

φ(S).

Raghavendra and Schramm [8] proved an analog of the above bound for small set expansion:

φΩ(δ)(Gt) = Ω(t · φδ(G)2),

when G is a lazy 1-regular graph and t = O(1/φδ(G)2). The proof is based on the techniques
developed in [2] relating higher eigenvalues to small set expansion. They used this lower
bound to amplify the hardness of the small set expansion problem; see Section 3.3 for more
discussions.

1.2 Our Results
Our main result is a tight lower bound on φ(Gt).

I Theorem 1. Let G be an undirected 1-regular lazy graph. For any non-negative integer t,
we have

φ(Gt) ≥ 1
20(1− (1− φ(G))

√
t) = Ω(min(

√
t · φ(G), 1)).

This is a quadratic improvement of the previous bound. This bound is tight up to a
constant factor for all t as we will show examples (e.g. cycles) in Section 2.6.

Observe that the above spectral method only showed that φ(Gt) > φ(G) when t =
Ω(1/φ(G)) but did not show that φ(Gt) > φ(G) for small t. Theorem 1 implies that
φ(Gt) > φ(G) for some small constant t. Actually, we can show that φ(G3) > φ(G) when
φ(G) < 1/2 by a more careful calculation.

I Theorem 2. Let G be an undirected 1-regular lazy graph with even n. We have

φ(G3) ≥ 3
2φ(G)− 2φ(G)3.

Theorem 1 can be extended easily to small set expansion.

I Theorem 3. Let G be an undirected 1-regular lazy graph. For any non-negative integer t,
we have

φδ/2(Gt) ≥ 1
20(1− (1− 2φδ(G))

√
t) = Ω(min(

√
t · φδ(G), 1)).

We show some applications of our results in Section 3, including the gap amplification result
in [8] for small set expansion and some reductions for proving Cheeger-type inequalities [1, 6].
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1.3 Techniques
Instead of using the spectral method, we use the Lovász-Simonovits curve [7] which was
designed to analyze the mixing time of random walk using graph expansion. As it turns
out, this more combinatorial approach has the advantage of directly reason about graph
expansion without having the quadratic loss in the spectral method.

Given an initial probability distribution p on the vertex set, let C(t)(x) be the sum of the
probability of the x largest vertices after t steps of random walk on G. First, we observe in
Lemma 6 that

φGt(S) ≥ 1− C(t)(|S|)

when the initial distribution is χS/|S| where χS is the characteristic vector of S. Hence, to
lower bound φGt(S), we can instead upper bound C(t)(|S|). Imprecisely, with the method
developed by Lovász and Simonovits (see Section 2.2), we can essentially argue that for all S
with |S| ≤ n/2,

C(t)(|S|) . 1
2t

t∑
i=0

(
t

i

)
C(0)((1− φ(G))i(1 + φ(G))t−i|S|

)
= 1

2t
t∑
i=0

(
t

i

)
min{(1− φ(G))i(1 + φ(G))t−i, 1},

where the equality holds because C(0)(x) = min{x/|S|, 1} as the initial distribution is χS/|S|.
Since there is at least a 1/10 fraction of terms in the summation with i ≥ t/2 +

√
t, we have

C(t)(|S|) . 1
10(1− φ(G))

√
t + 9

10 ≤
1
10(1− 1

2
√
t · φ(G)) + 9

10 ,

where the last inequality is by Fact 2.1 when
√
t · φ(G) ≤ 1/2. Therefore, for all S with

|S| ≤ n/2, we have

φGt(S) ≥ 1
20
√
t · φ(G), and therefore φ(Gt) = Ω(

√
t · φ(G)).

We need to be careful to make the arguments in . precise and this is some technicality of
the proof, but the main ideas are pretty accurately summarized in this section.

2 Expansion of Graph Power

2.1 Preliminaries
When G is clear from the context, we use φ = φ(G) to denote the conductance of G.

Let χS be a column vector such that χS(u) = 1 if u ∈ S and χS(u) = 0 otherwise. The
expansion of S can be expressed as

φ(S) = χTS (I −A)χS
|S|

.

The following fact is used frequently in the proof.

I Fact 2.1. For any z ∈ [0, 1], we have

(1− z)t ≥ 1− zt, or 1− (1− z)t ≤ zt.

For any zt ∈ [0, 1/2], we have

(1− z)t ≤ exp(−zt) ≤ 1− 1
2zt, or 1− (1− z)t ≥ 1

2zt.

APPROX/RANDOM’14
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2.2 Lovász-Simonovits Curve
Lovász and Simonovits [7] introduced a curve which is useful in bounding mixing time using
graph expansion. Given a probabilistic vector p : V → R≥0, the curve is defined as

C(p, x) = max
δ1+···+δn=x,0≤δi≤1

n∑
i=1

δipi,

for x ∈ [0, n]. When x is an integer, C(p, x) is simply the sum of the largest x values in
the vector p, and it is linear between two integral values. Clearly C(p, x) is concave. We
use C(t)(x) to denote C(Atp, x) when p is clear from the context. We use x to denote
min(x, n−x) for x ∈ [0, n]. This notation is frequently used and should be interpreted as the
distance to the boundary. The following lemma shows that the curves “drop” faster when
the expansion of G is larger.

I Lemma 4 ([7]). If G is a lazy 1-regular graph, then for any integer t ≥ 0 and any integer
x ∈ [0, n], we have

C(t+1)(x) ≤ 1
2

(
C(t)(x− 2φx) + C(t)(x+ 2φx)

)
.

We remark that Lemma 4 only give bounds on integral values1. In our proof, however,
we require bounds for all x ∈ [0, n]. The following lemma provides a slightly weaker bound
that also holds for fractional x when the graph is lazy 1-regular.

I Lemma 5. If G is a lazy 1-regular graph, then for any integer t ≥ 0 and x ∈ [0, n], we
have

C(t+1)(x) ≤ 1
2

(
C(t)(x− φx) + C(t)(x+ φx)

)
.

Proof. Since C(t) is concave, we have

C(t)(x− βx) + C(t)(x+ βx) ≤ C(t)(x− γx) + C(t)(x+ γx) for β > γ. (1)

We will prove that

C(t+1)(x) ≤ 1
2

(
C(t)(x− 2φ′x) + C(t)(x+ 2φ′x)

)
(2)

where φ′ = n−1
n φ, and this would imply the lemma by (1) since φ′ ≥ 1

2φ.
Note that for any integral x ∈ [0, n− 1] and any α ∈ [0, 1],

C(t+1)(x+ α) = (1− α)C(t+1)(x) + αC(t+1)(x+ 1)

≤ (1− α)
(
C(t)(x− 2φx) + C(t)(x+ 2φx)

)
+ α

(
C(t)(x+ 1− 2φ(x+ 1)) + C(t)(x+ 1 + 2φ(x+ 1))

)
=
(

(1− α)C(t)(x− 2φx) + αC(t)(x+ 1− 2φ(x+ 1))
)

+
(

(1− α)C(t)(x+ 2φx) + αC(t)(x+ 1 + 2φ(x+ 1))
)

≤ C(t)(x+ α− 2φ((1− α)x+ α(x+ 1)))

+ C(t)(x+ α+ 2φ((1− α)x+ α(x+ 1))),

1 It was claimed in [7] that the lemma holds for any x ∈ [0, n], but later it was pointed out in [10] that
the lemma only holds for integral x when the graph is lazy 1-regular.
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where the first inequality follows from Lemma 4, and last inequality holds because C(t) is
concave. If (1− α)x+ α(x+ 1) = (x+ α), then Lemma 4 holds and the lemma follows by
(1).

Note that the only case where (1 − α)x + α(x+ 1) 6= (x+ α) is when n is odd and
x = (n− 1)/2. At that time, x = (x+ 1) = x and thus (1− α)x+ α(x+ 1) = x. Therefore,
when n is odd and x = (n− 1)/2, we have

C(t+1)(x+ α)

≤ 1
2

(
C(t)(x+ α− 2φx) + C(t)(x+ α+ 2φx)

)
≤ 1

2

(
C(t)

(
x+ α− 2(n− 1

n
) · φ · (x+ α)

)
+ C(t)

(
x+ α+ 2(n− 1

n
) · φ · (x+ α)

))
= 1

2

(
C(t)

(
x+ α− 2φ′ · (x+ α)

)
+ C(t)

(
x+ α+ 2φ′ · (x+ α)

))
,

where the later inequality holds because C(t) is concave and x+ α ≤ x+ 1
2 = n/2. J

2.3 Proof of Theorem 1
As mentioned in the proof outline in Section 1.3, we first show that we can prove a lower
bound on φ(Gt) by proving an upper bound on C(t)(|S|) for the initial distribution χS/|S|.

I Lemma 6. Suppose that for any set S ⊆ V with |S| ≤ n/2, we have C(t)(|S|) ≤ 1− α for
the initial distribution p = χS/|S|, then we can conclude that φ(Gt) ≥ α.

Proof. Let S be the set attaining minimum expansion in Gt, that is, |S| ≤ n/2 and
φGt(S) = φ(Gt). For the initial distribution p = χS/|S|,

C(t)(|S|) = C(Atp, |S|) ≥ χTSAtp = χTSA
tχS
|S|

= 1− χTS (I −At)χS
|S|

= 1− φGt(S).

Therefore, we have φ(Gt) = φGt(S) ≥ 1− C(t)(|S|) ≥ α. J

With Lemma 6, it remains to upper bound C(t)(|S|) for the initial distribution χS/|S|
for any S with |S| ≤ n/2. It turns out that there is a good upper bound independent of |S|.

I Lemma 7. For any S with |S| ≤ n/2, for the initial distribution p = χS/|S|, for any
non-negative integer t, we have

C(t)(|S|) ≤ 1− 1
20(1− (1− φ)

√
t).

Proof. For technical reasons, we consider D(t)(x) = C(t)(x) − x/n instead to make the
argument more symmetric. See Figure 1 for the definition of D(0). Note that Lemma 5 still
holds for D(t) since x/n is linear. So, we have

D(t+1)(x) ≤ 1
2

(
D(t)(x− φx) +D(t)(x+ φx)

)
.

By applying this equation repeatedly, we have

D(t)(x) ≤ 1
2t

∑
T∈{−1,1}t

D(0)(fT (x)), (3)

APPROX/RANDOM’14
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|S| n

1− |S|
n

D(0)(x)

n− |S|

min
{(

1
|S| − 1

n

)

x, 1− |S|
n

}

Figure 1 The solid line is the curve D0(x) and the dotted line is the upper bound on D(0)(x)
that is stated in (5).

where T is a sequence of t ±1-bits and fT is defined recursively as follows. In the base case,
when the sequence is empty, we define f()(x) = x for any x ∈ [0, n]. For any partial sequence
T ′, we define

f(T ′,+1)(x) =
{
fT ′(x)− φ · fT ′(x) if fT ′(x) ≤ n/2
fT ′(x) + φ · fT ′(x) if fT ′(x) > n/2 ,

and

f(T ′,−1)(x) =
{
fT ′(x) + φ · fT ′(x) if fT ′(x) ≤ n/2
fT ′(x)− φ · fT ′(x) if fT ′(x) > n/2 .

We can view +1 as moving in the direction towards boundary and −1 as moving in the
direction towards center. Recall that x = min{x, n− x} can be viewed as the distance to the
boundary. In the following, we focus on the distance to the boundary of a point rather than
its actual location. It follows from the definition that for any x ∈ [0, n], we have

f+1(x) = x− φx = (1− φ) · x,

and

f−1(x) ≤ x+ φx = (1 + φ)x ≤ (1− φ)−1 · x.

Therefore, fTi
(x) ≤ (1− φ)Ti · x where Ti is the i-th bit in the sequence T , and hence

fT (x) = fTt ◦ fTt−1 ◦ · · · ◦ fT1(x) ≤ (1−φ)Tt ·fTt−1 ◦ · · · ◦ fT1(x) ≤ · · · ≤ (1−φ)
∑t

i=1
Ti ·x.

We call a sequence T good if
∑t
i=1 Ti ≥

√
t, otherwise we call it bad.

For a good T , we have fT (x) ≤ (1− φ)
√
t · x, and thus

fT (|S|) ≤ (1− φ)
√
t · |S| for |S| ≤ n/2 and T good. (4)

As the initial distribution is χS/|S|, for t = 0, we have

D(0)(x) ≤ min
{(

1
|S|
− 1
n

)
x, 1− |S|

n

}
. (5)

See Figure 1 for an illustration of the inequality. The advantage of using D(t) instead of C(t)

is that we could bound D(0)(x) using x as shown in the above inequality.
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Finally, we know that at least a 1/10 fraction of T are good. So, for S with |S| ≤ n/2,

D(t)(|S|) ≤ 1
2t

∑
T∈{−1,1}t

D(0)(fT (|S|)) (by (3))

= 1
2t

∑
T :good

D(0)(fT (|S|)) + 1
2t
∑
T :bad

D(0)(fT (|S|))

≤ 1
2t

∑
T :good

(
1
|S|
− 1
n

)
fT (|S|) + 1

2t
∑
T :bad

(
1− |S|

n

)
(by (5))

≤ 1
2t

∑
T :good

(
1
|S|
− 1
n

)
(1− φ)

√
t|S|+ 1

2t
∑
T :bad

(
1− |S|

n

)
(by (4))

≤ 1
10

((
1
|S|
− 1
n

)
(1− φ)

√
t|S|
)

+ 9
10

(
1− |S|

n

)
=
(

1− |S|
n

)
− 1

10

(
1− |S|

n
−
(

1
|S|
− 1
n

)
(1− φ)

√
t|S|
)

=
(

1− |S|
n

)
− 1

10

(
1− |S|

n

)(
1− (1− φ)

√
t
)

≤
(

1− |S|
n

)
− 1

20(1− (1− φ)
√
t).

Therefore,

C(t)(|S|) = D(t)(|S|) + |S|/n ≤ 1− 1
20(1− (1− φ)

√
t).

J

Combining Lemma 6 and Lemma 7, we have

φ(Gt) ≥ 1
20(1− (1− φ)

√
t) ≥ 1

40
√
t · φ,

where the last inequality is by Fact 2.1 for
√
t · φ ≤ 1/2. This completes the proof of

Theorem 1.

2.4 Proof of Theorem 2
Theorem 1 showed that φ(Gt) > φ(G) for a small constant t. To prove that this is true even
for t = 3, we need to do a more careful calculation. We use the bound

C(t+1)(x) ≤ 1
2

(
C(t)(x− 2φ′x) + C(t)(x+ 2φ′x)

)
for φ′ = n−1

n φ as was shown in (2) in the proof of Lemma 5. When t = 3, we have

C(3)(|S|) ≤ 1
8C

(0)((1− 2φ′)3|S|) + 3
8C

(0)((1− 2φ′)2(1 + 2φ′)|S|) + 4
8

= 1
8(1− 2φ′)3 + 3

8(1− 2φ′)2(1 + 2φ′) + 4
8

= 1− 3
2φ
′ + 2φ′3.

Thus we conclude φ(G3) ≥ 3
2φ
′ − 2φ′3. Therefore, for a large graph with small conductance,

taking cube increases the conductance by a factor of almost 3
2 . When n is even, we can

replace φ′ by φ as was shown in the proof of Lemma 5, and this proves Theorem 2.

APPROX/RANDOM’14
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2.5 Proof of Theorem 3
Our result can be easily extended to the case of small set expansion with a little loss in size.
More precisely, suppose G is an undirected 1-regular lazy graph such that all sets of size at
most δn have conductance φδ, where δ ≤ 1/2. In this setting, the following lemma holds in
place of Lemma 4.

I Lemma 8. If G is a lazy 1-regular graph, then for any integer t ≥ 0 and any x ∈ [0, δn],

C(t+1)(x) ≤ 1
2

(
C(t)(x− 2φδ · x) + C(t)(x+ 2φδ · x)

)
,

where x = min(x, δn− x) here.

We remark that we do not need to fix the non-integral problem as in Lemma 5 because we
only consider x ≤ δn ≤ n/2 (see the proof of Lemma 5).

Lemma 6 can be restated as follows with the same proof.

I Lemma 9. Suppose that for any set S ⊆ V with |S| ≤ δn/2 with the initial distribution
p = χS/|S|, we have C(t)(|S|) ≤ 1− α, then we can conclude that φδ/2(Gt) ≥ α.

Finally, in Lemma 7, we consider D(t)(x) = C(t)(x)− x
δn instead, and we use the new x

in the analysis. Observe that fT (x) can never leave the range [0, δn] when x starts in the
range. Therefore the same analysis applies and we have the following lemma.

I Lemma 10. For any S with |S| ≤ δn/2, for the initial distribution p = χS/|S|, for any
non-negative integer t, we have

C(t)(|S|) ≤ 1− 1
20(1− (1− 2φδ)

√
t).

Theorem 3 follows by combining Lemma 9 and Lemma 10.

2.6 Tight Examples
We show that the dependence on t in Theorem 1 is tight up to a constant factor. The tight
example we use is a lazy cycle. Intuitively, after t steps of random walk on a lazy cycle,
the final position with high probability only differs from the initial position by O(

√
t), and

therefore the expansion should be bounded by O(
√
t) times the original expansion. It turns

out that we can easily justify this intuition through Cheeger’s inequality.

I Proposition 2.2. Let Cn be the lazy cycle. Then we have φ(Ctn) = O(
√
t · φ(Cn)).

Proof. As in Section 1.1, we have

λ2(Ctn) = 1− (1− λ2(Cn))t ≤ tλ2(Cn) = O(t · φ(Cn)2),

where the inequality is by Fact 2.1 and the last equality is by the spectrum of the cycle. By
Cheeger’s inequality, φ(Ctn) = O(

√
λ2(Ctn)), and thus φ(Ctn) = O(

√
t · φ(Cn)). J

We remark that tight examples of Theorem 1 must have “high threshold rank”. By the
improved Cheeger’s inequality in [6], we have φ(G) = O(kλ2/

√
λk) for any k. Therefore, by

the same calculation as in Section 1.1, we have that for any k,

φ(Gt) ≥ 1
4 tλ2 = Ω( t · φ(G) ·

√
λk

k
),

and therefore a graph G with λk(G) small for a small k could not be a tight example for
Theorem 1.
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2.7 Irregular Graphs
Theorem 1 showed that φ(Gt) = Ω(

√
t ·φ(G)) for a regular graph. There are different ways to

generalize the statement to irregular graphs. In the following, we show that the generalization
is not true if we replace expansion by conductance, and we show that the generalization is
true if we replace expansion by the escape probability of a t-step random walk.

The conductance of a set φ(S) is defined as∑
v∈S,u/∈S w(u, v)

vol(S) ,

where vol(S) :=
∑
v∈S deg(v) and the conductance of a graph φ(G) is defined as

min
S⊆V,vol(S)≤vol(V )/2

φ(S).

Consider the graph G consisting of a regular complete graph with self loops (2I + 1
nKn)

and an extra vertex u. The extra vertex only connects to a single vertex v in the complete
graph with edge weight 1 and it has a self loop of weight m. We assume the complete
graph is so large that n > 2m4. Then φ(G) = φ({u}) = 1/m+ o(1/m). Consider G3. Since
degG3(u) = m3 + o(m3) < n/2, the set achieving minimum conductance is still {u}. In
G3, the total weight of edges between u and the complete graph is m2 + o(m2). Therefore
φ(G3) = 1/m+ o(1/m). Note that the same argument applies for any Gt if we set n to be
large enough. Therefore, no matter how small φ(G) is or how large t is, we cannot argue that
φ(Gt) > (1 + ε)φ(G) for a positive constant ε when we replace expansion by conductance in
irregular graphs.

On the other hand, our results can be extend to another natural generalization of
expansion. Consider the definition

ϕ(Gt) = min
S⊆V,|S|≤n/2

ϕGt(S) = min
S⊆V,|S|≤n/2

(1− χTS (D−1AG)tχS
|S|

),

where ϕGt(S) is the probability that a t-step random walk starting from a random vertex in
S escapes S. With this definition and assuming that the graph does not contain a vertex of
degree more than half of the total degrees, we can show that Lemma 5 still holds, with a
extended definition for C(t). Therefore, ϕ(Gt) = Ω(min{

√
t · ϕ(G), 1}) follows.

3 Applications

In this section, we discuss some consequences of our main theorem. We show that proving
the general cases of Cheeger’s inequalities can be reduced to proving the special cases where
the eigenvalues are constants. Similar arguments can be used to deduce the recent result on
gap amplification of small set expansion in [8].

3.1 Cheeger’s Inequalities
Let G be an undirected 1-regular lazy graph. The following result shows that if one could
prove Cheeger’s inequality when λ2 is a constant, then one could prove Cheeger’s inequality
for all λ2. One consequence is that if one could prove that say φ(G) = O((λ2)1/100) (so
that Cheeger’s inequality is true when λ2 is a constant), then it actually implies that
φ(G) = O(

√
λ2).

APPROX/RANDOM’14
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I Corollary 11. Suppose one could prove that λ2(H) ≥ C for some constant C ≤ 1/2
whenever φ(H) ≥ 1/40, then it implies that φ(G) ≤

√
λ2(G)/C for any G and any λ2(G).

Proof. Given G, we assume that λ2(G) ≤ φ(G)2/2, as otherwise the statement is trivial.
Consider H = G1/φ(G)2 . By Theorem 1, we have

φ(H) ≥ 1
20(1− (1− φ(G))

√
1/φ(G)2) ≥ 1

40 .

Therefore, if we could prove that λ2(H) ≥ C, then we could conclude that

C ≤ λ2(H) = 1− (1− λ2(G))1/φ(G)2
≤ λ2(G)
φ(G)2 ,

and the corollary follows. J

3.2 Improved Cheeger’s Inequality
It was proved in [6] that φ(G) = O(kλ2/

√
λk) for any k. Using similar arguments as above,

the following result shows that if one could prove this improved Cheeger’s inequality when
λ3 is a constant, then one could prove it for all λ3. For instance, if one could prove that say
φ(G) = O(λ2/λ

100
3 ), then it actually implies that φ(G) = O(λ2/

√
λ3).

I Corollary 12. Suppose one could prove that φ(H) ≤ Cλ2(H) for some C ≥ 1/10 whenever
λ3(H) ≥ 1/2, then it implies that φ(G) ≤ 40Cλ2(G)/

√
λ3(G) for any G and any λ3(G).

Proof. We assume that φ ≤
√
λ3/2, as otherwise, by Cheeger’s inequality, 2λ2(G) ≥ φ(G)2 ≥

1
2φ(G)

√
λ3 and the statement is true. Consider H = G1/λ3(G). Then

λ3(H) = 1− (1− λ3(G))1/λ3 ≥ 1− e−1 ≥ 1/2.

Therefore, if one could prove that φ(H) ≤ Cλ2(H), then

Cλ2(H) ≥ φ(H) ≥ 1
20(1− (1− φ(G))

√
1/λ3(G)) ≥ φ(G)

40
√
λ3(G)

,

where the second inequality is by Theorem 1 and the last inequality is by Fact 2.1. On the
other hand,

λ2(H) = 1− (1− λ2(G))1/λ3(G) ≤ λ2(G)
λ3(G) ,

and the corollary follows by combining the two inequalities. J

3.3 Gap Amplification for Small Set Expansion
Consider the small set expansion problem SSEδ,δ′(c, s): Given a graph G, distinguish whether
φδ(G) ≤ c or φδ′(G) ≥ s. The small set expansion conjecture [9] states that for any ε > 0,
there exists δ > 0 such that SSEδ,δ(ε, 1− ε) is NP-hard.

Let f be a function such that f(x) = ω(
√
x). Raghavendra and Schramm [8] showed that

if for all ε > 0 there exists δ > 0 such that SSEδ,δ(ε, f(ε)) is NP-hard, then for all ε > 0 there
exists δ > 0 such that SSEδ,δ/8(ε, 1/2) is NP-hard.

We would show that our techniques can be easily applied to get similar result.

I Theorem 13. If for all ε > 0 there exists δ > 0 such that SSEδ,δ(ε, f(ε)) is NP-hard, then
for all ε > 0 there exists δ > 0 such that SSEδ,δ/2(ε,Ω(1)) is NP-hard.
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Proof. Given an instance G that we would like to distinguish whether φδ(G) ≤ ε or φδ(G) ≥
f(ε), we consider the graph H = GO(1/f(ε)2). In the case when φδ(G) ≥ f(ε), by Theorem 3,
we have

φδ/2(H) = Ω(
√

1/f(ε)2 · f(ε)) = Ω(1).

In the case when φδ(G) ≤ ε, we have

φδ(H) ≤ (1/f(ε)2) · ε = oε(1) ≤ ε′,

where the equality holds because f(ε) = ω(
√
ε) and the first inequality holds because

φGt(S) = 1− χTSA
tχS
|S|

≤ t · φG(S),

where the inequality is proven in [10] by a simple induction. Therefore, if SSEδ,δ(ε, f(ε)) is
NP-hard, then SSEδ,δ/2(ε′,Ω(1)) is NP-hard. J

Finally, we remark that it is easier to bound φδ(Gt) for large t using Lovász-Simonovits
curve. Using the techniques in [5], we have the following bound for C(t) when the initial
probability vector is χS/|S|:

C(t)(x) ≤ x

δn
+
√

x

|S|
(1− φ2

2 )t.

Therefore,

φGt(S) ≥ 1− C(t)(|S|) ≥ 1− |S|
δn
− (1− φ2

2 )t,

where the first inequality follows from Lemma 6. Set t = 100/φ2, then for |S| ≤ δn/4, we
have φGt(S) ≥ 3

4 − exp(−50). Therefore, if SSEδ,δ(ε, f(ε)) is NP-hard, then SSEδ,δ/4(ε′, 1/2)
is NP-hard.
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