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Abstract
We study the existence of approximate pure Nash equilibria in weighted congestion games and
develop techniques to obtain approximate potential functions that prove the existence of α-
approximate pure Nash equilibria and the convergence of α-improvement steps. Specifically, we
show how to obtain upper bounds for approximation factor α for a given class of cost functions.
For example for concave cost functions the factor is at most 3/2, for quadratic cost functions it
is at most 4/3, and for polynomial cost functions of maximal degree ` it is at at most `+ 1. For
games with two players we obtain tight bounds which are as small as for example 1.054 in the
case of quadratic cost functions.
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1 Introduction

In many applications the state of a system depends on the behavior of individual participants
that act selfishly in order to minimize their own private cost measured by individual objective
functions. The framework of non-cooperative games has enveloped as the primary tool for the
theoretical analysis of such systems. The central concept of game theory is that of a Nash
equilibrium – a state in which no participant has an incentive to deviate to another strategy.
While mixed Nash equilibria, i.e., Nash equilibria in randomized strategies, are guaranteed to
exist under mild assumptions on the players’ strategy spaces and the private cost functions
(cf. Nash [17], Glicksberg [12]), they are often hard to interpret. As a consequence, attention
is often restricted to pure Nash equilibria, i.e., Nash equilibria in deterministic strategies.

Rosenthal [19] introduced a rich class of games, called congestion games that models
a wealth of strategic interactions and is guaranteed to have pure Nash equilibria. In a
congestion game, we are given a finite set of players and a finite set of resources. A strategy
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of each player is to choose a subset of the resources out of a set of subsets of resources
allowable to her. In each strategy profile, each player pays for all used resources where the
cost of a resource is a function of the number of players using it. In most applications, the
set of resources corresponds to the set of edges of a directed or undirected graph and cost
functions are used to model latencies or travel times that typically increase with congestion.
In that way, congestion games can be used to model traffic in road networks and Internet
routing applications, where streams of packets choose a chain of servers from their origin to
their destination.

Unfortunately, several mild generalizations of congestion games may lack pure Nash
equilibria. In a weighted congestion game, each player is associated with a positive demand
and the cost of each resource depends on the aggregated demand rather than the mere
cardinality of the set of its users. It is well known that weighted congestion games may
fail to have a pure Nash equilibrium; examples of such games have been given by Libman
and Orda [15], Goemans et al. [13], and Fotakis et al. [11]. The games of Fotakis et al. and
Goemans et al. feature two players with demands one and two, respectively. While Fotakis et
al. specify for each resource explicitly the cost for all possible aggregated demands, Goemans
et al. use only polynomial cost functions with non-negative coefficients and maximal degree
two. Full enumeration of all strategy profiles shows that no pure Nash equilibrium exists.
Quite strikingly, however, both examples admit deterministic states that are almost stable,
i.e., there are strategy profiles from which both players may only improve by a small factor.
In the game of Fotakis et al. (with no structure on the cost functions), this factor is as little
as 12/11, in the game of Goemans et al., this factor is 61/60. Put differently, if there is
some friction in the system that prevents players from making deviations that improve their
private costs only very little, then stable states exist.

Such an approximate stability is formally captured by the concept of an α-approximate
pure Nash equilibrium, a state from which no player can improve her private cost by a
factor of α ≥ 1. Besides mere existence, approximate equilibria are an appealing alternative
solution concept from a computational point of view. While the computation of exact pure
Nash equilibria in congestion games is PLS-complete, there has been some recent progress
towards polynomial time algorithms to compute approximate equilibria in congestion games.
Specifically, Caragiannis et al. [4] show how to compute a 2 + ε-approximate pure Nash
equilibrium in congestion games with affine latencies. Subsequent work generalizes this
approach to a polynomial algorithm for approximate pure Nash equilibria with constant
approximation factor for weighted congestion games with polynomial latency functions [5].
They also show that weighted congestion games with polynomial cost functions with maximal
degree ` have a `!-approximate pure Nash equilibrium.

Still, approximate pure Nash equilibria are only a reasonable concept if the approximation
factor is sufficiently close to one. This motivates the main question of this paper: Given
a set of cost functions, what is the minimal approximation factor α that one can allow in
order to guarantee the existence of an α-approximate pure Nash equilibrium in all weighted
congestion games?

1.1 Our Contribution
The main tool to answer this question are approximate potential functions. An α-approximate
potential is a map from the space of all strategy profiles to the real numbers that has the
property that it decreases if a player decreases his cost by a factor greater than α. Note
that, unlike an exact potential function, for improvement steps of smaller relative size, an
approximate potential function may actually increase. The existence of α-approximate
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Table 1 Approximation factors of approximate pure Nash equilibria in weighted congestion games
for different sets of cost functions; results for two-player games are tight. Comparison with previous
results [5] shows improvements by a factor exponential in `.

Our results Previous work [5]
Functions ≥ 3 players 2 players ≥ 3 players

concave ≤ 3/2
polynomials of degree 2 ≤ 4/3 ≈ 1.054 ≤ 2

— " — 3 ≤ 1.785 ≈ 1.074 ≤ 6
— " — 4 ≤ 2.326 ≈ 1.153 ≤ 24
— " — ` ≤ ` + 1 ≤ `!

potential functions immediately implies the existence of α-approximate equilibria and the
convergence of α-improvement steps. We present two methods to obtain an α-approximate
potential function and identify upper bounds for the value of α for a given class of cost
functions.

Our technique yields small approximation factors for specific classes of cost functions
summarized in Table 1. For concave cost functions we establish the existence of 3

2 -approximate
equilibria. For quadratic cost functions the factor is at most 4

3 in games with an arbitrary
number of players. More surprisingly, in games with two players, we obtain a tight bound of
about 1.054 using numerical methods. This shows that the factor of 61/60 ≈ 1.017 achieved
by the two-player game of Goemans et al. is not so far from the worst-case bound for arbitrary
two-player games with quadratic costs.

For polynomial cost functions of maximal degree `, we obtain an upper bound of `+ 1
which is a drastic improvement of the previously known bound of `!.

Our improved bounds on the minimal approximation factors for pure Nash equilibria may
be used to design routing protocols with convergent behavior. While it is known that routing
with distance vector computation causes flapping, our results suggest that for routers with
quadratic latencies, routes should not be updated as long as the new route does not improve
latency by a factor of at least 4/3.

1.2 Further Related Work

Rosenthal [19] proved that every congestion game has a pure Nash equilibrium using an
elegant potential function argument. A potential function assigns a real value to each strategy
profile such that for two profiles which differ only in the strategy choice of one player the
cost difference for that player equals the difference of the two potential function values. This
property implies that any sequence of improvement steps by single players converges to a
pure Nash equilibrium. However, such a sequence might take exponentially many steps and
computing a pure Nash equilibrium is a computationally hard task as it is PLS-hard [1, 3, 10].

In contrast to the original class of unweighted congestion games studied by Rosenthal,
many natural generalizations do neither have a potential function nor a pure Nash equilibrium,
in general. Milchtaich [16] introduced weighted congestion games and congestion games with
player-specific cost functions. He restricts himself to the singleton case, where each strategy
of each player contains a single resource only and showed that games with player-specific
cost always have a pure Nash equilibrium if players are unweighted.
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Fotakis et al. [11] study congestion games with weighted players and arbitrary strategy
spaces. They show that pure Nash equilibria need not exist in general. This has been
observed independently by Goemans et al. [13] and Libman and Orda [15]. The computation
problem to decide whether a pure Nash equilibrium exists is NP-hard [9]. For the special case
of only affine [11] or exponential [18] cost functions the existence of a pure Nash equilibrium is
guaranteed. These results are complemented by the characterization of Harks and Klimm [14]
who prove that these are the only cost functions that guarantee the existence. These results
are entirely independent of the underlying structure of the games. In contrast, Ackermann
et al. [2] consider weighted congestion games with arbitrary cost functions but restrictions on
the combinatorial structure of strategy spaces. They prove existence of pure Nash equilibria
for weighted congestion games that have the matroid property, i.e. the property that the set
of possible strategies for different players forms a matroid.

In light of the negative results regarding existence and complexity of pure Nash equilibria,
attention turned towards approximate equilibria. For symmetric and unweighted congestion
games, Chien and Sinclair [7] showed fast convergence to approximate equilibria under some
mild assumption on the cost functions. However, Skopalik and Vöcking [20] proved that in the
asymmetric case it is PLS-hard to compute an α-approximate equilibrium for any polynomial
time computable α. As it turns out, this seemingly devastating result relies on the use of cost
functions that allow negative coefficients. Indeed Caragiannis et al. [4] presented a polynomial
time algorithm to compute approximate equilibria in unweighted congestion games with
linear and polynomial cost functions without negative coefficients. In subsequent work [5],
the same authors study the existence and complexity of approximate equilibria in weighted
congestion games. In particular they show that a game with polynomial delay functions of
degree at most d, a d!-approximate equilibrium always exists. They introduce a new class
of games called Ψ-games. A weighted congestion game is approximated by a corresponding
Ψ-game. That is, the cost a player in a weighted congestion game is approximates by her
cost in the corresponding Ψ-game up factor of d!. These Ψ-games are potential games which
immediately proves the existence of d!-approximate equilibria. Using a similar algorithm
as in [4] one can compute dd+o(1)-approximate equilibria in games with polynomial delay
functions and 3+

√
5

2 -approximate equilibria in the case of linear weighted congestion games.
Chen and Roughgarden [6] studied approximate equilibria in network design games with

weighted players and showed existence of approximate equilibria using approximate potential
functions. They were also used by Christodoulou et al. [8] in order to derive tight bounds on
the price of anarchy and price of stability of approximate pure Nash equilibria in unweighted
congestion games.

2 Preliminaries

We consider finite strategic games G = (N,S, π), where N = {1, . . . , n} is the non-empty
and finite set of players, Si is the set of strategies available to player i, S = S1 × . . .× Sn
is the finite and non-empty set of strategy profiles, πi : S→ Rn is the private cost function
player i strives to minimize, and π : S→ Rn, s 7→ π1(s)× · · · × πn(s) is the combined private
cost function.

Vectors of sets and vectors of real numbers are denoted with bold face. We use standard
game theory notation, i.e., for a player i and a strategy profile s, we write s = (si, s−i)
meaning that si ∈ Si and s−i ∈ S−i = S1 × · · · × Si−1 × Si+1 × · · · × Sn. For α ≥ 1, a
strategy profile s is an α-approximate Nash equilibrium, if πi(s) ≤ α · πi(ti, s−i) for all i ∈ N
and ti ∈ Si. For α = 1, we call s a Nash equilibrium rather than a 1-approximate Nash
equilibrium.

APPROX/RANDOM’14
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In a weighted congestion game, we are given a demand vector d = (d1, . . . , dn) ∈ Rn>0
specifying a positive demand di for each player i. The set of strategies of player i is a
non-empty set Si ⊆ 2R of subsets of a given set of resources R. Given a strategy profile s ∈ S,
we denote by Nr(s) = {i ∈ N : r ∈ si} the set of players that use r in s. The aggregated
demand for resource r is denoted by |dNr(s)|. Each resource is endowed with a cost function
cr : R≥0 → R≥0 that maps the aggregated demand |dNr(s)| to a cost value cr(|dNr(s)|). The
private cost of player i is then defined as πi(s) =

∑
r∈si

cr(|dNr(s)|).
A weighted congestion game in which all players have unit demand di = 1 is called

an unweighted congestion game. Rosenthal proved that every unweighted congestion game
has a pure Nash equilibrium by giving a potential function. For α ≥ 1, an α-approximate
potential function is a map P : S 7→ R with the property that P (ti, s−i) < P (s) whenever
απi(ti, s−i) < πi(s) for some i ∈ N , ti ∈ Si, and s ∈ S. In case α = 1, we call P a potential
function. Rosenthal [19] showed that P : S→ R defined as P (s) =

∑
r∈R

∑|dNr(s)|
x=0 cr(x) is a

potential function for unweighted congestion games.

3 Existence of an Approximate Potential Function

In this section, we show that weighted congestion games admit approximate potential
functions with low approximation factor. Roughly speaking, we obtain an approximate
potential as follows. For each resource, we choose an appropriate ordering of the players.
Then, for each resource separately, we compute a discrete integral: We sum up the resource
cost after introducing the first player multiplied with the first players’ demand, the resource
cost after introducing the first two players multiplied with the second players’ demand, and
so on. When the demands of all players go to zero while keeping the total demand of all
players constant this value approaches the integral from zero to the total demand of the cost
function, hence the name.

To abstract from the underlying set of players, we define the discrete integral of a function
with respect to an arbitrary vector v ∈ Rn>0.

I Definition 1 (Discrete integral). Let v ∈ Rn>0 and let f : R≥0 → R≥0. The v-discrete
integral is defined as If (v) =

∑n
i=1 vif(

∑i
j=1 vj).

To obtain provably low approximation factors, we are interested in permutations of the
vector v that minimize or maximize the value of the discrete integral among all permutations
of the vector. For a vector v ∈ Rn>0, and a function f we let denote σ̂f (v) the vector in Rn>0,
that contains the entries of v = (v1, . . . , vn) in an order that minimizes the resulting discrete
integral, i.e., If (σ̂f (v)) ≤ If ((vp(1), . . . , vp(n))) for all permutations p ∈ Π. With a slight
abuse of terminology, we call σ̂f (v) a permutation of v. If several permutations of v achieve
the same value for the discrete integral, we assume that ties are broken according to an
arbitrary, but fixed tie-breaking rule. Similarly, we denote by σ̌f (v) the permutation of v that
maximizes the resulting value of the discrete integral, i.e., If (σ̌f (v)) ≥ If ((vp(1), . . . , vp(n)))
for all permutations p ∈ Π. We sometimes call σ̂f (v) and σ̌f (v) simply minimizing and
maximizing permutations of v when the underlying function f is clear from the context.

Given a minimizing or maximizing permutation σ̂f (v) or σ̌f (v) of a vector v = (v1, . . . , vn),
we are interested in the (relative) error in the minimization or maximization of the discrete
integral when moving a given entry vi to the end of the permutation. Formally, let v ∈ Rn>0
and let p ∈ Π be such that σ̂f (v) = (vp(1), . . . , vp(n)). Further, let i, j ∈ {1, . . . , n} be such
that vi = vp(j). Then, we denote by σ̂if (v) the vector that arises from σ̂f (v) by moving
entry vp(j) to the end of the vector, i.e., σ̂if (v) = (vp(1), . . . , vp(j−1), vp(j+1), . . . , vp(n), vp(j)).
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Analogously, σ̌if (v) is the vector that arises from the maximizing permutation σ̌f (v) by
moving the entry corresponding to vi to the end of the vector.

The approximation factors for approximate equilibria that we are going to obtain depend
on the following relative errors in the minimization respectively maximization of the discrete
integral after moving entry vi to the end of the vector.

I Definition 2. For a function f : R≥0 → R≥0, define

µ̂(f) = sup
v∈Rn

>0

max
i∈{1,...,n}

If (σ̂if (v))− If (σ̂f (v))
vif(|v|) ,

µ̌(f) = sup
v∈Rn

>0

max
i∈{1,...,n}

If (σ̌f (v)− If (σ̌if (v))
vif(|v|) .

For a set C of functions, we set µ̌(C) = supf∈C µ̌(f) and µ̂(C) = supf∈C µ̂(f), respectively.
The following theorem relates the existence of an α-approximate pure Nash equilibrium

in a weighted congestion game with cost functions in C with the value µ̌(C).

I Theorem 3. Every weighted congestion game with cost functions in C has an α-approximate
Nash equilibrium with α = 1 + µ̌(C).

Proof. To prove the result, we show that the function P : S → R defined as P (s) =∑
r∈R Icr

(σ̌cr
(dNr(s))) is an α-approximate potential function.

Consider an arbitrary strategy profile s ∈ S and let i ∈ N and t ∈ S be such that
t = (ti, s−i) for some ti ∈ Si with α · πi(ti, s−i) < πi(s). We calculate

P (t)− P (s) =
∑
r∈R

(
Icr (σ̌cr (dNr(t)))− Icr (σ̌cr (dNr(s)))

)
=

∑
r∈R

(
Icr

(σ̌icr
(dNr(t)))− Icr

(σ̌icr
(dNr(s)))

)
(1a)

+
∑
r∈R

(
Icr

(σ̌cr
(dNr(t)))− Icr

(σ̌icr
(dNr(t)))

)
(1b)

+
∑
r∈R

(
Icr (σ̌icr

(dNr(s))))− Icr (σ̌cr (dNr(s)))
)
. (1c)

We proceed to bound the expressions (1a), (1b), and (1c) separately, starting with (1a).
Clearly, for all resources r ∈ R \ (si4ti), the discrete integrals in (1a) cancel out, so we
only have to consider the resources in si \ ti and ti \ si. By definition, for all resources
r ∈ si \ ti, the demand di appears last in σ̌icr

(dNr(s)) but not at all in σ̌icr
(dNr(t)) and, thus,

Icr (σ̌icr
(dNr(t)))− Icr (σ̌icr

(dNr(s))) = −dicr(|dNr(s)|). Analogously, for a resource r ∈ ti \ si,
the demand di appears last in σ̌icr

(dNr(t)), but not at all in σ̌icr
(dNr(s)) and we obtain

Icr (σ̌icr
(dNr(t)))− Icr (σ̌icr

(dNr(s))) = dicr(|dNr(t)|). Thus, we may rewrite (1a) as∑
r∈R

(
Icr

(σ̌icr
(dNr(t)))− Icr

(σ̌icr
(dNr(s)))

)
= di

(
πi(t)− πi(s)

)
.

Next, consider the expression (1b). Using the definition of µ̌(f), we bound (1b) from
above by∑

r∈R

(
Icr (σ̌cr (dNr(t))))− Icr (σ̌icr

(dNr(t)))
)
≤
∑
r∈ti

µ̌cr · dicr(|dNr(t)|) ≤ µ̌(C) · di πi(t).

APPROX/RANDOM’14
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Finally, for expression (1c), by definition of σ̌cr we have Icr

(
σ̌icr

(dNr(s)))
)
< Icr

(
σ̌cr (dNr(s))

)
for all r ∈ R and, thus,∑

r∈R

(
Icr (σ̌icr

(dNr(s))))− Icr (σ̌cr (dNr(s)))
)
< 0. (2a)

Plugging everything together, we obtain

P (t)− P (s) ≤ di
(
πi(t)− πi(s)

)
+ µ̌(C) · di πi(t) = di

(
απi(t)− πi(s)

)
< 0.

We conclude that P is an α-approximate potential. As the set of strategy profiles is finite, P
attains its minimum on S which is an α-approximate Nash equilibrium. J

We obtain a similar bound by choosing for each resource an order of the players’ demands
that minimizes the resulting discrete integral.

I Theorem 4. Every weighted congestion game with cost functions in C and µ̂(C) < 1 has
an α-approximate Nash equilibrium with α =

(
1− µ̂(C)

)−1.

Proof. Let α = 1
1−µ̂(C)) . We consider the function P : S → R defined as P (s) =∑

r∈R Icr
(σ̂cr

(dNr(s))) and show that it is an α-approximate potential function. To this end,
let us again consider an arbitrary strategy profile s ∈ S and let i ∈ N and t ∈ S be such
that t = (ti, s−i) for some ti ∈ Si with α · πi(ti, s−i) ≤ πi(s). We calculate

P (s)− P (t) =
∑
r∈R

(
Icr

(σ̂cr
(dNr(t)))− Icr

(σ̂cr
(dNr(s)))

)
=

∑
r∈R

(
Icr (σ̂icr

(dNr(t)))− Icr
(σ̂icr

(dNr(s)))
)

(3a)

+
∑
r∈R

(
Icr (σ̂cr (dNr(t)))− Icr (σ̂icr

(dNr(t)))
)

(3b)

+
∑
r∈R

(
Icr

(σ̂icr
(dNr(s))))− Icr

(σ̂cr
(dNr(s)))

)
. (3c)

We proceed along the same lines as in the proof of Theorem 3. Note that this time the
expression (2a) does not exceed 0 as we chose an order that minimizes the discrete integral.
Using the definition of µ̂(C), we bound the expression in(3c) from above by µ̂(C) · di πi(s).
Plugging everything together, we obtain

P (t)− P (s) ≤ di
(
πi(t)− πi(s)

)
+ µ̂(C) · di πi(s)

= di
(
πi(t)− (1− µ̂(C))πi(s)

)
= di
α

(
απi(t)− πi(s)

)
< 0.

We conclude that P is an α-approximate potential. J

4 Bounding the Approximation Factor

To obtain explicit numerical bounds on the approximation factor of the approximate Nash
equilibria, we want to compute µ̌(C) and µ̂(C) for interesting sets C of cost functions. As a
first result in this direction, we show that for a convex function f and a vector v ∈ Rn>0, the
discrete integral is maximized when v is sorted in non-decreasing order.
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Formally, for a vector v ∈ Rn>0, let us denote by ←σ(v) = (vp(1), . . . , vp(n)), p ∈ Π the
permutation of v = (v1, . . . , vn) that contains the entries of v in non-increasing order, i.e,
vp(1) ≥ vp(2) ≥ · · · ≥ vp(n). Equivalently, we denote by →v the permutation of v that contains
the entries of v in non-decreasing order.

I Lemma 5 (Sorting Lemma). For all v ∈ Rn>0 and f : R≥0 → R≥0 the following statements
hold:
1. If f is convex, then If (σ̂f (v)) = If (←σ(v)) and If (σ̌f (v)) = If (→σ(v)).
2. If f is concave, then If (σ̂f (v)) = If (→σ(v)) and If (σ̌(v)) = If (←σ(v)).

Proof. We start proving 1. Let f : R≥0 → R≥0 be a convex function and let v ∈ Rn>0 be
arbitrary. It suffices to prove If (←σ(v)) ≤ If (σ̂f (v)). Let w = (w1, . . . , wn) = σ̂f (v). If
w = (w1, w2, . . . , wn) is already non-increasing, there is nothing left to show. Otherwise,
there is i ∈ {1, . . . , n− 1} with wi < wi+1. Consider the vector w′ that is obtained from w
by swapping entries wi and wi+1, i.e. w′ = (w′1, w′2, . . . , w′n) where

w′j =


wj , if j /∈ {i, i+ 1},
wi+1, if j = i,

wi, if j = i+ 1.

We claim that If (w′) ≤ If (w). To see this claim, let us denote by x =
∑i−1
j=1 wj the sum

of the entries of w with index smaller than i. As f is convex, we have f(λa+ (1− λ)b) ≤
λf(a) + (1 − λ)f(b) for all λ ∈ (0, 1), a, b ∈ R≥0. For λ = wi/wi+1, a = x + wi, and
b = x+ wi + wi+1, we obtain in particular

f(x+ wi+1) ≤ wi
wi+1

f(x+ wi) +
(

1− wi
wi+1

)
f(x+ wi + wi+1) (4a)

which implies

wi+1f(x+ wi+1) + vif(x+ wi + wi+1) ≤ wif(x+ wi) + wi+1f(x+ wi + wi+1). (4b)

We derive that If (w′) ≤ If (w). By iteratively switching entries wj , and wj+1 with wj < wj+1
we transform w into ←σ(v) without increasing the value of the discrete integral. This proves
If (←σ(v)) ≤ If (w).

For concave functions, all inequality signs in (4a) and (4b) reverse and 2. is obtained
along the same lines. J

We proceed to provide a series of useful lemmas that help to identify the structure of the
worst case vectors v that get arbitrarily close to the suprema

µ̂(f) = sup
v∈Rn

>0

max
i∈{1,...,n}

(
If (σ̂if (v))− If (σ̂f (v))

)/(
vif(|v|)

)
, and

µ̌(f) = sup
v∈Rn

>0

max
i∈{1,...,n}

(
If (σ̌f (v)− If (σ̌if (v))

)/(
vif(|v|)

)
,

respectively.
Roughly speaking, in the next lemma, we show that for a convex function f and a vector

v = (v1, . . . , vi, . . . , vj , vj+1, . . . , vn) the value If (σ̌f (v) − If (σ̌if (v)) cannot decrease when
merging the two entries vj and vj+1 to a single entry vj + vj+1. For a concave function, the
same statement holds for If (σ̂if (v))− If (σ̂f (v)). To handle the convex and the concave case
simultaneously, the statement of the lemma is slightly more general and holds for arbitrary
vectors v rather than only those that are minimizing or maximizing.

APPROX/RANDOM’14
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I Lemma 6 (Union Lemma). Let f : R≥0 → R≥0, and let v,vi ∈ Rn>0, ṽ, ṽi ∈ Rn−1
>0 be such

that

v = (v1, . . . , vi, . . . , vj , vj+1 . . . , vn), vi = (v1, . . . , vj , vj+1, . . . , vn, vi),
ṽ = (v1, . . . , vi, . . . , vj + vj+1, . . . , vn), ṽi = (v1, . . . , vj + vj+1, . . . , vn, vi)

i.e., ṽ is obtained from v by joining entry vj and vj+1, j > i into one entry vj + vj+1 and vi
and ṽi are obtained from v and ṽ, respectively, by moving entry vi to the end of the vector.
Then, If (vi)− If (v)−

(
If (ṽi)− If (ṽ)

)
is non-negative, if f is convex and non-positive, if f

is concave.

Proof. Let x =
∑j−1
k=1 vj denote the sum of the entries that appear before vj in v and ṽ. We

obtain

If (vi)− If (ṽi)−
(
If (v)− If (ṽ)

)
= vjf(x− vi + vj) + vj+1(x− vi + vj + vj+1)
− (vj + vj+1)f(x− vi + vj + vj+1)
−
(
vjf(x+ vj) + vj+1f(x+ vj + vj+1)− (vj + vj+1)f(x+ vj + vj+1)

)
= vj

(
f(x− vi + vj)− f(x− vi + vj + vj+1)−

(
f(x+ vj)− f(x+ vj + vj+1)

))
,

which is clearly non-positive for convex f and non-negative for concave f . J

By reversing the roles of v and ṽ in the Union Lemma (Lemma 6) we obtain the following
Split Lemma as a direct corollary of the Union Lemma.

I Lemma 7 (Split Lemma). Let f : R≥0 → R≥0, and let v,vi ∈ Rn>0, ṽ, ṽi ∈ Rn+1
>0 be such

that

v = (v1, . . . , vi, . . . , vj , . . . , vn), vi = (v1, . . . , vj , . . . , vn, vi),
ṽ = (v1, . . . , vi, . . . , vj/2, vj/2, . . . , vn), ṽi = (v1, . . . , vj/2, vj/2 . . . , vn, vi)

i.e., ṽ is obtained from v by splitting entry vj, j > i into two entries of size vj/2 and vi
and ṽi are obtained from v and ṽ, respectively, by moving entry di to the end of the vector.
Then, If (vi)− If (v)−

(
If (ṽi)− If (ṽ)

)
is non-positive, if f is convex and non-negative, if f

is concave.

We proceed to use the Union Lemma (Lemma 6) to devise a closed form expression for
µ̌(f) for convex f respectively µ̂(f) for concave f .

I Corollary 8. For a function f : R≥0 → R≥0, let

Bf (x, y, z) = xf(x+ z) + yf(x+ y + z)− yf(y + z)− xf(x+ y + z)
xf(x+ y + z) .

If f is convex, then µ̌(f) = supx,y,z∈R>0,y≥xBf (x, y, z), and if f is concave, then µ̂(f) =
supx,y,z∈R>0,y≥x−Bf (x, y, z).

Proof. We start to prove µ̌(f) =x,y,z∈R>0,y≥x B(f), if f is convex. First, recall that µ̌(f) is
defined as

µ̌(f) = sup
v∈Rn

>0

max
i∈{1,...,n}

If (σ̌f (v))− If (σ̌if (v))
vif(|v|) .
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By Lemma 5, it is without loss of generality to assume that σ̌f (v) contains the entries of v
in non-decreasing order. Using this observation, we derive that there are sequences (nk)n∈N,
nk ∈ N for all k ∈ N, (ik)k∈N, ik ∈ {1, . . . , nk} for all k ∈ N and a sequence of non-decreasing
vectors (vk)k∈N, vk ∈ Rnk

>0 such that

lim
k→∞

If (vk)− If (vikk )
vif(|vk|)

,

where we denote by vikk the vector that arises from vk by moving the ikth entry to the
end of the vector. For ease of exposition, let us set n = nk, i = ik, v = (v1, . . . , vn) = vk,
vi = (v1, . . . , vi−1, vi+1, . . . , vn, vi) = vikk for some fixed k ∈ N. Let z =

∑i−1
j=1 vj denote the

sum of the entries in v before entry vi, let x = vi, and let y =
∑n
j=i+1. Using the Union

Lemma (Lemma 6), we derive that If (v)− If (vi) is maximal if i+ 1 = n, i.e., there is only
one entry vi+1 = y that appears after vi in v. We then obtain

If (v)− If (vi)
vif(|v|) = xf(x+ z) + yf(x+ y + z)− yf(y + z)− xf(x+ y + z)

xf(x+ y + z) ,

which proves the result.
For concave f , recall that µ̂(f) is defined as

µ̌(f) = sup
v∈Rn

>0

max
i∈{1,...,n}

If (σ̂if (v))− If (σ̂f (v))
vif(|v|) ,

and that, by Lemma 5, it is without loss of generality to assume that σ̂f (v) contains the
entries of v in non-decreasing order. Analogously to the convex case, this implies the existence
of sequences (nk)n∈N, nk ∈ N for all k ∈ N, (ik)k∈N, ik ∈ {1, . . . , nk} for all k ∈ N and a
sequence of non-decreasing vectors (vk)k∈N, vk ∈ Rnk

>0 such that

lim
k→∞

If (vikk )− If (vk)
vif(|vk|)

,

where we again denote by vikk the vector that arises from vk by moving the ikth entry to
the end of the vector. We may again apply the union Lemma (Lemma 6) to derive that this
ratio is maximal when i+ 1 = n, i.e., there is only one entry after vi. We then obtain

If (vikk )− If (vk)
vif(|vk|)

= yf(y + z) + xf(x+ z)− xf(x+ z)− yf(x+ y + z)
xf(x+ y + z) ,

which then establishes the result. J

Symmetrically to the previous corollary, we use the Split Lemma (Lemma 7) to derive
closed form expressions for the two missing cases of µ̂(f) for convex f and µ̌(f) for concave
f . It is interesting to note that by repeatedly applying the Split Lemma the discrete integral
approaches the integral, in the supremum.

I Corollary 9. For a function f : R≥0 → R≥0, let

Af (x, y, z) =
∫ y
z
f(s) ds+ xf(x+ y + z)−

∫ x+y+z
x+z f(s) ds− xf(x+ z)

xf(x+ y + z) .

If f is convex, then µ̂(f) = supx,y∈R>0,z∈{0}∪[x,∞)Af (x, y, z), and if f is concave then
µ̌(f) = supx,y∈R>0,z∈{0}∪[x,∞)−Af (x, y, z).

APPROX/RANDOM’14
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Proof. We start to prove A(f) = µ̂(f), if f is convex. First, recall that µ̂(f) is defined as

µ̂(f) = sup
v∈Rn

>0

max
i∈{1,...,n}

If (σ̂if (v))− If (σ̂f (v))
vif(|v|) .

By Lemma 5, it is without loss of generality to assume that σ̂f (v) sorts the entries of v in
non-increasing order. This implies that there are sequences (nk)k∈N, nk ∈ N for all k ∈ N,
(ik)k∈N, ik ∈ {1, . . . , nk} for all k ∈ N and a sequence of non-increasing vectors (vk)k∈N,
vk ∈ Rnk

>0 such that

lim
k→∞

If (vikk )− If (vk)
vikf(|vk|)

= µ̂(f).

where we denote by vikk the vector that arises from vk by moving the ikth entry to the end
of the vector. For ease of exposition, let us set n = nk, i = ik, and v = (v1, . . . , vn) = vk,
for some fixed k ∈ N. Let z =

∑i−1
j=1 vj denote the sum of the entries in v before entry vi,

let x = vi, and let y =
∑n
j=i+1 denote the sum of the entries in v after entry vi. As v is

non-increasing, we have z ∈ {0} ∪ [x,∞). As shown Lemma 7, splitting all entries vj , j > i

into two entries vj/2 does only increase the difference of the discrete integrals. Applying
the procedure repeatedly on all entries vj , j > i, their contribution to the discrete integral
approaches the integral. We obtain

If (vi)− If (v)
vif(|v|) ≤

∫ y
z
f(s) ds+ xf(x+ y + z)−

∫ x+y+z
x+z f(s) ds− xf(x+ z)

xf(x+ y + z) .

Applying this reasoning for all vectors vk, k ∈ N, we obtain

sup
v∈Rn

>0

max
i∈{1,...,n}

If (vi)− If (v)
vif(|v|)

= sup
x,y∈R>0

z∈{0}∪[x,∞)

∫ y
z
f(s) ds+ xf(x+ y + z)−

∫ x+y+z
x+z f(s) ds− xf(x+ z)

xf(x+ y + z) ,

as claimed.
For a concave function f , we obtain along the same lines

lim
k→∞

If (vk)− If (vikk )
vikf(|vk|)

= µ̌(f)

for some sequences (nk)k∈N, nk ∈ N for all k ∈ N, (ik)k∈N, ik ∈ {1, . . . , nk} for all k ∈ N
and a sequence of non-increasing vectors (vk)k∈N, vk ∈ Rnk

>0. We here again denote by vikk
the vector that arises from vk by moving the ikth entry to the end of the vector. Repeated
application of the Split Lemma (Lemma 7) gives

µ̌(f) =
∫ x+y+z
x+z f(s) ds+ xf(x+ z)−

∫ y
z
f(s) ds− xf(x+ y + z)

xf(x+ y + z) ,

analogous to the convex case. J

We proceed by further simplifying the computation of µ̂(f) and µ̌(f).
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I Lemma 10. Let f : R≥0 → R be a function. Then,

sup
x,y∈R>0,

z∈{0}∪[x,∞)

Af (x, y, z) = sup
x,y∈R>0

Af (x, y, 0), if f is convex,

sup
x,y∈R>0,

z∈{0}∪[x,∞)

−Af (x, y, z) = sup
x,y∈R>0

−Af (x, y, 0), if f is concave.

Proof. We first prove the result for convex f . Let (xk)k∈N, (yk)k∈N, and (zk)k∈N sequences
for which the supremum of Af (x, y, z) is attained. For fixed k ∈ N , let us set x = xk, y = yk,
and z = zk and let x′ = x+ z, y′ = y. We claim that

Af (x, y, z) =
∫ y+z
z

f(s) ds+ xf(x+ y + z)−
∫ x+y+z
x+z f(s) ds− xf(x+ z)

xf(x+ y + z)

≤
∫ y′

0 f(s) ds+ x′f(x′ + y′)−
∫ x′+y′
x′

f(s) ds− x′f(x′)
x′f(x′ + y′) = Af (x′k, y′k, 0). (5)

Using f(x′ + y′) = f(x+ y + z) and substituting x′ and y′, (5) is equivalent to

1
x

∫ y+z

z

f(s) ds+ f(x+ y + z)− 1
x

∫ x+y+z

x+z
f(s) ds− f(x+ z)

≤ 1
x+ z

∫ y

0
f(s) ds+ f(x+ y + z)− 1

x+ z

∫ x+y+z

x+z
f(s) ds− f(x+ z). (6)

Rearranging terms (6) is equivalent to

1
x

∫ y+z

z

f(s) ds− 1
x

∫ x+y+z

x+z
f(s) ds ≤ 1

x+ z

∫ y

0
f(s) ds− 1

x+ z

∫ x+y+z

x+z
f(s) ds. (7)

Put differently, we need to show that the function h : R≥0 → R defined as

h(y) = 1
x

∫ y+z

z

f(s) ds−
( 1
x
− 1
x+ z

)∫ x+y+z

x+z
f(s) ds− 1

x+ z

∫ y

0
f(s) ds

is non-positive on R≥0. It is easy to verify that this is true for y = 0. Thus it suffices to
show that h′(y) ≤ 0 for all y ≥ 0. To this end, we derive

h′(y) = 1
x
f(y + z)−

( 1
x
− 1
x+ z

)
f(x+ y + z)− 1

x+ z
f(y)

= 1
x

(
f(y + z)−

(
1− x

x+ z

)
f(x+ y + z)− x

x+ z
f(y)

)
,

which is non-positive due to the convexity of f . We conclude that for each xk, yk, and
zk in the sequence that goes to the supremum of Af (xk, yk, z), there are x′k and y′k with
Af (xk, yk, zk) ≤ Af (x′k, y′k, 0). This implies the result for convex f .

To see the statement for concave f , note that since we seek to compute the supremum of
−Af (x, y, z) rather than Af (x, y, z) all inequality signs in (5), (6), and (7) reverse and we
shall show that the function h is non-negative on R≥0. It is easy to check that h(y) = 0 and
h′(y) ≥ 0 due to the concavity of f . This implies the result. J

I Lemma 11. Let f : R≥0 → R be a function. Then,

sup
x,y,z∈R>0,

y≥x

Bf (x, y, z) = sup
x,y∈R>0

Bf (x, y, 0), if f is convex,

sup
x,y,z∈R>0,

y≥x

−Bf (x, y, z) = sup
x,y∈R>0

−Bf (x, y, 0), if f is concave.
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Proof. We first prove the result for convex f . Let (xk)k∈N, (yk)k∈N, and (zk)k∈N be sequences
for which the supremum of Bf is attained in the limit. For fixed k ∈ N, let us set x = xk,
y = yk, and z = zk and let x′ = x and y′ = y + z. We claim that

Bf (x, y, z) = xf(x+ z) + yf(x+ y + z)− yf(y + z)− xf(x+ y + z)
xf(x+ y + z)

≤ x′f(x′) + y′f(x′ + y′)− y′f(y′)− x′f(x′ + y′)
x′f(x′ + y′) = Bf (x′, y′, 0) (8)

Substituting x′ and y′, (8) is equivalent to

xf(x+ z) ≤ xf(x) + zf(x+ y + z)− zf(y + z) (9a)

⇔ f(x+ z)− f(x)
z

≤ f(x+ y + z)− f(y + z)
x

, (9b)

which is satisfied since f is convex and y ≥ x. For concave f , all inequality signs reverse. J

Combining all lemmas proven in this section, we obtain the following expressions for the
computation of µ̂(f) and µ̌(f), respectively.

I Theorem 12. For a function f : R≥0 → R≥0. Then,

µ̂(f) =


sup

x,y∈R>0

∫ y
0f(s) ds+ xf(x+ y)−

∫ x+y
x

f(s) ds− xf(x)
xf(x+ y) , if f is convex

sup
x,y∈R>0
y≥x

yf(y) + xf(x+ y)− xf(x)− yf(x+ y)
xf(x+ y) , if f is concave,

µ̌(f) =


sup

x,y∈R>0
y≥x

xf(x) + yf(x+ y)− yf(y)− xf(x+ y)
xf(x+ y) , if f is convex

sup
x,y∈R>0

∫ x+y
x

f(s) ds+ xf(x)−
∫ y

0f(s) ds− xf(x+ y)
xf(x+ y) , if f is concave.

5 Polynomial Cost Functions

In this section, we consider the special case of polynomial functions. Formally, for ` ∈ N, let
us denote by

C` =
{
f : R≥0 → R≥0 | ∃n ∈ N with f(x) =

n∑
j=1

aj x
bj , aj ≥ 0, bj ∈ [1, `] ∀j ∈ {1, . . . , n}

}
the set of convex polynomial functions with non-negative coefficients and maximal degree `.
Combining Theorem 3 and Theorem 12, we show that weighted congestion with degree `
polynomials have an (`+ 1)-approximate pure Nash equilibrium.

I Theorem 13. Every weighted congestion game with cost functions in C` has an α-
approximate pure Nash equilibrium with α ≤ `+ 1.

Proof. We first decompose the game into an isomorphic weighted congestion game G in
which each resource r has a cost function of type cr(x) = arx

br with ar > 0 and br ∈ [1, `].
Let us denote the set of these functions by C̄`.
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Theorem 3 shows that G has an (1 + µ̌)-approximate pure Nash equilibrium and The-
orem 12 provides an explicit formula for computing µ̌. We can thus compute the maximum
approximation factor α as

α = sup
f∈C̄`

sup
x,y∈R>0
y≥x

xf(x) + yf(x+ y)− yf(y)− xf(x+ y)
xf(x+ y) + 1

= sup
b∈[1,`]

sup
x,y∈R>0
y≥x

xb+1 + y(x+ y)b − yb+1 − x(x+ y)b

x(x+ y)b + 1

= sup
b∈[1,`]

sup
x,y∈R>0
y≥x

y
(
(x+ y)b − yb

)
− x
(
(x+ y)b − xb

)
x(x+ y)b + 1

We use that for all b ∈ [1, `] the function s 7→ sb is convex with derivative s 7→ bsb−1 and
obtain

α ≤ sup
b∈[1,`]

sup
x,y∈R>0
y≥x

xy
(
b · (x+ y)b−1)− xy(bxb−1)

x(x+ y)b + 1.

We simplify and obtain

α ≤ sup
b∈[1,`]

sup
x,y∈R>0
y≥x

b ·
( y

x+ y
− yxb−1

(x+ y)b
)

+ 1 ≤ sup
b∈[1,`]

b+ 1 = `+ 1,

which completes the proof. J

For low degrees, we use the minimizing permutation instead of the maximizing permutation
and obtain better bounds.

I Theorem 14. Every weighted congestion game with cost functions in C` has an α-
approximate pure Nash equilibrium, where

α = sup
b∈[1,`]

sup
x,y∈R>0

λ(1 + λ)b
1
b+1 (1 + λ)b+1 + (1− 1

b+1 )λb+1 − 1
b+1

. (10)

Proof. Using the same decomposition argument as in the proof of Theorem 13, we can
assume without loss of generality that all cost functions are monomials. We again denote
the set of monomials with maximum degree ` by C̄`. Using Theorem 4 and Theorem 12, we
obtain

α ≤ sup
f∈C̄`

sup
x,y∈R>0

xf(x+ y)∫ x+y
x

f(s) ds+ xf(x)−
∫ y

0f(s) ds

≤ sup
b∈[1,`]

sup
x,y∈R>0

x(x+ y)b
1
b+1 (x+ y)b+1 + (1− 1

b+1 )xb+1 − 1
b+1y

b+1

Substituting x = λy for some λ ∈ R>0, we obtain

α ≤ sup
b∈[1,`]

sup
λ∈R>0

λ(1 + λ)b
1
b+1 (1 + λ)b+1 + (1− 1

b+1 )λb+1 − 1
b+1

,

as claimed. J

For polynomials with small maximal degrees `, we solve (10) and obtain approximation
guarantees strictly below the factor of ` + 1 guaranteed by Theorem 13. Specifically, we
obtain a factor of 4/3 for (at most) quadratic cost functions, 1.785 for (at most) cubic cost
functions, and a factor of 2.326 for polynomials with maximum degree 4.

APPROX/RANDOM’14
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6 Concave Cost Functions

As the main result of this section, we shown that weighted congestion games with concave
cost functions have a 3/2-approximate pure Nash equilibrium.

I Theorem 15. Every weighted congestion game with concave cost functions has 3/2-
approximate pure Nash equilibrium.

To prove this theorem we show that µ̌(f) ≤ 1/2 for each concave function f . Due to space
constraints the detailed proof is deferred to the full version of this paper.

7 Two-player Games

In the following we analyze two-player weighted congestion games and provide a tight upper
bound for approximate equilibria. For this section, it is convenient to assume that the set of
cost functions C is closed under addition, i.e, f ∈ C and g ∈ C implies (f + g) ∈ C. However,
it is straightforward to extend our results to sets of cost functions that do not have this
property.

As a lower bound, consider the following game with two players N = {1, 2} with demands
x, y > 0, respectively, and resources R =

{
(0, 0), (0, 1), (1, 0), (1, 1)

}
with symmetric cost

functions c(0,0) = c(1,1) = c1(x) and c(1,0) = c(0,1) = c2(x) for some c1, c2 ∈ C. Player 1 has
the choice between the strategies {(0, 0), (0, 1)} and {(1, 0), (1, 1)} whereas the strategies
for player 2 are given by {(0, 0), (1, 0)} and {(0, 1), (1, 1)}. For this game not to have an
α-approximate NE it is necessary for the players to be able to take turns in improving their
private cost by factors of at least α. We can therefore bound the value of α from above:

α ≤ min
{
c2(x+ y) + c1(x)
c1(x+ y) + c2(x) ,

c1(x+ y) + c2(y)
c2(x+ y) + c1(y) .

}
Clearly, for a given set of cost functions C and for every ε > 0, by optimizing over c1, c2 ∈ C
and x, y ∈ R>0, we can construct a game with no (α− ε)-approximate pure Nash equilibrium,
where

α = sup
x,y>0,c1,c2∈C

min
{
c2(x+ y) + c1(x)
c1(x+ y) + c2(x) ,

c1(x+ y) + c2(y)
c2(x+ y) + c1(y)

}
.

As the main result of this section, we show that this bound tight. Due to space constraints
the detailed proof is deferred to the full version of this paper.

I Theorem 16. Every two-player weighted congestion game with cost functions in C has an
α-approximate pure Nash equilibrium with

α ≤ sup
x,y>0,c1,c2∈C

min
{
c2(x+ y) + c1(x)
c1(x+ y) + c2(x) ,

c1(x+ y) + c2(y)
c2(x+ y) + c1(y)

}
.

For specific classes of cost functions, we solve for α and obtain the concrete numerical
approximation factors shown in Table 1.
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