Online Set Cover with Set Requests*

Kshipra Bhawalkar ${ }^{1}$, Sreenivas Gollapudi ${ }^{2}$, and Debmalya Panigrahi ${ }^{3}$

1 Google Inc., Mountain View, CA, U.S. kshipra@google.com
2 Microsoft Research Search Labs, Mountain View, CA, U.S.
sreenig@microsoft.com
3 Duke University, Durham, NC, U.S.
debmalya@cs.duke.edu

Abstract

We consider a generic online allocation problem that generalizes the classical online set cover framework by considering requests comprising a set of elements rather than a single element. This problem has multiple applications in cloud computing, crowd sourcing, facility planning, etc. Formally, it is an online covering problem where each online step comprises an offline covering problem. In addition, the covering sets are capacitated, leading to packing constraints. We give a randomized algorithm for this problem that has a nearly tight competitive ratio in both objectives: overall cost and maximum capacity violation. Our main technical tool is an online algorithm for packing/covering LPs with nested constraints, which may be of interest in other applications as well.

1998 ACM Subject Classification F.2.2 Non-numerical Algorithms and Problems
Keywords and phrases Online Algorithms, Set Cover
Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2014.64

1 Introduction

In recent years, significant research has been conducted in online allocation problems (see [1] and [8] for a comprehensive discussion on online algorithms), often motivated by inherently online modern applications such as internet advertising, crowd sourcing, scheduling in the cloud, etc. We continue this research effort in this paper by considering a generic allocation problem that is motivated by various real-world applications and generalizes the well-studied online set cover framework. In the online set cover problem [2], a collection of subsets (of given costs) of a universe of elements are given offline and elements from the universe arrive online. At any time, the algorithm must maintain a monotonically increasing (over time) collection of subsets of minimum cost that cover all the elements that have arrived thus far. In the capacitated version, every set also has a given capacity which represents the maximum number of elements it can cover. In this paper, we consider a natural generalization of this problem, where instead of a single new element, a subset of elements arrives in each online step. Note that this generalization is meaningful only in the capacitated situation since the elements arriving in the same online step use up only one unit of capacity of the covering sets. In the uncapacitated (i.e., infinite capacity) scenario, the elements arriving in a single step can be thought of as arriving sequentially.

[^0]To formally describe our problem, we need to introduce some notation and terminology. Departing from the usual set cover notation, we think of every element as a resource and every covering set as a facility that provides some subset of resources. This ties the notation to natural applications of the problem and helps us distinguish between the request sets (that arrive online) and the covering sets (that are offline and called facilities now). Let U be the set of n different resources (such as goods and services) and $\mathbf{S}=\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$ be a set of facilities, each of which can provide some subset $S_{j} \subseteq U$ of resources. Each facility S_{j} also has an associated cost c_{j} and capacity t_{j}. The above are given offline. There are k requests that arrive online. In each online step, a request $R_{i} \subseteq U$ arrives, and has to be satisfied by assigning a subset of facilities to it that can cumulatively provide all the resources requested, i.e. by using a subset of facilities $\mathbf{T}_{i} \subseteq \mathbf{S}$ such that $R_{i} \subseteq \cup_{T \in \mathbf{T}_{i}} T$. The capacity of a facility is the maximum number of requests it can serve, and the ratio of the number of requests served by a facility to its capacity is called its congestion. The goal is to minimize the sum of costs of the facilities purchased by the algorithm. We call this the Cover-SetReq problem. Our focus, in this paper, will be to design an online algorithm for the Cover-SetReq problem.

Our work was motivated by various applications of the above general framework in emerging domains. We give a couple of motivating examples below:

- Distributed Computing: In distributed computing environments such as cloud computing and crowd sourcing, each computing unit (e.g., a human or a server) provides a subset of computing resources and has a maximum capacity. The goal is to minimize cost while allocating each arriving task to a subset of computing units that have adequate resources to solve it.
- Facility Planning: The goal is to minimize the cost of facilities (each of which can provide a subset of services and has a maximum capacity) to serve service requests that grow over time as new customers are added.
- Subscription Markets. In addition to traditional products, the internet has emerged as the principal medium for the sale of services based on information and data management including access to data sets and computing resources (see, e.g., [7, 13, 14]). Examples include the Windows Azure Marketplace ${ }^{1}$, Amazon Web Services ${ }^{2}$, etc. These services are typically sold as subscriptions comprising one or more resources that come as a bundle with an usage limit. The consumer objective is to satisfy their data/computing needs which arrive over time at minimum cost by buying an optimal set of subscriptions.

Our main result is a polynomial-time online algorithm for the Cover-SetReq problem. To state its competitive ratio, let us use an equivalent (up to a constant factor in the competitive ratio, by a standard doubling search approach) description of the COVERSetReq problem, where in addition to the input described above, a cost bound \mathbf{C} is given offline with the guarantee that there exists a feasible solution, i.e. a solution that does not use more than the capacity of any facility and has total cost at most \mathbf{C}. Then, an online algorithm for the COVER-SETREQ problem is said to have a bi-criteria competitive ratio of (α, β) if its total cost is at most $\alpha \mathbf{C}$ and for every facility, the number of requests that it is used to satisfy is at most β times its capacity (i.e., its congestion is at most β). Our main theorem obtains poly-logarithmic factors for both α and β.

[^1]\[

$$
\begin{array}{cl}
\sum_{j: j \in[m]} c_{j} x_{j} \leq \mathbf{C} & \\
\sum_{j: u \in S_{j}} y_{i j} \geq 1 & \forall u \in R_{i}, \forall i \in[k] \\
y_{i j} \leq 2 x_{j} & \forall i \in[k], \forall j \in[m] \\
\sum_{i: i \in[k]} y_{i j} \leq x_{j} t_{j} & \forall j \in[m] \\
0 \leq y_{i j} \leq 1 & \forall i \in[k], \forall j \in[m] \\
0 \leq x_{j} \leq 1 & \forall j \in[m] \tag{6}
\end{array}
$$
\]

Figure 1 Linear program for the Cover-SetReq problem.

- Theorem 1. There is a randomized online algorithm for the Cover-SetReq problem that has a competitive ratio of (α, β) where $\alpha=O(\log (m n) \log (k m n))$ and $\beta=O(\log n(\log m+$ $\log \log n) \log (k m n))$.

We note that this theorem is nearly tight since there are logarithmic lower bounds for both α and β : (1) there is a (randomized) lower bound of $\Omega(\log m \log n)[2,12]$ for the competitive ratio of the online set cover problem, which holds for the cost objective of the Cover-SEtREQ problem, and (2) there is a lower bound of $O(\log m)$ [3] for the online restricted assignment problem, which holds for the congestion objective of the Cover-SETREQ problem.

We remark that some applications motivate a version of the Cover-SetREQ problem with soft capacities, i.e. where multiple copies of a facility can be used in the solution. Clearly, our algorithm has a poly-logarithmic competitive ratio for this problem as well. However, this problem can be solved using an alternative (simpler) technique:

- linearize the cost of all copies of a facility other than its first copy by losing a factor of 2 (see Jain and Vazirani [11])
- reduce the mixed LP to a covering LP of exponential size (but with an efficient separation oracle) by eliminating precedence packing constraints
- obtain a fractional solution to the covering problem using a standard template given by Buchbinder and Naor [9] (see also Gupta and Nagarajan [10])
- obtain an integer solution using our randomized rounding procedure.

The details of these steps appear in the appendix. The second step fails for the CoverSetReq problem, i.e., when we have hard capacities.

Our Techniques. First, we define an LP for the Cover-SetReq problem (in Figure 1). Let x_{j} denote whether facility S_{j} is opened and $y_{i j}$ indicate whether facility S_{j} is used to serve request R_{i}. We enforce that each resource in every request is served (i.e. $\sum_{j: u \in S_{j}} y_{i j} \geq 1$) and to ensure a bounded integrality gap, that $y_{i j} \leq 2 x_{j}$ (the factor 2 is for technical reasons). In addition, the total cost is bounded $\left(\sum_{j \in[m]} c_{j} \leq \mathbf{C}\right)$ and the congestion on every facility S_{j} is bounded $\left(\sum_{i \in[n]} y_{i j} \leq x_{j} t_{j}\right)$.

As mentioned earlier, we will obtain a fractional solution to this LP (which will violate some of the constraints) using combinatorial techniques and then round this fractional solution online. This recipe was suggested originally by Alon et al. [2] for the online set cover problem and has since been used extensively for online algorithms (see the survey by Buchbinder and Naor [9] for more details). The online rounding algorithm is the easier of the two steps and (somewhat delicately) combines rounding techniques for the online [5] and offline [16] set cover problems.

Obtaining a fractional algorithm turns out to be much more challenging. Since the Cover-SetReq problem is represented by a mixed packing covering LP, following Azar et al. [5], for each request, we use a sequence of multiplicative updates on a prefix of facilities with $x_{j}<1$ ordered by a carefully chosen function that represents the derivative of the overall potential of the solution. However, unlike in [5], since requests contain multiple resources, the prefix is not unique, rather it depends on the resource being considered. Moreover, it is not immediate as to how we can compare between two facilities, one with many resources but higher cost and another with fewer resources but lower cost. To complicate matters further, at any stage of the multiplicative weights update process, different resources are at various stages of being served: some have been completely served, some only partially served, while others have not been served at all. The resources that have been fully served should cease to influence the ordering since the facilities providing these resources are no longer contributing to serving these resources.

Since each online step is an offline set cover problem, we inherit its greedy property and order facilities by the potential increase per resource that each facility provides (call it the scaled cost). To address the issue of some resources having already been completely served, we make these prefix orderings dynamic: once a resource has been completely served, it is not included in defining scaled costs thereafter. Moreover, since each resource only appears in some of the facilities, we introduce the notion of a resource specific prefix ordering, which is a subsequence of the overall prefix ordering.

For the fully open facilities (i.e., $x_{j}=1$), we need to ensure that the maximum congestion is small. For this purpose, we follow a technique introduced by Aspnes et al [3] (see also [6, 4]) for online load balancing, where a greedy algorithm on an exponential potential function of the machine loads is used. Our main technical contribution is a procedure that co-ordinates between the greedy selection of facilities in prefixes, multiplicative weight updates on these multiple prefixes, and greedy assignment of requests to facilities according to an exponential potential function of their congestion for fully open facilities.

Roadmap. The next section presents the online algorithm, whose competitive ratio is derived in two parts: the analysis of the fractional solution is in section 3 and the analysis of the randomized rounding procedure to convert the fractional solution into an integer one is in section 4. In the appendix, we present a simpler algorithm for the soft-capacitated version of the Cover-SetReq problem (section A).

2 Description of the Algorithm

The algorithm has three phases: (a) an offline pre-processing phase, (b) an online phase that produces a fractional solution, and (c) an online rounding phase that produces an integer solution from the fractional solution. The last two phases are interleaved. Recall that we are given a bound on the cost \mathbf{C} and the number of requests k in advance. Let opt denote a solution that has congestion at most 1 on every facility and total cost at most \mathbf{C}.

The Offline Pre-processing Phase. First, we discard all facilities S_{j} with $c_{j}>\mathbf{C}$ from \mathbf{S}. Clearly, none of these facilities were being used by opt. From now on, m will denote the size of \mathbf{S} after this step. Next, we divide the cost of each facility by $\frac{\mathbf{C}}{m}$. After this scaling, the total cost of OPT is at most m. For any facility $S_{j} \in \mathbf{S}$, if $c_{j}<\frac{1}{k}$, we increase c_{j} to $\frac{1}{k}$. After this transformation, the total cost of OPT is at most $\left(1+\frac{1}{k}\right) m<2 m$.

Let $x_{j}^{(i)}$ denote the value of variable x_{j} at the end of the updates for request R_{i}. Note that the non-decreasing property of x_{j} requires that $x_{j}^{(i)} \geq x_{j}^{(i-1)}$. We say that facility S_{j} is fully open if $x_{j}=1$, and partially open otherwise. We initialize x_{j} to $x_{j}^{(0)}=\frac{1}{m}$ for all facilities $S_{j} \in \mathbf{S}$. Therefore, initially, all facilities are partially open.

Online Updates to the Fractional Solution. Suppose a new request R_{i} arrives online. Any resource $u \in R_{i}$ is said to be satisfied if $\sum_{j: u \in S_{j}} y_{i j} \geq 1$. Clearly, R_{i} is satisfied when all resources in R_{i} are satisfied. We start by setting $x_{j}^{(i)}=x_{j}^{(i-1)}$ (required by monotonicity of the fractional solution). We increase the value of $x_{j}^{(i)}$ on selected facilities S_{j} in small increments over multiple rounds and make corresponding increments in $y_{i j}$. Each round, in turn, consists of multiple iterations.

Let \bar{R}_{i} denote the set of resources in R_{i} that are not yet satisfied at the beginning of the round, i.e., $\bar{R}_{i}=\left\{u \in R_{i}: \sum_{j: u \in S_{j}} y_{i j}<1\right\}$. The increments in the values of $x_{j}^{(i)}$ and $y_{i j}$ in any particular round are based on defining a sequence of facilities containing u (called the prefix for u and denoted $\left.\mathbf{P}_{i}(u)\right)$ for each individual resource $u \in \bar{R}_{i}$. For some of the resources $u \in \bar{R}_{i}$, we will also define an additional facility in $\mathbf{S} \backslash \mathbf{P}_{i}(u)$ as the boundary facility for u, and denote the index of this facility by $p_{i}(u)$. Let $\widehat{\mathbf{P}}_{i}(u)=\mathbf{P}_{i}(u) \cup S_{p_{i}(u)}$; we call this the closed prefix of u.

To describe the update rule of the fractional variables and the construction of the prefixes, we need some additional notation. For every facility S_{j}, we partition requests into those that arrive before S_{j} is fully open (denote this set $R_{0}(j)$) and those that arrive after (denote this set $\left.R_{1}(j)\right)$. For the request that was being served when the facility became fully open, we consider the part of the request that arrived while $x_{j}<1$ in $R_{0}(j)$ and the rest of the request in $R_{1}(j)$. The virtual congestion (denoted \tilde{L}_{j}) of a facility S_{j} is defined as

$$
\tilde{L}_{j}= \begin{cases}x_{j} & \text { if } x_{j}<1 \\ 1+\sum_{i: R_{i} \in R_{1}(j)} \frac{y_{i j}}{t_{j}} & \text { if } x_{j}=1\end{cases}
$$

Now, we define a function (A is a constant that we will fix later)

$$
\psi_{j}= \begin{cases}\frac{c_{j}}{t_{j}} & \text { if } x_{j}<1 \\ \frac{c_{j} A^{\tilde{L}_{j}}(A-1)}{t_{j}} & \text { if } x_{j}=1\end{cases}
$$

The updates for all facilities in prefix $\mathbf{P}_{i}(u)$ and the boundary facility $S_{p_{i}(u)}$ are collectively called an iteration for resource u, and the iterations for all resources in \bar{R}_{i} constitute a round for request R_{i}. The update rule for a round is given in Algorithm 1, where N is a discretization parameter that we set to $k m n^{2}$. One important point to note is that if a partially open facility S_{j} belongs to k_{j} closed prefixes, then the value of $x_{j}^{(i)}$ increases in multiplicative update steps k_{j} times in a single round.

Definition of the Prefixes. We initialize the prefix $\mathbf{P}_{i}(u)$ to the empty sequence for every resource $u \in \bar{R}_{i}$. The prefixes are populated in a sequence of steps, where in each step, we add a carefully selected facility to some of the prefixes. To describe a step, we need some additional notation. Let $\overline{\bar{R}}$ denote the set of resources in \bar{R}_{i} whose prefix has not been fully defined yet. Clearly, $\overline{\bar{R}}_{i}$ equals \bar{R}_{i} at the beginning of a round. Further, let $\mathbf{S}(i)$ denote the collection of facilities in \mathbf{S} that overlap $\overline{\bar{R}}_{i}$ and have not been used in a previous step (i.e. is not part of any prefix currently). Initially, $\mathbf{S}(i)=\left\{S_{j} \in \mathbf{S}: S_{j} \cap \bar{R}_{i} \neq \emptyset\right\}$.

For any facility $S_{j} \in \mathbf{S}(i)$, let its scaled cost be $\phi_{j}=\frac{\psi_{j}}{\left|S_{j} \cap \overline{\bar{R}}_{i}\right|}$.

```
Algorithm 1 A Single Round of the Fractional Algorithm
\(\bar{R}_{i}=\left\{u \in R_{i}: \sum_{j: u \in S_{j}} y_{i j}<1\right\}\).
- Create closed prefixes \(\widehat{\mathbf{P}}_{i}(u)\) simultaneously for all resources \(u \in \bar{R}_{i}\).
- For every facility \(S_{j}\) : initialize \(\Delta x_{j}=\Delta y_{i j}=0\).
- For every resource \(u \in \bar{R}_{i}\) : for every partially open facility \(S_{j} \in \widehat{\mathbf{P}}_{i}(u)\), we increase \(\Delta x_{j}\)
    by \(\frac{x_{j}^{(i)}}{c_{j} N}\) (sequentially, in arbitrary order over the closed prefixes \(\widehat{\mathbf{P}}_{i}(u)\) for all resources
    \(u \in \bar{R}_{i}\) ).
- For every facility \(S_{j}\) : if \(S_{j}\) is partially open, we set
    \(\Delta y_{i j}=\min \left(\left(\Delta x_{j}\right) t_{j}, 2\left(x_{j}^{(i)}+\Delta x_{j}\right)-y_{i j}\right)\); if \(S_{j}\) is fully open, we set \(\Delta y_{i j}=\frac{1}{\psi_{j} N}\).
- For every facility \(S_{j}\) : increase \(x_{j}^{(i)}\) by \(\Delta x_{j}\) and \(y_{i j}\) by \(\Delta y_{i j}\).
```

In each step, the algorithm performs the following operations:

1. Find facility $S_{j} \in \mathbf{S}(i)$ that has the least value of ϕ_{j}; let us denote its index by j^{*}.
2. Remove $S_{j^{*}}$ from $\mathbf{S}(i)$.
3. Let $\mathbf{x}(u)=\sum_{j: S_{j} \in \mathbf{P}_{i}(u)} x_{j}^{(i)}+x_{j^{*}}^{(i)}$. For each resource $u \in S_{j^{*}} \cap \overline{\bar{R}}_{i}$, if $\mathbf{x}(u)<1$, then we add $S_{j^{*}}$ to the prefix $\mathbf{P}_{i}(u)$. Otherwise, if $\mathbf{x}(u) \geq 1$, then we define $S_{j^{*}}$ as the boundary facility for resource u, i.e., $p_{i}(u)=j^{*}$ and remove u from $\overline{\bar{R}}_{i}$.
4. Re-define $\mathbf{S}(i)$ (since $\overline{\bar{R}}_{i}$ might have changed) and re-compute ϕ_{j} for all facilities $S_{j} \in \mathbf{S}(i)$ (even if a facility continues to be in $\mathbf{S}(i)$, its scaled cost might have changed since $\overline{\bar{R}}_{i}$ has changed).
Note that it might so happen that for a resource $u \in R_{i}$, even after including all facilities containing u in the prefix $\mathbf{P}_{i}(u), \sum_{j: S_{j} \in \mathbf{P}_{i}(u)} x_{j}^{(i)}<1$. In this case, the boundary facility for u is undefined, and its closed prefix is identical to its prefix.

Online Randomized Rounding. There are two decisions that the integer algorithm must make on receiving a new request R_{i}. First, it needs to decide which set of facilities it wants to open. Since decisions are irrevocable in the online model, the open facilities form a monotonically growing set over time. Next, the algorithm must decide which of the open facilities it will use to satisfy request R_{i}. As we describe below, both these decisions are made by the integer algorithm based on the fractional solution that it maintains using the algorithm given above.

To simplify the analysis later, we will consider two copies of each facility: a blue copy and a red copy. Note that this is without loss of generality, up to a constant factor loss in the competitive ratio for both the cost and the congestion. First, we define a randomized process that controls the opening of blue copies of facilities in the integer algorithm. Let $\mathbf{S}_{o}(i)$ denote the set of facilities whose blue copies are open after request R_{i} has been satisfied, and $X_{j}^{(i)}$ be an indicator random variable whose value is 1 if facility $i \in \mathbf{S}_{o}(i)$ and 0 otherwise. Let $x_{j}^{(i)}$ be the value of variable x_{j} in the fractional solution after request R_{i} has been completely assigned (fractionally). For a parameter $\alpha=\Theta(\log (k m n))$, the integer algorithm maintains the following invariant for every facility S_{j} and request R_{i} :

$$
\begin{equation*}
\mathbb{P}\left[X_{j}^{(i)}=1\right]=\min \left(\alpha \cdot x_{j}^{(i)}, 1\right) \tag{7}
\end{equation*}
$$

using the rule for opening facilities in Algorithm 2. Next, we need to use the open facilities to satisfy request R_{i}. Let $Y_{i j}$ be the indicator variable for facility S_{j} being used to serve

request R_{i}. Define

$$
z_{i j}= \begin{cases}0 & \text { if } X_{j}^{(i)}=0 \\ \frac{y_{i j}}{2 x_{j}^{(i)}} & \text { if } X_{j}^{(i)}=1 \text { and } x_{j}^{(i)}<\frac{1}{\alpha} \\ \alpha \cdot y_{i j} & \text { otherwise } .\end{cases}
$$

The assignment rule for request R_{i} is given in Algorithm 2.

```
Algorithm 2 Satisfying a Single Request \(R_{i}\) in the Integer Algorithm
Opening Facilities:
- For every facility \(S_{j}\) whose blue copy is not already open, open it with probability
    \(\min \left(\frac{\alpha\left(x_{j}^{(i)}-x_{j}^{(i-1)}\right)}{1-\alpha \cdot x_{j}^{(i-1)}}, 1\right)\). (Eqn. 7 is satisfied by this rule using conditional probabilities.)
```


Satisfying Request R_{i} :

- For every open facility S_{j}, we set $Y_{i j}=1$ independently with probability $z_{i j}$.
- For every resource $u \in R_{i}$ such that no facility containing u was selected in the previous step, set $Y_{i j}=1$ for the red copy of any facility S_{j} such that $u \in S_{j}$, after opening the facility if necessary.

3 Analysis of the Fractional Algorithm

We note that the fractional solution maintains the invariant $\sum_{R_{i} \in R_{0}(j)} \frac{y_{i j}}{t_{j}} \leq x_{j}$ for every facility S_{j}. This invariant ensures that the actual congestion of any facility is always at most its virtual congestion (denoted \tilde{L}_{j}; see section 2 for its formal definition). Therefore, it suffices to bound the total cost and the maximum virtual congestion on the facilities. For this purpose, we design a potential function that combines these two objectives: $\gamma_{j}=c_{j} x_{j} A^{\tilde{L}_{j} / x_{j}}$ for some $A \in(1,2)$ that we will fix later. Note that we can rewrite the potential function as

$$
\gamma_{j}= \begin{cases}A c_{j} x_{j} & \text { if } x_{j}<1 \\ c_{j} A^{\tilde{L}_{j}} & \text { if } x_{j}=1\end{cases}
$$

The potential function is continuous and monotonically non-decreasing. We define the overall potential $\Gamma=\sum_{j: S_{j} \in \mathbf{S}} \gamma_{j}$.

The next lemma bounds the potential function at the end of the pre-processing step.

- Lemma 2. At the end of the pre-processing step, $\Gamma \leq m$.

Proof. There are m partially open facilities, the cost of each of which is at most m. Since we initialize $x_{j}^{(0)}=1 / m$ for all the m facilities, the lemma follows.

Next we will bound the increase in potential due to online updates to the fractional solution. Recall that for any request R_{i}, there are several rounds, each comprising multiple iterations, one for every resource in \bar{R}_{i}. Our general plan is the following: we will first bound the increase in potential in a single iteration and then bound the total number of iterations performed by the algorithm (overall, for all requests and for all rounds corresponding to a request).

Increase in Potential in a Single Iteration. First, note that a facility S_{j} might belong to multiple closed prefixes in a single round. Therefore, the value of x_{j} for partially open facilities S_{j} and that of \tilde{L}_{j} for fully open facilities changes from one iteration to another in the same round. To reconcile this inconsistency, we bound the increase of these variables in a single round in the next lemma.

- Lemma 3. For any partially open facility S_{j}, the value of $x_{j}^{(i)}$ can increase by a multiplicative factor of at most e in a single round. Similarly, for any fully open facility S_{j}, the value of $A^{\tilde{L}_{j}}$ can increase by a multiplicative factor of at most 2 in a single round.

Proof. First, consider a partially open facility S_{j}. Since there are at most n iterations in a round, the multiplicative factor by which the value of $x_{j}^{(i)}$ increases in a single round is at most

$$
\left(1+\frac{1}{N c_{j}}\right)^{n} \leq\left(1+\frac{k}{N}\right)^{n} \leq e
$$

where the first inequality follows from the fact that $c_{j} \geq \frac{1}{k}$ for all facilities S_{j} and the second inequality holds since $N \geq n k$.

Next, consider a fully open facility S_{j} with virtual congestion \tilde{L}_{j} at the beginning of the round. The multiplicative factor by which $A^{\tilde{L}_{j}}$ increases in a single round is at most

$$
A^{\frac{\Delta y_{i j}}{t_{j}}}-1=(1+(A-1))^{\frac{\Delta y_{i j}}{t_{j}}}-1 \leq 2(A-1) \frac{\Delta y_{i j}}{t_{j}} \leq \frac{2(A-1) n}{c_{j} A^{\tilde{L}_{j}}(A-1) N} \leq \frac{2 n k}{A N} \leq 2
$$

where the first inequality uses the fact that for any $y \geq x \geq 0$,

$$
\begin{equation*}
\left(1+\frac{1}{x}\right)^{1 / y} \leq e^{x / y} \leq 1+\frac{2 x}{y} \tag{8}
\end{equation*}
$$

(we call this local linearization); the second inequality holds since virtual congestion, and therefore ψ_{j}, is non-decreasing and there are at most n iterations in a round; the third inequality uses $c_{j} \geq \frac{1}{k}$ for all facilities S_{j} and $\tilde{L}_{j} \geq 1$ for any fully open facility S_{j}; and the last inequality follows from $N \geq n k$.

The next lemma bounds the increase in potential of the fractional solution in a single iteration.

Lemma 4. The increase in potential in a single iteration for any resource $u \in \bar{R}_{i}$ is at most $\frac{10 A}{N}$.
Proof. Note that the increase in potential in an iteration can be attributed to two possible sources: increase in cost for partially open facilities in the closed prefix $\widehat{\mathbf{P}}_{i}(u)$ and increase in virtual congestion of the boundary facility $S_{p_{i}(u)}$.

First, we bound the increase in cost. Recall that at the beginning of the round,

$$
\sum_{j: S_{j} \in \widehat{\mathbf{P}}_{i}(u)} x_{j}^{(i)}=\left(\sum_{j: S_{j} \in \mathbf{P}_{i}(u)} x_{j}^{(i)}\right)+x_{p_{i}(u)}^{(i)} \leq 1+1=2
$$

However, the value of $x_{j}^{(i)}$ increases over the various iterations in the round, and therefore, it is possible that $\sum_{j: S_{j} \in \widehat{\mathbf{P}}_{i}(u)} x_{j}^{(i)}>2$ at the beginning of the iteration for resource u. Nevertheless, by Lemma 3, we can claim that $\sum_{j: S_{j} \in \widehat{\mathbf{P}}_{i}(u)} x_{j}^{(i)} \leq 2 e<6$.

The increase in potential due to increments in $x_{j}^{(i)}$ for all partially open facilities $S_{j} \in \widehat{\mathbf{P}}_{i}(u)$ is

$$
A \sum_{j: S_{j} \in \widehat{\mathbf{P}}_{i}(u)} \frac{c_{j} x_{j}^{(i)}}{N c_{j}}=\frac{A}{N} \sum_{j: S_{j} \in \widehat{\mathbf{P}}_{i}(u)} x_{j}^{(i)}<\frac{6 A}{N}
$$

where the inequality follows from the observation above.
Next, we consider the increase in potential due to the increase in virtual congestion of facility $S_{p_{i}(u)}$, if it is fully open. If the virtual congestion before the iteration was $\tilde{L}_{p_{i}(u)}$, then the increase in potential is

$$
c_{p_{i}(u)} A^{\tilde{L}_{p_{i}(u)}}\left(A^{\frac{\Delta y_{i p_{i}(u)}}{t_{p_{i}(u)}}}-1\right) \leq 2 \frac{\psi_{p_{i}(u)} t_{p_{i}(u)}}{(A-1)} \cdot \frac{2(A-1) \Delta y_{i p_{i}(u)}}{t_{p_{i}(u)}}=\frac{4}{N}<\frac{4 A}{N},
$$

where the first inequality uses local linearization (see Eqn. 8) and Lemma 3.

Total Number of Iterations. Recall that Opt is a a feasible integer solution with cost at most \mathbf{C} and congestion at most 1 on each facility. Let $\operatorname{Opt}\left(R_{i}\right)$ denote the facilities used by OPT to satisfy request R_{i}. An iteration for resource $u \in \bar{R}_{i}$ is in one of the following two categories:

1. At least one facility in $\operatorname{OPT}\left(R_{i}\right)$ is in the prefix $\mathbf{P}_{i}(u)$.
2. No facility in $\operatorname{Opt}\left(R_{i}\right)$ is in the prefix $\mathbf{P}_{i}(u)$.

The number of iteration of the first category is bounded by the next lemma.

- Lemma 5. The total number of iterations of the first category is $O(N m \log m)$.

Proof. Let $S_{j^{*}}$ be a facility in opt. The number of iterations where $S_{j^{*}}$ is in the prefix is $O\left(N c_{j^{*}} \log m\right)$ since:

- $x_{j^{*}}$ is initialized to $\frac{1}{m}$ in the pre-processing phase.
- $x_{j^{*}}<1$ before the last round where $x_{j^{*}}$ increases. Therefore, by Lemma $3, x_{j^{*}}<e$ at the end of the round.
- $x_{j^{*}}$ increases by a multiplicative factor of $\left(1+\frac{1}{N c_{j^{*}}}\right)$ in every iteration where it belongs to the prefix.
The lemma follows by summing over all facilities $S_{j^{*}} \in$ OPT.
Now, we focus on iterations of the second category. We partition rounds into ones where \bar{R}_{i} changes (we call these dynamic rounds) and ones where \bar{R}_{i} does not change (we call these static rounds). The number of iterations in dynamic rounds is bounded by the next lemma.
- Lemma 6. The total number of iterations in dynamic rounds is $O(N)$.

Proof. Since \bar{R}_{i} changes, i.e., loses a resource in any dynamic round, a single request R_{i} can have at most $\left|R_{i}\right| \leq n$ dynamic rounds. Since there are at most n iterations in each round and at most k requests overall, the lemma follows from $N>k n^{2}$.

Now, we focus on counting the number of iterations of the second category in static rounds. Recall that for any partially open facility S_{j}, we set $y_{i j}=\min \left(2 x_{j}^{(i)}, t_{j}\left(x_{j}^{(i)}-x_{j}^{(i-1)}\right)\right)$ at the end of the round. Let \bar{T} be the collection of partially open facilities such that $y_{i j}=2 x_{j}^{(i)}$ and $T=\mathbf{S} \backslash \bar{T}$ be all the remaining facilities. The next lemma lower bounds the contribution of facilities in T in any iteration of the second category in a static round.

- Lemma 7. For any static round and any iteration of the second category for resource $u \in \bar{R}_{i}$, it holds that

$$
\sum_{j: S_{j} \in T \cap \widehat{\mathbf{P}}_{i}(u)} x_{j}^{(i)} \geq 1 / 2
$$

Proof. Suppose for some resource $u, \sum_{j: S_{j} \in T \cap \widehat{\mathbf{P}}_{i}(u)} x_{j}^{(i)}<1 / 2$. Note that since the iteration for u is of the second category, the boundary facility must be defined and $\sum_{j \in \widehat{\mathbf{P}}_{i}(u)} x_{j}^{(i)} \geq 1$. We conclude that $\sum_{j \in \bar{T} \cap \widehat{\mathbf{P}}_{i}(u)} x_{j}^{(i)} \geq 1 / 2$. For every facility $S_{j} \in \bar{T}, y_{i j}=2 x_{j}^{(i)}$. However, in that case, $\sum_{j \in \bar{T} \cap \widehat{\mathbf{P}}_{i}(u)} y_{i j} \geq 1$ and the resource u is satisfied at the end of this round. In other words, the round is dynamic, which is a contradiction.

For a resource u, we refer to $\sum_{j: u \in S_{j}} y_{i j}$ as its coverage. We will show in the next lemma that the increase in coverage on resources in \bar{R}, averaged over the iterations of the second category in a static round, is large. Before stating the lemma, we need to introduce some notation. For any facility S_{j}, let us partition $\bar{R}_{i} \cap S_{j}$ as follows: U_{j} contains resources that have S_{j} in their prefix, V_{j} contains resources that have S_{j} as the boundary facility, and W_{j} contains the rest of the resources. Note that prefixes of resources in W_{j} are filled first, followed by those in V_{j}, and finally those in U_{j}.

Now, consider a facility $S_{j^{*}} \in \operatorname{OPT}\left(R_{i}\right)$. Let \bar{B} be the set of resources in $S_{j^{*}} \cap \bar{R}_{i}$ that have iterations of the second category; let $\bar{b}=|\bar{B}|$.

- Lemma 8. The total increase in coverage on resources of \bar{B} in a single static round is at least $\frac{\bar{b} \cdot\left|S_{j^{*}} \cap \bar{R}_{i}\right|}{2 N \psi_{j^{*}}}$.

Proof. Let $u \in \bar{B}$ and D_{u} denote the set of resources of $S_{j^{*}} \cap \bar{R}_{i}$ whose closed prefixes were filled with or after $\widehat{\mathbf{P}}_{i}(u)$. Clearly, $D_{u} \subseteq \overline{\bar{R}}_{i}$ for all steps of constructing the prefix till the step that filled $\widehat{\mathbf{P}}_{i}(u)$. Since $S_{j^{*}}$ was not inserted in $\mathbf{P}_{i}(u)$, therefore the scaled cost ϕ_{j} for every facility S_{j} in the closed prefix of u satisfies

$$
\phi_{j}=\frac{\psi_{j}}{\left|U_{j} \cup V_{j}\right|} \leq \frac{\psi_{j^{*}}}{\left|D_{u}\right|}
$$

For any such facility $S_{j} \in T \cap \widehat{\mathbf{P}}_{i}(u)$, the total increase of $y_{i j}$ is at least $\frac{x_{j}\left|U_{j} \cup V_{j}\right|}{N \psi_{j}} \geq \frac{x_{j}\left|D_{u}\right|}{N \psi_{j^{*}}}$. Summing over all such facilities S_{j} and using Lemma 7 , we can conclude that the total increase in coverage on u is at least $\frac{\left|D_{u}\right|}{2 N \psi_{j^{*}}}$.

Now, let us order the resources $u \in \bar{B}$ in which $\widehat{\mathbf{P}}_{i}(u)$ got filled. For the first u in this order, $D_{u}=S_{j^{*}} \cap \bar{R}_{i}$. Each subsequent D_{u} loses precisely one resource, the one whose prefix was just filled. For the last u in in the order, $D_{u}=U_{j^{*}} \cup\{u\}$. Note that the iterations for resources in $U_{j^{*}}$ are in the first category. Thus, $\bar{B} \subseteq V_{j^{*}} \cup W_{j^{*}}$. Let $\left|U_{j^{*}}\right|=p$ and $\left|V_{j^{*}} \cup W_{j^{*}}\right|=q$. Then,

$$
\left|U_{j^{*}} \cup V_{j^{*}} \cup W_{j^{*}}\right|=\left|S_{j^{*}} \cap \bar{R}_{i}\right|=p+q
$$

Adding up the increases in coverage obtained from the above expression,

$$
\sum_{u \in \bar{B}} \frac{\left|D_{u}\right|}{2 N \psi_{j^{*}}}=\sum_{i=p+1}^{p+q} \frac{i}{2 N \psi_{j^{*}}} \geq \frac{p(p+q)}{2 N \psi_{j^{*}}}=\frac{\bar{b} \cdot\left|S_{j^{*}} \cap \bar{R}_{i}\right|}{2 N \psi_{j^{*}}}
$$

We now consider two subcases:

- (a) static rounds where $S_{j^{*}}$ is partially open, and
- (b) static rounds where $S_{j^{*}}$ is fully open.

The advantage with subcase (a) is that the value of $\psi_{j^{*}}$ in the previous lemma depends only on the facility $S_{j^{*}}$ and not on the state of the algorithm.

- Lemma 9. Let $S_{j^{*}}$ be a facility in $\operatorname{OPT}\left(R_{i}\right)$. Then, the number of iterations of the second category in static rounds for resources in $S_{j^{*}} \cap R_{i}$, where $S_{j^{*}}$ is partially open, is $2\left(\frac{c_{j^{*}}}{t_{j^{*}}}\right) N \ln n$.
Proof. Let $z_{j^{*}}=\sum_{u \in S_{j^{*}} \cap R_{i}} \max \left(1-\sum_{j: u \in S_{j}} y_{i j}, 0\right)$. By Lemma 8, the decrease in $z_{j^{*}}$ in any static round comprising \bar{b} iterations is at least $\frac{\bar{b} \cdot\left|S_{j^{*}} \cap \bar{R}_{i}\right|}{2 N\left(c_{i^{*}} / t_{j^{*}}\right)}$. Since $z_{j^{*}}$ decreases from at most n to 0 , it follows that the total number of iterations is

$$
\int_{z_{j^{*}}=n}^{0} 2 N \cdot \frac{c_{j^{*}}}{t_{j^{*}}} \cdot \frac{d z_{j^{*}}}{z_{j^{*}}}=2 N\left(\frac{c_{j^{*}}}{t_{j^{*}}}\right) \ln n .
$$

The next corollary follows by summing over all requests R_{i} and facilities $S_{j^{*}}$ in OPT.

- Corollary 10. The total number of iterations of the second category for resources u in static rounds for requests R_{i} such that there exists a partially open facility $S_{j^{*}}$ that is used to satisfy R_{i} in OPT and contains u is at most $O(N m \log n)$.

We are left with subcase (b), i.e., when facility $S_{j^{*}}$ is fully open. Let $\mathbf{L}_{j^{*}}$ be the virtual congestion on facility $S_{j^{*}}$ at the end of the algorithm. Then, at any intermediate stage of the algorithm when $S_{j^{*}}$ was fully open,

$$
\psi_{j^{*}} \leq \frac{c_{j^{*}} A^{\mathbf{L}_{j^{*}}}(A-1)}{t_{j^{*}}}
$$

Using the same logic as Lemma 9, we obtain the next lemma.

- Lemma 11. Let $S_{j^{*}}$ be a facility in $\operatorname{OPT}\left(R_{i}\right)$. Then, the number of iterations of the second category in static rounds for resources in $S_{j^{*}} \cap R_{i}$, where $S_{j^{*}}$ is fully open, is $2\left(\frac{c_{j^{*}} A^{\mathbf{L}_{j^{*}}}(A-1)}{t_{j^{*}}}\right) N \ln n$.

Now, note that the congestion on $S_{j^{*}}$ in OPT is at most 1, i.e. the number of requests served by facility $S_{j^{*}}$ is at most $t_{j^{*}}$. Therefore, we obtain the next corollary.

- Corollary 12. The total number of iterations of the second category for resources u in static rounds for requests R_{i} such that there exists a fully open facility $S_{j^{*}}$ that is used to satisfy R_{i} in OPT and contains u is at most $2 N \ln n(A-1) \sum_{j^{*}: S_{j^{*}} \in \text { OPT }} c_{j^{*}} A^{\mathbf{L}_{j^{*}}}$.
Now, we add up all the bounds that we have obtained on the increase of the potential to obtain the next lemma.
- Lemma 13. At the end of the algorithm, the final potential $\Gamma_{f}=O(m \log (m n))$.

Proof. By summing up over the individual bounds on the number of iterations in the various categories,

$$
\Gamma_{f}=O(m \log (m n))+20 A(\ln n)(A-1) \sum_{j: S_{j} \in \mathrm{OPT}} c_{j} A^{\mathbf{L}_{j^{*}}} \leq O(m \log (m n))+\frac{1}{2} \Gamma_{f},
$$

by choosing $A=1+\frac{1}{80 \ln n}$. The lemma follows.

The next corollary follows from the definition of the potential function Γ.

- Corollary 14. The total cost of the fractional solution is $O(m \log (m n))$ and the maximum congestion on a facility is $O(\log n(\log m+\log \log n))$.

4 Analysis of Online Randomized Rounding

Recall that the fractional solution maintains the following invariant for any facility S_{j} and any request R_{i} :

$$
\begin{equation*}
y_{i j} \leq 2 x_{j}^{(i)} \tag{9}
\end{equation*}
$$

First, we consider red copies of facilities.

- Lemma 15. The probability that the red copy of any facility is opened is at most $e^{-\Omega(\alpha)}$.

Proof. We first consider the scenario where for a resource u, no facility $S_{j} \in \mathbf{S}(u)$ is opened in the integer solution, i.e., $\sum_{j: u \in S_{j}} X_{j}^{(i)}=0$. Since $y_{i j} \leq 2 x_{j}^{(i)}$ (Eqn. 9) and $\sum_{j: S_{j} \in \mathbf{S}(u)} y_{i j} \geq 1$, it follows that $\sum_{j: u \in S_{j}} \alpha x_{j}^{(i)} \geq \frac{\alpha}{2}$. Therefore, the probability that $\sum_{j: u \in S_{j}} X_{j}^{(i)}=0$ is at $\operatorname{most} \prod_{j: u \in S_{j}}\left(1-\alpha x_{j}^{(i)}\right)=e^{-\Omega(\alpha)}$ by Eqn. 7 .

Next, consider the scenario where $\sum_{j: u \in S_{j}} X_{j}^{(i)} \geq 1$ but $\sum_{j: u \in S_{j}} Y_{i j}=0$, i.e., even though facilities that contain resource u are open, none of them have been assigned to request R_{i}. Let \mathbf{A}_{i} and \mathbf{B}_{i} respectively denote the set of facilities S_{j} with $x_{j}^{(i)}<\frac{1}{\alpha}$ and those with $x_{j}^{(i)} \geq \frac{1}{\alpha}$. Clearly, all facilities in \mathbf{B}_{i} are open in the integer solution and some subset of facilities in \mathbf{A}_{i} is open. We consider two subcases. First, suppose $\sum_{j: S_{j} \in \mathbf{B}_{i}, u \in S_{j}} y_{i j} \geq 1 / 2$. Then,

$$
\sum_{j: S_{j} \in \mathbf{B}_{i}, u \in S_{j}}=\sum_{j: S_{j} \in \mathbf{B}_{i} \cap \mathbf{S}(u)} \alpha y_{i j} \geq \frac{\alpha}{2}
$$

Therefore, the probability of $\sum_{j: u \in S_{j}} Y_{i j}=0$ is at most $\prod_{j: S_{j} \in \mathbf{B}_{i}, u \in S_{j}}\left(1-z_{i j}\right)=e^{-\Omega(\alpha)}$.
Finally, suppose $\sum_{j: S_{j} \in \mathbf{B}_{i}, u \in S_{j}} y_{i j}<1 / 2$. Then, $\sum_{j: S_{j} \in \mathbf{A}_{i} \cap \mathbf{S}(u)} y_{i j} \geq 1 / 2$.
In this case, we first estimate the expectation and bound the probability of deviation of random variables $z_{i j}$. We have

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{j: S_{j} \in \mathbf{A}_{i}, u \in S_{j}} z_{i j}\right]=\sum_{j: S_{j} \in \mathbf{A}_{i}, u \in S_{j}}\left(\frac{y_{i j}}{2 x_{j}^{(i)}}\right) \mathbb{P}\left[X_{j}^{(i)}=1\right] \\
& =\sum_{j: S_{j} \in \mathbf{A}_{i}, u \in S_{j}}\left(\frac{y_{i j}}{2 x_{j}^{(i)}}\right) \alpha x_{j}^{(i)}=\sum_{j: S_{j} \in \mathbf{A}_{i}, u \in S_{j}} \frac{y_{i j} \alpha}{2} \geq \sum_{j: S_{j} \in \mathbf{A}_{i}, u \in S_{j}} \frac{\alpha}{4} .
\end{aligned}
$$

Since $y_{i j} \leq 2 x_{j}^{(i)}$, we can use Chernoff bounds (see, e.g., [15]) to claim that with probability $1-e^{-\Omega(\alpha)}$,

$$
\begin{equation*}
\sum_{j: S_{j} \in \mathbf{A}_{i} \cap \mathbf{S}(u)} z_{i j}=\Omega(\alpha) . \tag{10}
\end{equation*}
$$

On the other hand, if Eqn. 10 holds, then the probability of $\sum_{j: u \in S_{j}} Y_{i j}=0$ is

$$
\prod_{j: S_{j} \in \mathbf{A}_{i}, u \in S_{j}}\left(1-z_{i j}\right)=e^{-\Omega(\alpha)}
$$

We choose $\alpha=\Theta(\log (k n m))$ and use linearity of expectation over all requests and resources to conclude that the red copies of the facilities can be ignored by incurring an additive $O(1)$ loss in the approximation ratio.

We will now bound the expected cost and congestion of the blue copies of facilities.

- Lemma 16. The expected total cost of blue copies of facilities in the integer solution is at most α times the cost of the fractional solution.

Proof. The proof is an immediate consequence of Eqn. 7 using linearity of expectation.

- Lemma 17. With probability $1-o(1)$, the congestion on every facility in the integer solution is $O(\alpha)$ times their virtual congestion in the fractional solution.

Proof. We split the congestion on a facility S_{j} in the integer solution into its congestion from requests in $R_{0}(j)$ (before S_{j} is fully open in the fractional solution) and $R_{1}(j)$ (after S_{j} is fully open in the fractional solution). By linearity of expectation, the expected congestion due to requests in $R_{1}(j)$ is at most $\alpha \sum_{i: R_{i} \in R_{1}(j)} \frac{y_{i j}}{t_{j}}$.

On the other hand, the expected congestion due to requests in $R_{0}(j)$ is at most

$$
\sum_{i: R_{i} \in R_{0}(j)} \frac{y_{i j}}{2 x_{j}^{(i)} t_{j}} \leq \sum_{i: R_{i} \in R_{0}(j)} \frac{x_{j}^{(i)}-x_{j}^{(i-1)}}{2 x_{j}^{(i)}} \leq \int_{1 / m}^{1} \frac{d w}{w}=\ln m=O(\alpha)
$$

where the last bound follows from the choice of $\alpha=\Theta(\log k n m)$.
Using standard techniques (bounding the maximum possible congestion if the above lemma fails, and therefore obtaining a bound on its contribution to the expectation), we can convert the high probability bound on the maximum congestion in the above lemma to the same bound (up to constants) on the expectation of the maximum congestion.

5 Conclusion and Future Work

We have given an algorithm for a generic online covering problem where each individual request comprises a set of elements. The competitive ratio of our algorithm is poly-logarithmic in the input parameters. While such dependence on the number of elements and subsets in the set system is matched by existing lower bounds, it is not clear whether our dependence on the number of requests is necessary. We leave the resolution of this dependence as an open question. Our problem represents a nesting of online and offline covering problems. An intriguing open problem is to obtain a formal algorithmic framework for packing/covering LPs that are revealed online in stages where each stage is an offline packing/covering LP.

Acknowledgement. We thank an anonymous reviewer for suggesting the alternative (and simpler) technique for the Cover-SetReq problem with soft capacities. D. Panigrahi is supported in part by startup funds from Duke University.

References

1 Susanne Albers. Online algorithms: a survey. Math. Program., 97(1-2):3-26, 2003.
2 Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. The online set cover problem. SIAM J. Comput., 39(2):361-370, 2009.
3 James Aspnes, Yossi Azar, Amos Fiat, Serge A. Plotkin, and Orli Waarts. On-line routing of virtual circuits with applications to load balancing and machine scheduling. J. ACM, 44(3):486-504, 1997.

4 Yossi Azar. On-line load balancing. In Online Algorithms, pages 178-195, 1996.
5 Yossi Azar, Umang Bhaskar, Lisa K. Fleischer, and Debmalya Panigrahi. Online mixed packing and covering. In SODA, 2013.
6 Yossi Azar, Joseph Naor, and Raphael Rom. The competitiveness of on-line assignments. J. Algorithms, 18(2):221-237, 1995.

7 M. Balazinska, B. Howe, and D. Suciu. Data markets in the cloud: An opportunity for the database community. $P V L D B, 4(12): 1482-1485,2011$.
8 Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis. Cambridge University Press, New York, NY, USA, 1998.
9 Niv Buchbinder and Joseph Naor. The design of competitive online algorithms via a primaldual approach. Foundations and Trends in Theoretical Computer Science, 3(2-3):93-263, 2009.

10 Anupam Gupta and Viswanath Nagarajan. Approximating sparse covering integer programs online. In ICALP (1), pages 436-448, 2012.
11 Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and lagrangian relaxation. J. ACM, 48(2):274-296, 2001.
12 Simon Korman. On the use of randomization in the online set cover problem. M.S. thesis, Weizmann Institute of Science, 2005.
13 Paraschos Koutris, Prasang Upadhyaya, Magdalena Balazinska, Bill Howe, and Dan Suciu. Querymarket demonstration: Pricing for online data markets. PVLDB, 5(12):1962-1965, 2012.

14 Chao Li and Gerome Miklau. Pricing aggregate queries in a data marketplace. In $W e b D B$, pages 19-24, 2012.
15 Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press, 1997.
16 Prabhakar Raghavan and Clark D. Thompson. Randomized rounding: a technique for provably good algorithms and algorithmic proofs. Combinatorica, 7(4):365-374, 1987.

A A simpler algorithm for the COVER-SETREQ problem with soft capacities

Here we describe a simpler algorithm for the Cover-SETREQ problem with soft capacities that follows from previous work. The algorithm follows by reducing the linear program for the Cover-SEtREQ problem with soft capacities which has mixed packing and covering constraints to one with just covering constraints. An online solution for covering program can be constructed using existing techniques [9, 10].

Note that the integer programming formulation of the Cover-SetReq problem with soft capacities is as follows:
(P1) Minimize $\sum_{j=1}^{m} c_{j} x_{j} \quad$ subject to

$$
\begin{array}{rc}
\sum_{j: u \in S_{j}} y_{i j} \geq 1 & \forall i \in[k], u \in R_{i} \\
y_{i j} \leq x_{j} & \forall i \in[k], j \in[m] \\
\sum_{i=1}^{k} y_{i j} \leq x_{j} t_{j} & \forall j \in[m] \\
y_{i j} \in\{0,1\}, x_{j} \in \mathbb{N} & \forall i \in[k], j \in[m]
\end{array}
$$

First we will show that the same problem can be solved using the following formulation while losing only a constant factor of 2 in the objective. This is based on an observation for Jain and Vazirani [11] along with some further ideas to obtain a covering LP.

$$
\begin{array}{rc}
\text { (P2) Minimize } \sum_{j=1}^{m} c_{j} x_{j}+\sum_{i=1}^{k} \sum_{j=1}^{m} \frac{c_{j}}{t_{j}} \cdot y_{i j} & \text { subject to } \\
\sum_{j \in J} x_{j}+\sum_{j \in\left\{j: u \in S_{j}\right\} \backslash J} y_{i j} \geq 1 & \forall i \in[k], u \in R_{i}, J \subseteq\left\{j: u \in S_{j}\right\} \\
y_{i j} \geq 0, x_{j} \geq 0 & \forall i \in[k], j \in[m]
\end{array}
$$

- Lemma 18. The program (P2) is a linear relaxation of (P1) with a factor 2 loss in objective. In particular,
- $\operatorname{OPT}(P 2) \leq 2 \cdot \mathrm{OPT}(P 1)$ where $\operatorname{OPT}(P)$ denotes the value of the optimal feasible solution.
- Any feasible solution $\left(x^{\prime}, y^{\prime}\right)$ of (P2) can be mapped to a solution of the program (P1) with the same value of the objective provided it satisfies $y_{i j} \leq x_{j}$ for all $1 \leq i \leq k, 1 \leq j \leq m$.

Proof. Consider the optimal feasible solution (x, y) of (P1). Define $\left(x^{\prime}, y^{\prime}\right)$ as follows:

$$
\begin{array}{rc}
x_{j}^{\prime}=\min \left\{1, x_{j}\right\} & \forall j \in[m] \\
y_{i j}^{\prime}=y_{i j} & \forall j \in[m], i \in[k]
\end{array}
$$

First we will show that $y_{i j}^{\prime} \leq x_{j}^{\prime}$. Since (x, y) is an optimal feasible solution, $y_{i j} \leq 1$. Then by the definition of $x_{j}^{\prime}, y_{i j}^{\prime}=y_{i j} \leq \min \left\{1, x_{j}\right\}=x_{j}^{\prime}$. It then follows that the first constraint in the LP (P2) holds since $y_{i j}$ satisfy the first inequality in the program (P1). Next we bound the objective. Trivially, $\sum_{j=1}^{m} c_{j} x_{j}^{\prime} \leq \sum_{j=1}^{m} c_{j} x_{j}=\operatorname{OPT}(P 1)$. Finally,

$$
\sum_{j=1}^{m} \sum_{i=1}^{k} \frac{c_{j}}{t_{j}} y_{i j}^{\prime}=\sum_{j=1}^{m} c_{j} \sum_{i=1}^{k} y_{i j} / t_{j} \leq \sum_{j=1}^{m} c_{j} x_{j}=\mathrm{OPT}(P 2)
$$

It then follows that

$$
\mathrm{OPT}(P 1) \leq \sum_{j=1}^{m} c_{j} x_{j}^{\prime}+\sum_{j=1}^{m} \sum_{i=1}^{k} \frac{c_{j}}{t_{j}} y_{i j} \leq 2 \mathrm{OPT}(P 1)
$$

Next consider a feasible solution $\left(x^{\prime}, y^{\prime}\right)$ of (P2) with $y_{i j} \leq x_{j}$ for all $1 \leq i \leq k, 1 \leq j \leq m$. Construct a solution (x, y) of (P1) as follows:

$$
\begin{array}{rc}
\forall 1 \leq j \leq m & x_{j}=x_{j}^{\prime}+\sum_{i=1}^{k} \frac{y_{i j}^{\prime}}{t_{j}} \\
\forall 1 \leq j \leq m, 1 \leq i \leq k & y_{i j}=y_{i j}^{\prime}
\end{array}
$$

The first constraint of (P1) is obviously true. Since $y_{i j}^{\prime} \leq x_{j}^{\prime}$, it follows that $y_{i j} \leq x_{j}^{\prime} \leq x_{j}$. Moreover,

$$
\sum_{i=1}^{k} y_{i j} / t_{j}=\sum_{i=1}^{k} y_{i j}^{\prime} / t_{j} \leq x_{j} .
$$

Finally,

$$
\sum_{j=1}^{m} c_{j} x_{j}=\sum_{j=1}^{m} c_{j}\left(x_{j}^{\prime}+\sum_{i=1}^{k} y_{i j}^{\prime}\right)=\sum_{j=1}^{m} c_{j} x_{j}^{\prime}+\sum_{j=1}^{m} \sum_{k=1}^{n} \frac{c_{j}}{t_{j}} x_{j} .
$$

Finally note that the requirement $y_{i j}^{\prime} \leq x_{j}^{\prime}$ on a solution $\left(x^{\prime}, y^{\prime}\right)$ of the program (P2) is without loss of generality. Any solution that violates this constraint can be fixed by lowering the value of $y_{i j}^{\prime}$ to x_{j}^{\prime}. This still maintains all of the constraints while lowering the objective value.

We have thus obtained a covering linear program, any solution to which can be mapped to a feasible solution of the original IP with only a factor 2 loss in the objective. It is possible to construct a solution to program (P2) in an online manner using the techniques of Buchbinder and Naor [9]. (See also Gupta and Nagarajan [10].) The resulting solution can then be rounded using our randomized rounding procedure.

[^0]: * Part of this work was done when all the authors were at Microsoft Research.

[^1]: 1 http://datamarket.azure.com
 2 http://aws.amazon.com

