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Abstract
Guruswami and Sinop [11] give a O(1/δ) approximation guarantee for the non-uniform Sparsest
Cut problem by solving O(r)-level Lasserre semidefinite constraints, provided that the general-
ized eigenvalues of the Laplacians of the cost and demand graphs satisfy a certain spectral
condition, namely, λr+1 ≥ Φ∗/(1− δ). Their key idea is a rounding technique that first maps a
vector-valued solution to [0, 1] using appropriately scaled projections onto Lasserre vectors. In
this paper, we show that similar projections and analysis can be obtained using only `22 triangle
inequality constraints. This results in a O(r/δ2) approximation guarantee for the non-uniform
Sparsest Cut problem by adding only `22 triangle inequality constraints to the usual semidefinite
program, provided that the same spectral condition λr+1 ≥ Φ∗/(1− δ) holds as above.
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1 Introduction

Finding sparse cuts in graphs or networks is a difficult theoretical problem with numerous
practical applications, namely, divide-and-conquer graph algorithms, image segmentation
[16, 17], VLSI layout [6], routing in distributed networks [5]. From the theoretical side, the
problem of finding the sparsest cut in a given graph is NP-hard, and over the years, significant
efforts and non-trivial ideas have gone into designing good approximation algorithms for it.
The state of approximability questions for its variants such as conductance or edge expansion
is also similar.

Let us first define the Sparsest Cut problem formally. The input is a pair of graphs C,
D on the same vertex set V , with |V | = n, called the cost and demand graphs, respectively.
They are specified by non-negative edge weights cij , dij ≥ 0, for i < j ∈ [n], and the (non-
uniform) sparsest cut problem, henceforth referred to as Sparsest Cut, asks for a subset
S ⊆ V that minimizes

Φ(S) =
∑
i<j cij |IS(i)− IS(j)|∑
i<j dij |IS(i)− IS(j)| ,

where IS(i) is the indicator function giving 1, if i ∈ S, and 0, otherwise. We denote the
optimum by Φ∗ = minS⊆V Φ(S). The special case of this problem where the demand graph
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is a complete graph on n vertices with uniform edge weights is called the Uniform Sparsest
Cut problem.

Several popular heuristics in practice for finding sparse cuts use spectral information such
as the eigenvalues and eigenvectors of the underlying graph. The generalized eigenvalues of
the Laplacian matrices of the cost and demand graphs, defined later in Section 3, provide
a natural scale against which we can measure the sparsity. If 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λm are
the generalized eigenvalues of the Laplacian matrices of cost and demand graphs, then using
Courant-Fisher theorem (or the easy direction of Cheeger’s inequality) we get λ1 ≤ Φ∗. So
the smallest generalized eigenvalue is at most Φ∗, and as we go to the higher eigenvalues, at
some point they overtake Φ∗. We provide an approximation guarantee of

r

(
1− Φ∗

λr+1

)−2

for the Sparsest Cut problem, provided that λr+1 ≥ Φ∗. In particular, this gives O(r/δ2)
approximation guarantee, if λr+1 ≥ Φ∗/(1−δ). Our algorithm runs in time poly(n) and needs
to solve a semidefinite program with only `22 triangle inequality constraints. In comparison,
Guruswami-Sinop [11] give an approximation guarantee of(

1− (1 + ε)Φ∗

λr+1

)−1
,

provided that λr+1 ≥ (1 + ε)Φ∗, but require solving a semidefinite program with O(r/ε) level
Lasserre constraints, and hence, 2r/δεpoly(n) running time [9].

1.1 Our Results
Our main result, proved later in Section 5, is as follows:

I Theorem 1.1. [Main Theorem] Given an instance C,D of the Sparsest Cut problem,
Algorithm 1 outputs a cut T that satisfies

Φ(T ) ≤ min
r∈[n]

r

(
1− Φ∗

λr+1

)−2
Φ∗.

The algorithm runs in time poly(n) and needs to solve a semidefinite program with only
additional `22 triangle inequality constraints.

Here is an immediate corollary that was mentioned in the abstract.

I Corollary 1.2. If the input instance satisfies λr+1 ≥ Φ∗/(1− δ) for some r ∈ [n], then the
algorithm produces a O(r/δ2) approximation. Here, 0 ≤ λ1 ≤ . . . ≤ λn are the generalized
eigenvalues of the Laplacians of C, D.

The proof of Theorem 1.1 is based on the following property (see Subsection 4.1) of
vectors in `22 space that could be of independent interest.

I Proposition 1.3. If x1, x2, . . . , xn satisfy `22 triangle inequalities, then〈
xi − xj ,

xk − xl
‖xk − xl‖

〉2
≤ |〈xi − xj , xk − xl〉| ≤ ‖xi − xj‖2 , for all i, j, k, l ∈ [n].

Geometrically, this gives an embedding of x1, x2, . . . , xn from `22 into `1 via appropriately
scaled projections onto the line segment joining xk and xl, for any k 6= l. Proposition 1.3
says that this embedding is a contraction and the distortion for a pair is lower bounded by
their squared distance after this projection. Thus, we can relate the average distortion to
projections along certain directions.
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2 Previous and Related Work

The Sparsest Cut problem has seen a lot of activity, given its central importance. For the
case of Uniform Sparsest Cut, where the demand graph is the complete graph with unit
demands on all pairs, the first non-trivial bound was by using Cheeger’s inequality (and a
corresponding algorithm)[1]. This gives an approximation factor of 1/

√
λ2(L), where λ2(L)

is the second-smallest eigenvalue of the normalized graph Laplacian matrix.
In in a seminal work, Leighton and Rao [15] related the problem of approximating the

sparsest cut to embeddings between metric spaces, in particular, into `1. By solving a LP
relaxation of the Sparsest Cut problem, they produce a metric on points and proceed
to embed it into `1, and show that the worst case distortion in doing so determines the
approximation factor. Using a theorem of Bourgain, they obtain an O(logn) approximation.

Following this, the breakthrough work of Arora, Rao and Vazirani [4] used a SDP (which
we will refer to as ARV SDP) that could be viewed as a strengthening of both the spectral
approach via Cheeger’s inequality, and the distance metric approach of Leighton and Rao,
to produce an O(

√
logn) approximation for the Uniform Sparsest Cut. This SDP

used the triangle inequality constraints on the squared distances between vectors crucially,
and was equivalent to the problem of embedding metrics from `22 into `1 with low average
distortion. Further work by Arora, Lee, and Naor [3] extended these techniques to give
an O

(√
logn log logn

)
approximation for the general Sparsest Cut (equivalently, for the

worst case distortion of `22 metrics into `1).
Recently, Guruswami and Sinop [12] gave a generic method for rounding a class of SDP

hierarchies proposed by Lasserre [13, 14], and applied it to the Sparsest Cut problem [11].
This hierarchy subsumes the ARV SDP within 3-levels, but the size of their SDP with r levels
increases as nO(r). The approximation guarantee depends on the generalized eigenvalues of
the pair of Laplacians of the cost and demand graphs, and is as follows:

I Theorem 2.1 (Guruswami-Sinop [11]). Given C,D as cost and demand graphs let 0 ≤ λ1 ≤
λ2 . . . ≤ λn be the generalized eigenvalues between C,D. Then for every r ∈ [n] and ε ≥ 0,
a solution satisfying O(r/ε) levels of the Lasserre hierarchy with objective value Φ∗ can be
rounded to produce a cut T with value

Φ(T ) ≤ Φ∗
(

1− (1 + ε)Φ∗

λr+1

)−1
, if λr+1 ≥ (1 + ε)Φ∗.

For the specific case of the Uniform Sparsest Cut problem, Arora, Ge and Sinop [2]
show, by using techniques from Guruswami-Sinop, that under certain conditions on the input
graph (expansions of sets of size ≤ n/r), they can get a (1 + ε) approximation; again using
the r-th level of the Lasserre hierarchy.

On the side of integrality gaps, the best known integrality gap for the ARV SDP is
(logn)Ω(1) by Cheeger, Kleiner and Naor [7].

The main motivation behind this work is to get approximation guarantees similar to the
Guruswami-Sinop rounding [11], but without using higher levels of the Lasserre hierarchy.
Some parts of the Guruswami-Sinop proof such as column subset selection via volume sampling
do not require higher level Lasserre vectors or constraints. Also the final approximation
guarantee of Guruswami-Sinop does not depend on higher level Lasserre vectors. While our
approximation guarantee is mildly worse than theirs, our algorithm always runs in polynomial
time and does not use higher level Lasserre vectors in the rounding.

APPROX/RANDOM’14
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3 Notation and Preliminaries

We state the necessary notation and definitions formally in this section.

Sets, Matrices, Vectors

We use [n] = 1, . . . , n. For a matrix X ∈ Rd×d, we say X � 0 or X is positive-semidefinite if
yTXy ≥ 0 for all y ∈ Rd. The Gram-matrix of a matrix M ∈ Rd1×d2 is the matrix MTM ,
which is positive-semidefinite. We will often need the eigenvalues of the Gram-matrix of M .
We will denote these by σ1(M) ≥ σ2(M) ≥ . . . σd2(M) ≥ 0, arranged in descending order.
The Frobenius norm of M is given by ‖M‖F ,

√∑
i σi(M) =

√∑
i∈[d1],j∈[d2]M(i, j)2. In

our analysis, we will sometimes view a matrix M as a collection of its columns viewed as
vectors; M = (mj)j∈[d2]. In this case, ‖M‖2F =

∑
j ‖mj‖2.

Generalized Eigenvalues

Given two symmetric matrices X,Y ∈ Rd × d with Y � 0, and for i ≤ rank(Y ), we define
their i-th smallest generalized eigenvalue as the following:

λi = max
rank(Z)≤i−1

min
w⊥Z;w 6=0

wTXw

wTY w

Graphs and Laplacians

All graphs will be defined on a vertex set V of size n. The vertices will usually be referred
to by indices i, j, k, l ∈ [n]. Given a graph with weights on pairs W :

(
V
2
)
7→ R+, the graph

Laplacian matrix is defined as:

LW (i, j) =
{
−W (i, j) if i 6= j∑
kW (i, k) if i = j

Sparsest Cut SDP

The SDP we use for Sparsest Cut on the vertex set V with costs and demands cij , dkl ≥ 0
and corresponding cost and demand graphs C :

(
V
2
)
7→ R+ and D :

(
V
2
)
7→ R+, is effectively

the following:

SDP: Φ(SDP ) = min
∑
i<j cij ‖xi − xj‖

2∑
k<l dkl ‖xk − xl‖

2 (1)

subject to ‖xi − xj‖2 + ‖xj − xk‖2 ≥ ‖xi − xk‖2 ∀i, j, k ∈ [n] (2)

While this is technically not an SDP due to the presence of a fraction in the objective, it
is not difficult to see that we can construct an equivalent SDP as shown in [11]. We will use
Φ(ALG) to denote the sparsity of the cut produced by an algorithm, and will compare it to
Φ(SDP ). Note that any set of vectors x1, . . . , xn that are feasible for this SDP satisfy the
triangle inequalities on the squares of their distances, and are said to satisfy the `22 triangle
inequality, or are in `22 space.
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Lasserre Hierarchy

The Lasserre hierarchy [13] at level r strengthens the basic SDP relaxation by introducing
new vectors, xS(f), for every S ⊆ [n] with |S| ≤ r and every f : S → {0, 1}|S|, and requiring
certain consistency conditions on the inner products between them. We do not go into the
details of the hierarchy here, since we will not be using it in this work. We refer the reader
to available surveys, e.g. [14] for more details. For the Sparsest Cut problem, one can
show that the `22 triangle inequalities are subsumed by 3 levels of this hierarchy.

`1 embeddings and cuts

Leighton and Rao [15] show that instead of producing cuts, it is sufficient to produce a
mapping Z : V → Rd, with zi = Z(i), from which we can extract a cut T such that

Φ(T ) ≤
∑
i<j cij‖zi − zj‖1∑
k<l dkl‖zk − zl‖1

.

This follows from the fact that `1 metrics are exactly the cone of cut-metrics.

4 Lasserre hierarchy vs. `2
2 triangle inequality

Let’s first recap Guruswami-Sinop [11, 12, 10, 9] to demonstrate its key ideas and to facilitate
its comparison with our method coming later. At the basic level, they map SDP solution
vectors to values in [0, 1], where one can then run independent or threshold rounding. To
define this map, they need O(r)-level Lasserre vectors {xS(f)}S,f for subsets S ⊆ [n] of size
at most O(r) and assignments f ∈ {0, 1}|S|. For simplicity of notation, call x{i}(1) as xi.
Now the algorithm has two parts.
1. Pick a subset S of size O(r) using volume sampling [8] on the matrix with columns as
{
√
dij(xi − xj)}i<j . This part does not require Lasserre vectors or constraints in the

algorithm as well as the analysis.
2. For the S fixed as above, pick xS(f) with probability ∝ ‖xS(f)‖2 and map each xi to

p
(f)
i ∈ [0, 1] as follows.

xi 7→ p
(f)
i = 〈xi, xS(f)〉

‖xS(f)‖2
∈ [0, 1].

Once we have p(f)
i ∈ [0, 1] for all i ∈ [n], we can either do threshold rounding with

a random threshold r ∈ [0, 1] or do independent rounding with p
(f)
i ’s as probabilities.

Lasserre constraints are used to show p
(f)
i ∈ [0, 1] and the following important property

used in the analysis.〈
xi − xj ,

xS(f)
‖xS(f)‖

〉2
≤ |〈xi − xj , xS(f)〉| ≤ ‖xi − xj‖2 , for all i, j ∈ [n].

What is special about these directions xS(f)? Are there other directions that exhibit similar
property and can be found without solving multiple levels of Lasserre hierarchy?

4.1 `2
2 triangle inequality

We make an interesting observation that `22 triangle inequalities give a large collection of
vectors that exhibit the same property as the xS(f)’s used in the analysis of Guruswami-Sinop.

APPROX/RANDOM’14
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`22 triangle inequalities for all triplets, or equivalently, the acuteness of all angles in a point
set {x1, x2, . . . , xn} can be written as 〈xi − xl, xk − xl〉 ≥ 0, for all i, k, l ∈ [n], and gives the
following interesting mapping of vectors xi to values p(k,l)

i ∈ [0, 1] as

xi 7→ p
(k,l)
i = 〈xi − xl, xk − xl〉

‖xk − xl‖2
.

Note that p(k,l)
i depends on the ordered pair (k, l), and p

(k,l)
i ∈ [0, 1] by the `22 triangle

inequalities or acuteness of all angles. Another interesting consequence is

1− p(k,l)
i = 〈xk − xi, xk − xl〉

‖xk − xl‖2
.

Moreover, we show that the direction xk − xl behaves similar to xS(f) used in the analysis
of Guruswami-Sinop.

I Proposition 4.1. [Restatement of Proposition 1.3] If x1, x2, . . . , xn satisfy `22 triangle
inequalities, then〈

xi − xj ,
xk − xl
‖xk − xl‖

〉2
≤ |〈xi − xj , xk − xl〉| ≤ ‖xi − xj‖2 , for all i, j, k, l ∈ [n].

Proof. By acuteness of all angles, we know that

〈xi − xk, xi − xj〉 ≥ 0 and 〈xl − xj , xi − xj〉 ≥ 0, for all i, j, k, l ∈ [n].

Adding both the inequalities we get ‖xi − xj‖2 − 〈xk − xl, xi − xj〉 ≥ 0, or equivalently
〈xk − xl, xi − xj〉 ≤ ‖xi − xj‖2. Since swapping k and l does not affect the above argument,
we get the upper bound

|〈xk − xl, xi − xj〉| ≤ ‖xi − xj‖2 , for all i, j, k, l ∈ [n].

Swapping (i, j) and (k, l), we also have |〈xk − xl, xi − xj〉| ≤ ‖xk − xl‖2. Therefore,〈
xi − xj ,

xk − xl
‖xk − xl‖

〉2
= 〈xk − xl, xi − xj〉

2

‖xk − xl‖2

≤ 〈xk − xl, xi − xj〉
2

|〈xk − xl, xi − xj〉|
= |〈xk − xl, xi − xj〉| .

J

4.2 Low dimensional SDP solutions
Although the Guruswami-Sinop [11] result is finally stated in terms of a condition on
generalized eigenvalues, it can also be thought of as a result that gives good approximation
guarantees when the SDP solution is close to being low rank. Suppose the Gram matrix
of {xi − xj}1≤i<j≤n has at least δ fraction of its spectrum in its top r eigenvalues, that is,∑r
t=1 λt ≥ δ

∑n
t=1 λt, where λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 are the eigenvalues of the Gram matrix

of {xi − xj}1≤i<j≤n. Then Proposition 4.2 proves the existence of a good direction xk − xl
by weighted averaging.
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I Proposition 4.2. If x1, x2, . . . , xn satisfy the above spectral or low-rank property, then
there exists xk − xl such that∑

i<j

〈
xi − xj ,

xk − xl
‖xk − xl‖

〉2
≥ δ2

r

∑
i<j

‖xi − xj‖2 .

Proof. To show the existence of a good xk − xl, we take expectation over xk − xl by squared
length sampling.

max
k<l

∑
i<j

〈
xi − xj ,

xk − xl
‖xk − xl‖

〉2
≥
∑
k<l

‖xk − xl‖2∑
p<q ‖xp − xq‖

2

∑
i<j

〈
xi − xj ,

xk − xl
‖xk − xl‖

〉2

=
∑
k<l

∑
i<j 〈xi − xj , xk − xl〉

2∑
p<q ‖xp − xq‖

2

=
∑n
t=1 λ

2
t∑n

t=1 λt

≥
∑r
t=1 λ

2
t∑n

t=1 λt

≥
(
∑r
t=1 λt)

2

r
∑n
t=1 λt

by Cauchy-Schwarz inequality

≥ δ2

r

n∑
t=1

λt by the spectral or low-rank property

= δ2

r

∑
i<j

‖xi − xj‖2 .

J

5 Non-uniform sparsest cut

We now give the proof of the Main Theorem (Theorem 1.1). The rounding algorithm is
Algorithm 1.

Algorithm 1 Algorithm for Sparsest Cut
Input: C,D and a solution {x1, . . . , xn} to the ARV SDP for Sparsest Cut
Output: A cut (T, T̄ )

1: for all Pairs (k, l) ∈ [n]× [n] do

2: p
(k,l)
i = 〈xi − xl, xk − xl〉

‖xk − xl‖2
% line embedding

3: for all t ∈ [n] do
4: S

(t)
kl =

{
i : p(k,l)

i ≤ p(k,l)
t

}
% threshold rounding

5: end for
6: end for
7: T = arg mink,l,t Φ

(
S

(t)
kl

)
8: Output the cut (T, T̄ )

Algorithm 1 goes over all directions xk − xl. For each of them, it maps xi to pi ∈ [0, 1] as

xi 7→ p
(k,l)
i = 〈xi − xl, xk − xl〉

‖xk − xl‖2
.

APPROX/RANDOM’14
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Now for each t ∈ [n] consider the sweep cut St = {j : p(k,l)
j ≤ p(k,l)

t }, and output the best
amongst them as T .

For convenience of notation, we will do the analysis using the corresponding `1 embedding,
as mentioned in Section 3. Given an `1-embedding, we can get a cut with similar guarantee
by choosing the best threshold cut along each coordinate, which is what our algorithm does.
Define an `1-embedding of xi’s as follows.

xi 7→ yi =
(
dkl ‖xk − xl‖2 〈xi − xl, xk − xl〉∑

k<l dkl ‖xk − xl‖
2

)
k<l

.

The following is an easy consequence of Proposition 4.1.

I Proposition 5.1.∑
k<l dkl 〈xi − xj , xk − xl〉

2∑
k<l dkl ‖xk − xl‖

2 ≤ ‖yi − yj‖1 ≤ ‖xi − xj‖
2
,

Proof. Let’s start with the upper bound.

‖yi − yj‖1 =
∑
k<l dkl ‖xk − xl‖

2 |〈xi − xj , xk − xl〉|∑
k<l dkl ‖xk − xl‖

2

≤
∑
k<l dkl ‖xk − xl‖

2 ‖xi − xj‖2∑
k<l dkl ‖xk − xl‖

2 by Proposition 4.1

= ‖xi − xj‖2 .

Now the lower bound.

‖yi − yj‖1 =
∑
k<l dkl ‖xk − xl‖

2 |〈xi − xj , xk − xl〉|∑
k<l dkl ‖xk − xl‖

2

≥

∑
k<l dkl ‖xk − xl‖

2
〈
xi − xj , xk−xl

‖xk−xl‖

〉2

∑
k<l dkl ‖xk − xl‖

2 by Proposition 4.1

=
∑
k<l dkl 〈xi − xj , xk − xl〉

2∑
k<l dkl ‖xk − xl‖

2 .

J

Equipped with this, we can now bound the average distortion, and hence, the approximation
factor of our algorithm. We use the following Proposition from Guruswami-Sinop [11] to
rewrite the final bound in terms of the generalized eigenvalues of the Laplacian matrices of
the cost and demand graphs.

I Proposition 5.2. [11] Let 0 ≤ λ1 ≤ . . . ≤ λm be the generalized eigenvalues of the Laplacian
matrices of the cost and demand graphs. Let σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 be eigenvalues of the
Gram matrix of vectors {

√
dij(xi − xj)}i<j. Then∑

t≥r+1 σj∑n
t=1 σj

≤ Φ(SDP )
λr+1

.

Using these we bound the approximation ratio of our algorithm and prove Theorem 1.1.
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I Theorem 5.3. [Restatement of Theorem 1.1]

Φ(ALG) ≤ Φ(SDP ) · r
(

1− Φ(SDP )
λr+1

)−2
.

Proof. The guarantee of our algorithm can only be better than the guarantee of this
corresponding `1-embedding.

Φ(ALG) ≤
∑
i<j cij ‖yi − yj‖1∑
i<j dij ‖yi − yj‖1

≤
∑
i<j cij ‖xi − xj‖

2 ∑
k<l dkl ‖xk − xl‖

2∑
i<j dij

∑
k<l dkl 〈xi − xj , xk − xl〉

2

=
∑
i<j cij ‖xi − xj‖

2∑
i<j dij ‖xi − xj‖

2 ·

(∑
i<j dij ‖xi − xj‖

2
)(∑

k<l dkl ‖xk − xl‖
2
)

∑
i<j

∑
k<l dijdkl 〈xi − xj , xk − xl〉

2

= Φ(SDP ) ·

(∑
i<j dij ‖xi − xj‖

2
)2

∑
i<j

∑
k<l dijdkl 〈xi − xj , xk − xl〉

2

= Φ(SDP ) ·
(
∑n
t=1 σt)

2∑n
t=1 σ

2
t

≤ Φ(SDP ) ·
(
∑n
t=1 σt)

2∑r
t=1 σ

2
t

≤ Φ(SDP ) · r
(∑n

t=1 σt∑r
t=1 σt

)2

by Cauchy-Schwarz inequality

≤ Φ(SDP ) · r
(

1−
∑
t≥r+1 σt∑n
t=1 σt

)−2

≤ Φ(SDP ) · r
(

1− Φ(SDP )
λr+1

)−2
by Proposition 5.2

≤ Φ∗ · r
(

1− Φ∗

λr+1

)−2
.

J

6 Conclusion

We show that it is possible to get approximation guarantees similar to Guruswami-Sinop for
the Sparsest Cut problem, but without using higher level Lasserre vectors. One obvious
question that arises out of this is whether we can apply these techniques with threshold or
independent rounding to give similar guarantees for other problems. Further, can we obtain
more directions for projections and sweep cuts using lower levels of the Lasserre hierarchy or
eigenvectors of the SDP solution?
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