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Abstract
The inventory routing problem involves trading off inventory holding costs at client locations
with vehicle routing costs to deliver frequently from a single central depot to meet deterministic
client demands over a finite planing horizon. In this paper, we consider periodic solutions that
visit clients in one of several specified frequencies, and focus on the case when the frequencies
of visiting nodes are nested. We give the first constant-factor approximation algorithms for
designing optimum nested periodic schedules for the problem with no limit on vehicle capacities
by simple reductions to prize-collecting network design problems. For instance, we present a 2.55-
approximation algorithm for the minimum-cost nested periodic schedule where the vehicle routes
are modeled as minimum Steiner trees. We also show a general reduction from the capacitated
problem where all vehicles have the same capacity to the uncapacitated version with a slight
loss in performance. This reduction gives a 4.55-approximation for the capacitated problem. In
addition, we prove several structural results relating the values of optimal policies of various
types.
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1 Introduction

The Inventory Routing Problem (IRP) is a classical problem in the Supply Chain Optimization
area of the Operations Management literature [7, 13, 18, 19, 21] that captures the trade-off
between the holding costs for inventory and the routing costs of replenishing the inventory
at various locations in a supply chain. It arises in the context of vendor-managed inventory
systems where the supplier running a depot manages the inventory at its client demand
locations [30]. The general problem involves multiple products that are stocked at multiple
depots, that must be shipped to meet the demand for these products arising at multiple
locations (clients) specified over the course of a planning horizon that involves several time
periods (days or rounds). The costs of holding a unit of each product per day at each of
the clients are specified to compute the inventory holding costs; vehicles are available at the
depots with given capacities and transportation costs in the metric defined by the depots and
clients determine the vehicle routing costs. The goal of the problem is to find a set of vehicle
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routes for each day of the planning horizon that delivers sufficient units of products at each
location to satisfy all demands, and minimizes the total sum of inventory holding costs and
vehicle routing costs over the whole planning horizon. Note that we are not allowed to have
any demand backlog at any client location.

Being a natural extension of the classical inventory holding problem to a networked
setting, many of the early papers try to adopt the approach from the inventory literature of
looking for policies under a specified random pattern of demand at the locations [2, 3] that
optimize the infinite-horizon costs. However, no optimal or near-optimal policies are known
in the general case of the problem. The more tactical solutions to this real-life problem
involve focusing on a finite planning horizon as we have formulated it above: in this given
horizon, the demands can be assumed to be deterministic (realizations of some underlying
random process or very good forecasts of them). The problem can then be cast as an integer
program [14] that decides on the vehicle routes per day and the amounts delivered per
day. Solution approaches for this formulation typically involve heuristics [15, 17] that try
to manage the short-term formulation with extra constraints or objectives to take care of
extending the solutions to the next finite planning horizon overlapping with the current one.

In this paper, we address the most-studied version of the finite horizon problem with a
single depot. We focus on the tactical version of the problem where the demands at the clients
are assumed to be deterministic over the horizon and design constant-factor approximation
algorithms for periodic solutions which we define next.

Periodic Schedules
Even though the single-depot version of the IRP can be cast as an IP, finding solutions
that serve the clients at arbitrarily spaced time periods can be practically cumbersome
to implement. Indeed, Anily and Federgruen noted early on [2]: “The complexity of the
structure of optimal policies makes them difficult, if not impossible, to implement even if
they could be computed efficiently". A very natural restriction that has been considered is
to require that every client is visited according to a periodic schedule, i.e., once every f days
for some frequency f associated with that client. A simple example is a delivery schedule
that visits a client in a particular day of the week.

Another common further restriction on the set of frequencies used is that longer frequencies
are multiples of all the smaller frequencies: e.g., clients can be visited once every week, or
once every month (4 weeks) or once every quarter (every 12 weeks), so that in days, the
periods are 7, 28 and 84. Such schedules are called nested periodic [31]. A particular class
of such policies where the frequencies are powers of two is very well studied in Inventory
Management following the seminal work of Roundy [27] on the efficacy of power-of-two
policies as very good approximations for more complicated replenishment policies. Our main
result is a constant-factor approximation algorithm for nested periodic schedules, that also
gives corollaries for power-of-two schedules as well as for general power-of-k schedules for
k > 2 (We call these 2-periodic and k-periodic schedules in the sequel).

Partition Schedules
While we require each node to be visited with a frequency that is a power of two in the
2-periodic schedules, we have a choice of the vehicle route used in round 2 versus round 4.
In the general problem, we may use two different vehicle routes on days 2 and 4 since the
second route will also include nodes visited with frequency 4 in addition to those visited with
frequency 2: we call such schedules simply 2-periodic schedules to denote their generality.
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However, we may further restrict that the vehicle route used to visit the clients of frequency
2 must always be the same; in this case, in round 4, we would have two different vehicle
routes, with one visiting all nodes of frequency 2 and the other visiting nodes of frequency 4.
Note that we have effectively partitioned the clients into subsets based on their frequencies
and the schedule specifies a vehicle route that visits each set independent of the others.
Such schedules are called partition schedules or policies [3]; we will term a partition schedule
for the general nested case as a nested partition policy and the power-of-two version as a
2-partition policy. Note that partition schedules are also periodic.

2 Our Results

2.1 Problem Definition
In the IRP, we are given a complete graph G with a node set V (G) and an edge set E(G),
and a metric distance function w (i.e., w(ab) + w(bc) ≥ w(ac) for any nodes a, b, c ∈ V (G)).
A single depot node (or root) r is specified as well as a set of client nodes. The depot has
infinite production capacity, which means there are as many units of the production as we
need available at the depot.

We are given a planning horizon of length T + 1 (our rounds are numbered 0 through
T ) and are asked to satisfy the demands of the clients in these T + 1 rounds. Thus, client
i, which has a demand dji in the j-th round of the planning horizon, should be satisfied by
the depot using a set of (possibly capacitated) vehicles as follows: In each round, for each
vehicle, we determine a sequence of some nodes of V (G), and the vehicle visits those nodes
in that order. The vehicle starts at the depot node, picks up the products, and then visits
client nodes, to deliver a portion of its shipment to the client and satisfy the client’s demands
until the next visit; in the capacitated version, the vehicle cannot carry more units than its
capacity C. In this paper, we assume uniform capacities for all the vehicles. Also, we assume
that the client demands are discrete, and that partial (fractional) satisfaction of a unit of
demand is not allowed.

Assume inventory is used in the order it was delivered to satisfy demand. For each unit
of the production that client i receives in round s and keeps in its inventory till round t,
it incurs a holding cost his,t. Hence the client i is visited in rounds 0, t1, . . . , tk, then the
holding cost for i is

∑k
j=0

∑tj+1
s=tj d

s
ih
i
tjs, where we let t0 = 0 and tk+1 = T + 1. Note the

general structure used for modeling the holding costs. The only assumption we need for the
holding costs is monotonicity, i.e. for any client i and any three rounds u ≤ s ≤ t, we need
to have hiut ≥ hist.

For a given solution x, the sum of all the holding costs incurred by all the clients over the
whole horizon is called the holding cost h(x). Similarly, the sum of the distances traveled by
all the vehicles in all the rounds is called the shipping cost w(x). The cost of a solution x to
the IRP, c(x), is the sum of its holding cost and its shipping cost. We want to determine the
solution (also called schedule or policy), that specifies vehicle routes and demand deliveries
in each route, such that the total incurred cost is minimized. Note that for feasibility, the
amount at any location at any period is at least its demand up to now.

As noted above, we consider only periodic policies in this paper. A frequency is defined
as a positive integer, and we assume that available frequencies are given. In periodic policies,
a solution assigns a frequency to each client node. If a client node is assigned frequency f ,
then the vehicle in round pf has to visit the node for each positive integer p up to bT/fc.
Partition policies are different from periodic policies only in the fact that a client node is
visited in the same route every time.

APPROX/RANDOM’14
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Let q0, q1, . . . , qk be integers such that q0 = 1 and qj ≥ 2 for j = 1, 2, . . . , k. In a nested
(periodic or partition) policy, the available frequencies are f0, f1, . . . , fk+1 that are defined as
fi =

∏i
j=0 qj for i = 0, 1, . . . , k, and fk+1 = +∞. We need fk+1 to represent nodes visited

only once in round 0. A k′-periodic policy denotes a policy with frequencies defined by
qj = k′ for each j = 1, 2, . . . , k.

Summing up, the problem considered in this paper is summarized as follows.

Problem IRP
Input:

A metric (G,w) with a depot node r ∈ V (G).
A planning horizon length T + 1.
A demand dji for each i ∈ V (G) \ {r} and j ∈ {0, 1, . . . , T}.
A holding cost his,t for each i ∈ V (G) \ {r} and s, t ∈ {0, 1, . . . , T}.
A vehicle capacity C in capacitated case.
Available frequencies f0, f1, . . . , fk+1, where fk+1 = +∞. The nested policy defines fi
from q0, q1, . . . , qk as

∏i
j=0 qj for i = 0, 1, . . . , k.

Output:
Allocation of a frequency to each client.
A set of vehicle routes for each round.

Objective: Minimize the sum of the holding cost and the shipping cost.

2.2 Techniques
We present constant-factor approximation algorithms for designing periodic policies for the
general capacitated version of the IRP. Our main contribution is a simple reduction of
the problem to a carefully designed instance of a prize-collecting vehicle routing problem
(PCVRP), where vehicles from a root node (depot) must either visit each client or pay a
pre-specified penalty for not visiting it, with the objective function summing the cost of
the route and the penalties of uncovered clients. The prize-collecting TSP [6] as well as
the prize-collecting Steiner tree problems have been well studied [10, 22]; the best-known
performance ratios for these problems are some constants slightly below 2 [4].

We describe the key idea behind our algorithm for the uncapacitated case where the
vehicles can carry any number of units in each round: our reduction uses roughly one copy of
the metric for each frequency, where the edge lengths in the metric are scaled appropriately
by the number of times the vehicle route of the corresponding frequency will be used in the
overall IRP schedule: if the planning horizon is T rounds, and the frequency represented by
the ith copy is fi, this scale factor is roughly T/fi. The penalties of a node in each of the
copies are carefully set so that if a node is covered by a vehicle route for the first time in
the ith copy, then the sum of the penalties of the first (i− 1) copies gives the holding cost
for this node if it were visited only every fi rounds. In this way, the two components of the
PCVRP problem - covering with routes and penalties - capture the two components of the
IRP - routing and inventory holding costs.

We can observe that periodic schedules in the original IRP instance correspond to
solutions with some monotonicity property in the PCVRP instance. Hence we can save the
approximation factor incurred by transforming PCVRP solutions into periodic schedules if we
can compute monotone PCVRP solutions. To do this, we solve a natural linear programming
relaxation of the problem strengthened by adding the constraint on monotonicity, and then
use randomized threshold rounding for converting fractional solutions to an integral solution.
This gives rise to the approximation guarantees that we provide.
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We can extend this idea to the capacitated case. When all vehicles have the same capacity,
then we can relate the cost of the corresponding capacitated VRP to a lower-bound defined
from the shortest length from the root to each client scaled by the ratio of its demands to the
capacity. To solve the overall problem, we solve the uncapacitated version of the problem by
ignoring the capacity, and break the obtained routes for satisfying the capacity constraints.
The key idea is that the costs for connecting the generated sub-routes to the root is bounded
by the lower-bound we obtain.

2.3 Summary of Results
For simplicity, in the sequel, we consider the cost of the vehicle route at any period to be
modeled by the length of a minimum-cost Steiner tree connecting the depot to the clients
that are visited in that period. Our results easily generalize to the case when the vehicle
routes are TSP tours over the same set with the appropriate replacement of Steiner tree with
TSP in the guarantees below.

A solution x specifies the Steiner trees used by the vehicles at every round, and hence
delivers at every visited client, as many units as are needed to satisfy the demand from the
current round to the next round when it is visited in the solution. We denote the total
holding cost incurred at all clients by the solution x by h(x) and the total routing cost
of all vehicles in x by w(x). Let ρPC denote the best-known approximation factor for the
prize-collecting Steiner tree problem (PCST) - the value of ρPC is currently (2− ε) for some
small constant ε > 0 [4].

Constant Approximation for Uncapacitated IRP
First we present constant-factor approximation algorithms for uncapacitated IRPs, which
are summarized as follows.
1. We design a 2.55-approximation for the minimum-cost nested periodic policy for the

uncapacitated IRP.
2. We give an αNEρPC-approximation algorithms for the minimum-cost nested partition and

periodic policies for the uncapacitated IRP where αNE is a constant not larger than 2
which is defined in terms of the given frequencies.

3. We design an αNAρPC-approximation algorithm for the minimum-cost nested partition
policy for the uncapacitated IRP where αNA is a constant not larger than 2. Note that
αNA is a different constant from αNE.

4. We also study general partition policies for uncapacitated IRP which do not need to
be nested and provide a 4ρPC-approximation algorithm for the minimum-cost general
partition policies. This result is a consequence of the above αNAρPC-approximation for
2-partition policies and a structural relation between 2-partition policies and general
partition policies.

In this article, because of the space limitation, we only explain the 2.55-approximation al-
gorithm for the nested periodic policies (Corollary 5) and the αNEρPC-approximation algorithms
for the nested partition policies (Theorem 6) in Section 5.

Constant Approximation for IRP with Uniform Capacities
Next we show a general reduction of the capacitated IRP to the corresponding uncapacitated
version with a slightly worse guarantee (details are in Section 6).

APPROX/RANDOM’14
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1. We show that for any periodic policy for the IRP, a γ-approximation algorithm for the
uncapacitated version can be used to design a (γ+2)-approximation for the corresponding
capacitated version (Theorem 9).

2. For any partition policy, we show that a γ-approximation algorithm for the uncapacitated
version gives a (γ + 4)-approximation when each client has a constant demand rate
(Theorem 10).

As corollaries, these results yield a counterpart for every result for uncapacitated IRP.

Structural Results – Relations Between Various Types of Policies
Finally we study relations between partition policies and periodic policies. We also relate
the optimal value of any periodic schedule to that of an optimal 2-periodic schedule for the
same instance in the spirit of the result of Roundy [27].

1. We provide an upper bound on the cost of the optimum nested partition policy in
terms of the cost of the optimum nested periodic policy for uncapacitated IRP. Formally,
we show that c(x∗NE) ≤ c(x∗NA) ≤ αNEc(x∗NE), where x∗NE and x∗NA respectively denote the
optimum nested periodic and partition policies. As a consequence of this result, any φ-
approximation algorithm for the minimum-cost nested partition policy for uncapacitated
IRP is also an αNEφ-approximation for the corresponding minimum-cost nested periodic
policy.

2. We show that for any partition policy x to the uncapacitated IRP, there exists a 2-partition
policy y such that w(y) ≤ 2w(x) and h(y) ≤ h(x). Note that this immediately implies
a constant factor approximation algorithm for optimal partition policies with arbitrary
frequencies.

3. We do not have an analogous result for arbitrary periodic policies. However, for any
k-periodic policy x for k ≥ 3, we show that there exists a 2-periodic policy y such that
w(y) ≤ 2w(x) and h(y) ≤ h(x).

We do not prove these results in this article due to the space limiatation. We recommend
referring to the full version.

2.4 Roadmap
We briefly survey related work in Section 3. Then, in order to illustrate the idea of our
reduction from the uncapacitated IRP to the PCVRP, we present an approximation algorithm
for the uncapacitated version of 2-periodic or power-of-two policies in Section 4. We present
the approximation algorithms for nested policies in uncapacitated IRP in Section 5, and the
reductions from the capacitated to the uncapacitated IRP in Section 6. We conclude the
paper in Section 7.

3 Related Work

IRP has a vast literature that is addressed in several surveys [20, 11, 28, 29] that focus on
different variants of the problem such as those considering stochastic demands, capacitated
vehicles or capacities on local client inventories. Solution approaches for these versions
in turn can be categorized into three main groups: (i) designing heuristics, (ii) designing
policies typically for the infinite-horizon stochastic demand version and showing their (near-
)optimality, and most directly related to our work, (iii) designing approximation algorithms
for special cases of the problem. We only review the last stream below.
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We can model the Vehicle Routing Problem with vehicle capacity constraints by an IRP
instance in which we are given a single round and a capacitated vehicle. When the clients
demands and the vehicle capacities are uniform, Charikar, Khuller, and Raghavachari [16]
gave a 5-approximation. In addition to the VRPs, inventory replenishment problems such
as the Joint Replenishment Problem (JRP) can also be seen as a special case of the IRP.
In the JRP, there is no metric or clients but several retailers, and each retailer has a local
retailer-ordering cost that must be paid whenever it places an order. In addition, there is
a warehouse ordering cost that must be paid whenever any retailer places an order. These
fixed costs for ordering at any time period can be represented by a simple two level tree:
the edge from the root (warehouse) to a dummy node represents the warehouse order cost;
edges from the dummy to each client/retailer represents the retailer order cost. A subset
of retailers ordering at a round involves paying the cost of the tree induced by them and
the root converting this to a case of the IRP on a star network. For the JRP, the first
constant approximation ratio was provided by Levi, Round, and Shmoys [25] by giving a
2-approximation algorithm. Later, in [26], they improved the approximation ratio to 1.8. The
problem is also studied in the online setting, where the demands are not given in advance,
but they arrive online. For this case, a 3-approximation algorithm was provided in [12].
While our work generalizes the JRP to arbitrary metrics and still derives constant-factor
approximation algorithms, we focus only on periodic schedules.

4 2-Periodic Policies for Uncapacitated IRP

4.1 Preliminaries
In this section we modify the objective function slightly to remove the contribution of the
routing cost in the initial round to simply future calculations.

Note that in round 0 in any partition or periodic policy, all of the client nodes should
be visited assuming that there is nonnegative demand in that round (so as to satisfy these
demands). We therefore assume without loss of generality that any partition or periodic
policy uses an (approximately) optimum Steiner tree in round 0 to visit all of the client
nodes.

Let x∗PE denote the optimum 2-periodic policy. Given any weight function ψ : E(G)→ R
and a sub-graph H of G, we define ψ(H) to be

∑
e∈E(H) ψ(e).

For any policy x, let h(x) and w̄(x) respectively denote the holding and shipping cost
incurred in x. Define c̄(x) to be the total cost of the policy, i.e. c̄(x) = h(x) + w̄(x). For any
policy x, let w0(x) be the incurred shipping cost in round 0 of x and define w(x) = w̄(x)−w0(x)
and c(x) = c̄(x) − w0(x). To simplify the analysis, we define the approximation factor in
terms of the refined cost function c(x) (Note that this does not worsen the performance
factors).

4.2 Main Idea of the Algorithm
We set up an instance of PCST and solve this instance using an existing approximation
algorithm for PCST, e.g. Goemans-Williamson Algorithm (denoted by the GW Algorithm
from now on) [22]. Then, using the solution, we construct a policy for the originally given
IRP instance.

Here we formally define the PCST instance. Let L = blog T c. The instance includes a
dummy root node r∗, and L+1 copies of G, namely G0, . . . , GL. The only difference between
Gi and G is the edge weights. Recall that w(e) denotes the weight of an edge e in G. Let

APPROX/RANDOM’14
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the copy of e in Gi be denoted by ei, and define the weight of ei, i.e. w(ei), as follows:

w(ei) = w(e) ·
⌈
bT/2ic

2

⌉
. (1)

To avoid the risk of confusion, when it is needed, we denote the weight function in the graph
G by wG(·), and the weight function in Gi by wi(·). For convenience, we sometimes identify
S ⊆ V (Gi) with {v ∈ V | vi ∈ S}, and U ⊆ E(Gi) with {e ∈ E(G) | ei ∈ U}.

Let ri be the copy of the root node r in Gi. Vertices r0, . . . , rL are connected to r∗ with
edges of weight 0. To finish the definition of the PCST instance, it only remains to define
the penalties of nodes. For any node v ∈ V (G) denote its copy in Gi by vi. We define the
penalties p(vi) so that

∑i−1
j=0 p(vj) will be equal to the total holding cost that node v pays if

it is visited with frequency 2i. More formally, the penalties are defined as follows:

p(vi) =
{
H(v, 1), if i = 0
H(v, i+ 1)−H(v, i), if 0 < i ≤ L

(2)

where H(v, i) will be defined below. Before that, note that with this definition of the penalties,
we will have

∑i−1
j=0 p(vj) = H(v, i).

As we mentioned before, we want to set H(v, i) so that it is equal to the total holding cost
that node v pays if it is visited with frequency 2i. To define this quantity more formally, see
that when v is visited every 2i rounds, then it will be visited in rounds k · 2i for all integers
k such that k ≤ T/2i. Hence, when visiting node v in round k · 2i, we should deliver the
demand it requires from round k · 2i to round min{T, (k + 1) · 2i − 1}. This will determine
the holding cost that v incurs for period k · 2i to min{T, (k + 1) · 2i − 1}. Summing this over
all k ≤ T/2i will give H(v, i), i.e. the total holding cost incurred by v when it is visited every
2i rounds. Thus, from (2) we get the following proposition:

I Proposition 1. For any i ≤ L we have
∑i−1
j=0 p(vj) = H(v, i).

I Proposition 2. For any i from 0 to L we have p(vi) ≥ 0.

4.3 2-Periodic Policies
For finding a 2-periodic policy, we need to assign a frequency 2i to each client node where i
can vary from 0 to L. If a node is assigned frequency 2i, then the policy guarantees to visit
it every 2i rounds and delivers the required demand until the next visit. Note that unlike
the partition policy, the node may be reached via the different routes (trees) in every visit.
To define a periodic policy completely, we need to define these routes as well.

Let Si be the set of client nodes that are assigned frequency 2i. For any round j, the
nodes in Si need to be visited in that round if j is a multiple of 2i. In other words, if we
define ξ(j) to be the largest integer k such that j is a multiple of 2k, then the nodes in
S0, . . . , Sξ(j) need to be visited in round j. Consequently, for any round j, the shipping
routes are defined by a tree Tξ(j) which visits the nodes in S0, . . . , Sξ(j). Below we present
an algorithm which provides an approximately optimum 2-periodic policy by outputting
the node sets S0, . . . , SL, along with the set of trees T0, . . . , TL. Again, note that by the
definition, the tree Ti visits the nodes in S0, . . . , Si.
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Algorithm Periodic Policy
Input: An IRP instance
Output: A 2-periodic policy defined by subsets S0, . . . , SL of the client node set and trees

T0, . . . , TL
1. for i = 0 to L

2. do Si ← ∅
3. Construct the PCST instance.
4. Solve the PCST instance.
5. For all i, let Qi be the set of client nodes in Gi which, using the tree Ui, got connected

to r∗ in the solution.
6. for i = 0 to L

7. do Si ← Qi\ ∪i−1
j=0 Qj

8. Let Hi be the subgraph of G with the edge set E(U0) ∪ . . . ∪ E(Ui).
9. Let Ti be an arbitrary spanning tree in Hi.
10. Output S0, . . . , SL and T0, . . . , TL.

I Lemma 1. In any periodic policy, and for any integer i such that i ≤ L, the tree Ti is
used in exactly

⌈
bT/2ic

2

⌉
number of the rounds (recall that round 0 is excluded).

Proof. Since for each round j we use the tree Tξ(j), then the number of times that the tree
Ti is used is equal to the number of integers p such that 1 ≤ p ≤ T and p/2i is an odd integer.
It is easy to verify that there are exactly

⌈
bT/2ic

2

⌉
values which can be assigned to p. J

I Theorem 2. If Step 4 of Algorithm Periodic Policy uses a ρST-approximation algorithm
for solving the PCST instance, then the algorithm achieves approximation factor 2ρPC. If the
GW algorithm is used instead of the ρST-approximation algorithm, then Algorithm Periodic
Policy finds a periodic policy xPE such that c(xPE) ≤ 2h(x∗PE) + 4w(x∗PE).

Proof. Let y∗ denote the optimum solution for the constructed PCST instance. Let p(y∗),
w(y∗), and c(y∗) respectively denote the penalty cost, the tree cost, and the total cost of y∗.
We hence have c(y∗) = p(y∗) + w(y∗).

The proof consists of three steps. In the first step, we prove that p(y∗) ≤ h(x∗PE) and
w(y∗) ≤ w(x∗PE). Then, in the second step, we observe that Step 4 of Algorithm Periodic
Policy finds a solution ŷ of cost at most ρSTc(y∗) when it uses a ρST-approximation algorithm
for PCST. In fact, this needs no proof since it follows from the definition of ρST-approximation.
When Step 4 uses the GW algorithm, then it finds a solution ŷ of cost at most p(y∗)+2w(y∗),
which was proven in [22]. Finally, in the third step, we show that Algorithm Periodic Policy
converts ŷ into a periodic policy xPE such that c(xPE) ≤ 2c(ŷ).

To do the first step, given x∗PE, we construct a solution y for the PCST instance such that
p(y) = h(x∗PE) and w(y) = w(x∗PE). Let S∗0 , . . . , S∗L be the subsets of the client node set in the
periodic policy x∗PE, and let T ∗0 , . . . , T ∗L respectively be their associated trees. Then, construct
y as follows: for each copy Gi in the PCST instance, visit the nodes in ∪ij=0S

∗
j using the

tree T ∗i , and pay the penalty for the nodes in V (Gi)\(∪ij=0S
∗
j ). Observe that every node

v ∈ S∗i is visited in all of the copies except G0, . . . , Gi−1. We have
∑i−1
j=0 p(vj) = H(v, i) by

Proposition 1. These mean that the overall holding cost paid for v in x∗PE is equal to the
overall penalty paid for (the copies of) v in y. Therefore p(y) = h(x∗PE) holds.

It is easy to see that w(y) = w(x∗PE) holds as well. Just observe that the number of times
that the tree T ∗i is used in x∗PE is equal to

⌈
bT/2ic

2

⌉
by Lemma 1, and hence the total tree

APPROX/RANDOM’14



218 Deliver or Hold: Approximation for the Periodic Inventory Routing

cost paid for using T ∗i in x∗PE is wG(T ∗i ) ·
⌈
bT/2ic

2

⌉
, which is exactly equal to wi(Ti), i.e. the

tree cost incurred in y for copy Gi. Summing over all i implies that w(y) = w(x∗PE) holds.
In the last step of the proof, we show that c(xPE) ≤ 2c(ŷ) by showing that h(xPE) ≤ p(ŷ)

and w(xPE) ≤ 2w(ŷ). To prove h(xPE) ≤ p(ŷ), fix a node v and let i be the smallest integer
such that vi is connected to r∗ in ŷ. Hence the overall penalty paid for (the copies of) v
would be at least H(v, i) by Lemma 1. On the other hand, by the choice of Si in Algorithm
Periodic Policy, we have v ∈ Si. This guarantees that the overall holding cost paid for v in
xPE is exactly H(v, i). By the two latter facts, the overall holding cost paid for v in xPE is at
most the overall penalty paid for v in ŷ. By summing over all v, we get h(xPE) ≤ p(ŷ).

It remains to show that w(xPE) ≤ 2w(ŷ). By the choice of T0, . . . , TL in Algorithm
Periodic Policy,

w(xPE) ≤
L∑
i=0

L∑
j=i

wj(Ui). (3)

Now, if for any fixed i, we show that
∑L
j=i+1 wj(Ui) ≤ wi(Ui), then by (3) we have

w(xPE) ≤
L∑
i=0

L∑
j=i

wj(Ui) ≤
L∑
i=0

2wi(Ui) = 2w(ŷ) (4)

where the equality in (4) is due to the fact that
∑L
i=0 wi(Ui) = w(ŷ). Thus it only remains

to show that
∑L
j=i+1 wj(Ui) ≤ wi(Ui). Equivalently, by the definition of wi(·), we have to

show that

L∑
j=i+1

⌈
bT/2jc

2

⌉
≤
⌈
bT/2ic

2

⌉
.

This inequality can be proven by elementary calculations. J

5 Nested Policies for Uncapacitated IRP

In this section, we generalize the context of
Section 4 from power-of-two to arbitrary nested policies. We also refine the method used

in Section 4 to convert our problem to a monotone version of a prize-collecting VRP. In
particular, we present two approximation results for nested policies, one of which is for nested
periodic policies, and the other of which is for nested partition policies.

Let q0, q1, . . . , qk be integers such that q0 = 1 and qj ≥ 2 for j = 1, 2, . . . , k. In a
nested policy, available frequencies are f0, f1, . . . , fk+1 that are defined as fi =

∏i
j=0 qj for

i = 0, 1, . . . , k, and fk+1 = +∞.

5.1 2.55-Approximation Algorithm for Nested Periodic Policies
We here present an algorithm for nested periodic policies. Our algorithm again reduces the
problem to PCST as Algorithm Periodic Policy in Section 4 did. In our reduction, the graph
and penalties are same as before (we replace L by k); The graph is the union of k + 1 copies
G0, G1, . . . , Gk of G and a new node r∗ connected to the copies of r by edges of weight 0;
The penalty p(vi) of the i-th copy of a client node v is defined by (2) where H(v, i) is the
total holding cost that node v pays when it is assigned frequency fi. We define the weight



T. Fukunaga, A. Nikzad, and R. Ravi 219

w(ei) of the i-th copy of an edge e as the one we need to pay when we use it in a tree of
frequency fi, as follows.

wi(ei) = wG(e)
(⌊

T

fi

⌋
−
⌊
T

fi+1

⌋)
. (5)

We say that a solution for the PCST instance is monotone when for any client node
v and for any i and j such that 1 ≤ i < j ≤ k, vj is connected to r∗ if vi is connected
to r∗. In our algorithm for nested periodic policies, we have to approximate a minimum
cost monotone solution for the PCST instance. We here assume that there exists a ρ-
approximation algorithm for this problem. At the end of this subsection, we mention that
there exists an algorithm with ρ < 2.55. The construction of a nested periodic policy from a
monotone solution for PCST is almost same as Periodic Policy; A client node v is assigned
frequency fi when i is the minimum index such that vi is connected to r∗ in the monotone
solution for PCST. We use the tree of the solution in Gi to visit client nodes of frequency at
most fi in round t such that fi is the maximum frequency that divides t.

In the next theorem, we show that the modified Periodic Policy is a ρ-approximation
algorithm. We omit its proof due to the space limitation.

I Theorem 3. Suppose that there exists a ρ-approximation algorithm for finding a minimum
cost monotone solution for the PCST instance defined above. Then the problem of fining
a minimum cost nested periodic policy for uncapacitated IRP admits a ρ-approximation
algorithm.

Let us discuss algorithms for approximating minimum cost monotone solutions for PCST.
The algorithm due to [4] achieves ρPC = 2 − ε for some constant ε currently, and the GW
algorithm [22] achieves approximation factor 2 for PCST. We do not know if these algorithms
can be modified for approximating monotone solutions. What we can do here is to modify
the algorithm due to an unpublished work of Goemans (refer to [23, 32]). This algorithm
achieves approximation factor 1/(1− e−1/2) < 2.55 as follows: Consider an LP relaxation of
PCST which has a variable x(e) for representing what fraction of an edge e is chosen in a
solution, and a variable y(v) for representing what fraction of a terminal v is covered by the
solution; The algorithm solves the LP relaxation to obtain an optimal solution (x∗, y∗); It
also chooses a threshold α uniformly at random from [e−1/2, 1], and let Ŝ = {v | y∗(v) ≥ α};
The algorithm outputs a Steiner tree that connects Ŝ to the root. The LP used there still
gives a lower-bound on the optimal value of our problem even if we add a new constraint

y(v0) ≤ y(v1) ≤ · · · ≤ y(vk)

for each v ∈ V , and by this new constraint, the Steiner tree output by the algorithm is
monotone. It is not difficult to verify that this Steiner tree achieves the same approximation
factor as before, and we therefore have the following theorem.

I Theorem 4. The problem of finding a minimum cost monotone PCST admits an approxi-
mation factor within 1/(1− e−1/2) < 2.55.

Theorems 3 and 4 gives the next corollary.

I Corollary 5. The problem of finding a minimum cost nested periodic policy for uncapacitated
IRP can be approximated within a factor of 1/(1− e−1/2) < 2.55.

APPROX/RANDOM’14
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5.2 αNEρPC-Approximation Algorithm for Nested Partition Policies

For approximating nested partition policies, we use the same reduction to PCST as for
nested periodic policies. When we solve the constructed instance of PCST, we do not have
to restrict solutions to monotone solutions here, and hence we can use a ρPC-approximation
algorithm.

Let y be a solution for PCST computed by the ρPC-approximation algorithm. Let Ti be
the subtree of y in Gi. While Ti is used bT/fic−bT/fi+1c times for visiting S0∪S1∪ · · ·∪Si
in nested periodic policies, our nested partition policy uses it bT/fic times for visiting only
Si because a client node in Si has to be reached via the same tree at every visit.

Let

αNE = max
1≤i≤k

(
1 + 1

qi − 1

)
. (6)

We always have αNE ≤ 2 since qi ≥ 2 for i = 1, 2, . . . , k.

I Theorem 6. Suppose that there exists a ρPC-approximation algorithm for PCST. Then we
can compute a nested partition policy xNA such that h(xNA)+w(xNA) ≤ ρPCh(x∗NE)+αNEρPCw(x∗NE).
In particular, the problem of finding a minimum cost nested partition policy for uncapacitated
IRP admits an αNEρPC-approximation algorithm.

Proof. Let y be a ρPC-approximate solution for the PCST instance. Let xNA be the nested
partition policy computed from y by our algorithm. We compare xNA with an optimal nested
periodic policy x∗NE. This is enough because the minimum cost of nested periodic policies is
at most that of nested partition policies.

In the proof of Theorem 3, we have already proven that there exists a monotone solution
ŷ for PCST such that w(ŷ) = w(x∗NE) and p(ŷ) ≤ h(x∗NE). Since the minimum cost of any
solutions for PCST is at most w(ŷ) + p(ŷ), we have p(y) + w(y) ≤ ρ′(h(x∗NE) + w(x∗NE)).
We can also verify that h(xNA) ≤ p(y) holds as in the proof of Theorem 3. For proving
w(xNA) ≤ αNEw(y), it suffices to show⌊

T

fi

⌋
≤ αNE

(⌊
T

fi

⌋
−
⌊
T

fi+1

⌋)
. (7)

Notice that

1
qi+1 − 1 ·

⌊
T

fi

⌋
=
(

qi+1

qi+1 − 1

)
· 1
qi+1

·
⌊
T

fi

⌋
≥ qi+1

qi+1 − 1 ·
⌊

T

qi+1fi

⌋
= qi+1

qi+1 − 1 ·
⌊
T

fi+1

⌋
.

This inequality is equivalent to⌊
T

fi+1

⌋
≤ 1
qi+1 − 1 ·

(⌊
T

fi

⌋
−
⌊
T

fi+1

⌋)
,

and the definition of αNE gives

1
qi+1 − 1 ·

(⌊
T

fi

⌋
−
⌊
T

fi+1

⌋)
≤ (αNE − 1)

(⌊
T

fi

⌋
−
⌊
T

fi+1

⌋)
.

Combining these inequalities gives the required one. J
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6 Reducing Capacitated IRP to its Uncapacitated Version

In this section, we consider capacitated IRP. Because of the capacity constraints, we may
need more than one tree for visiting nodes in a single round. We assume that these trees used
in the same round can share an edge while we need to pay its weight multiple times. When
a client node is connected to the root by more than one tree, we have to specify which tree
takes care of the demand of this node. In other words, a schedule for a single round consists
of a set of trees and an allocation of each client node to one of these trees. The capacity
constraints require that the total demand of nodes assigned to a tree does not exceed a given
capacity C.

Our main result in this section is a reduction of the capacitated problem to the corre-
sponding uncapacitated version with a slight worsening in the performance ratio. Recall that
the vehicle routing cost component of the IRP we model is the minimum-cost Steiner tree
rather than the tour. The reduction below applies to other IRPs where the routing is via a
tour on the client nodes, but with slightly different factors.

First we present a lower-bound on the tree costs of feasible solutions.

I Lemma 7. Let xC denote any capacitated IRP solution with vehicle capacities C, and
w(r, v) denote the weight of the direct edge between r and v in the given metric. Then
w(xC) ≥

∑
v w(r, v)

∑T
t=0 d

t
v/C (recall that dtv is the demand of client v in round t).

Proof. Consider how every unit of demand to any client is delivered from r in xC . We
“charge" the tree path in the solution from the root to the client scaled by 1/C to that unit of
demand. Since there are at most C units of demands in any tree, no edge of x gets charged
more than once and the paths charged between client i and r have weights at least w(r, i) by
the metric property. J

We also need the following lemma on partitioning a tree.

I Lemma 8. Let U be a rooted tree, and let S denote a set of nodes spanned by U . Suppose
that each v ∈ S has an integer Dv such that 0 ≤ Dv ≤ C. Then U can be partitioned into
edge-disjoint subtrees U1, U2, . . . , U`, and each v ∈ S can be allocated to one of the subtrees
so that
(i) v ∈ S is allocated to the subtree that spans it,
(ii)

∑
v∈S(Uj) Dv ≤ C for each j = 1, 2, . . . , ` where S(Uj) denotes the set of nodes in S

allocated to Uj,
(iii)

∑
v∈S(Uj) Dv ≥ C/2 holds if Uj does not span the root.

Proof. We prove the lemma by the induction on |S|. For v ∈ S, let Sv denote the set
of descendants of v in S, and Uv denote the subtree of U which is induced by v and its
descendents. Let v∗ be a node farthest from the root such that Dv∗ +

∑
v∈Sv∗ Dv > C. If

there exists no such v∗ (including the case of |S| = 0), then we are done.
Suppose not. Then Dv∗ > C/2 or

∑
v∈Sv∗ Dv > C/2 holds. Notice that

∑
v∈Sv∗ Dv ≤ C

holds by the definition of v∗, and Dv∗ ≤ C by the assumption. When the former condition
holds, we define the subtree that consists of only v∗, and allocate v∗ to this subtree. We
then remove v∗ from S and apply the induction. When the latter condition holds, we let
Uv∗ be one of the subtrees, and allocate nodes in Sv∗ to Uv∗ . We then remove the edges in
Uv∗ from U , and apply the induction. J

I Theorem 9. Given a γ-approximation for the uncapacitated version of the minimum cost
periodic IRP, there is a (γ + 2)-approximation for the corresponding capacitated version
where every tree supports demand at most the given capacity.

APPROX/RANDOM’14
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We emphasize that the above reduction applies to all periodic policies, in particular to
nested periodic policies. The proof proceeds using a natural combination of the uncapacitated
solution along with shortcuts to replenish the supply whenever the vehicle routing solution
runs out due to its capacity constraint [1, 24].

Proof. First note that an optimal solution to the uncapacitated counterpart of the given
capacitated IRP provides a lower bound on the optimal value of the original capacitated
version as well. We first apply the given γ-approximation ignoring the capacities to get an
uncapacitated periodic solution to the IRP. Note that this solution defines, without loss of
generality, a single tree U that connects the root with all the clients that must be visited in
this round.

Let v be a client visited by U in the uncapacitated periodic solution. We assume that a
vehicle does not have to deliver more than C units to v in this single visit1. We can assume
without loss of generality that the uncapacitated solution has this property because we can
set hvst = +∞ when we apply the γ-approximation algorithm if v demands more than C

units in rounds from s to t. Since any feasible solutions for the capacitated instance also
has the property, this transformation of hvst makes no effect on the above claim that the
uncapacitated solution provides a lower-bound on the optimal value. We define Dv as the
units of demands delivered to v by U in the uncapacitated solution. The above assumption
implies that Dv ≤ C.

To complete the algorithm, we need to break every tree U in the uncapacitated solution
for the periodic IRP into trees of capacity at most C each. To do this, we employ Lemma 8.
Then U is broken into subtrees U1, U2, . . . , U`, and each client is allocated to one of the
subtrees. For a subtree Uj , let S(Uj) be the set of clients allocated to Uj . If Uj does not
span the root, we add the cheapest edge ruj from a node uj ∈ S(Uj) as the “connector” edge
to the root to build our capacitated trees of capacity at most C.

Since the subtrees are edge-disjoint, it suffices to show that the weights of the connector
edges for all the subtrees can be bounded by twice the lower-bound given in Lemma 7 to get
the final guarantee of γ + 2. For this, observe that we have∑

v∈S(Uj)

Dvw(r, v) ≥ w(r, uj)
∑

v∈S(Uj)

Dv ≥ w(r, uj) ·
C

2 ,

where the last inequality is due to the condition (iii) in Lemma 8. The above inequality
simplifies to w(r, uj) ≤ 2

∑
v∈S(Uj) Dvw(r, v)/C. A unit of demand is not assigned to more

than one subtree simultaneously. This means that the total weight of connector edges is at
most twice the lower-bound in Lemma 7. J

In order to approximate partition policies, we have to assume that each client v has a
constant demand rate dv per round for a technical reason. Note that several papers [8, 9]
assume a constant demand rate per round for the IRP under which all solutions of the same
frequency route the same amount of demand in every visit to the same node.

I Theorem 10. Given a γ-approximation for the uncapacitated version of the minimum
cost partition IRP, there is a (γ + 4)-approximation for the corresponding capacitated version
with constant demand rates where every tree supports demand at most the given capacity.

1 If we are allowed to split the delivery of the demands to a single node by multiple visits of different
capacitated vehicles in the same round, our method can be modified to handle this case with an even
better guarantee; we omit discussion of this easier case.
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Proof. In Theorem 9, the partitions of trees are possibly different even if the trees visit the
same set of clients because the demands of a client can change in different rounds that we
employ the tree. Such different partitions are disallowed as solutions to partition policies. In
the current setting, this does not happen because a client v of frequency fi always demands
fidv units unless it is at a round in [T − fi + 1, T ]. Hence we take the following approach.

When we partition a tree U of frequency fi, we apply Lemma 8 with Dv = fidv for each
client v even if U is used at a round in [T − fi + 1, T ]. This way, we always have the same
partition for trees of the same frequency in different rounds. Call a tree U the last tree if
it is used at a round in [T − fi + 1, T ]. It can be proven as before that the total weights
of connector edges used for augmenting subtrees constructed from trees that are not last
trees can be bounded by twice the lower-bound in Lemma 7. For bounding the weights of
connector edges used for augmenting subtrees constructed from the last trees, we re-charge
units demanded in all rounds. This are at least Dv = fidv units of demands for each client v
because fi ≤ T . Since a client is not contained by more than one last tree, we do not overuse
the demands more than once. Hence the weights of the connector edges for the last trees
is also at most twice the lower-bound in Lemma 7. In total, four times the lower-bound is
enough for paying the weights of connector edges. J

7 Conclusion

We presented constant factor approximation algorithms for finding minimum cost periodic
schedules in IRP. A natural question is whether efficient algorithms exist for finding non-
periodic schedules. More formally, the problem with non-periodic schedules is defined as
follows. For every period in the horizon, we can design a separate tree or tour routes, and the
demand for any client at any time is delivered in the last visit before that time to the client
in the set of routes. This is an interesting extension of the classic Steiner tree problem and
TSP to the round model. It is not difficult to design an O(log |V |)-approximation algorithm
for this problem by reducing to the instances with tree metrics using the metric embedding
technique [5]. It is an attractive open question to ask if this problem admits a constant factor
approximation algorithm. We hope that our ideas presented in the current paper are useful
for obtaining an answer to this question.
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