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Abstract
The process of program extraction is primarily associated with functional programs with less focus
on imperative program extraction. In this paper we consider a standard problem for imperative
programming: In-place Quicksort. We formalize a proof that every array of natural numbers can
be sorted and apply a realizability interpretation to extract a program from the proof. Using
monads we are able to exhibit the inherent imperative nature of the extracted program. We see
this as a first step towards an automated extraction of imperative programs. The case study is
carried out in the interactive proof assistant Minlog.
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1 Introduction

Program extraction based on the proofs-as-programs paradigm is a powerful method of
generating, in one step, programs together with a proof of their correctness. Often, this
technique is based on some form of realizability (see e.g. [15, 5]), or a similar method, and
usually yields terms denoting computable functionals or elements of a partial combinatory
algebra. These terms can be naturally interpreted as functional programs. For this reason, the
process of program extraction has long been associated with functional programs. There exist
many tools which are able to extract functional programs from proofs (see e.g. Coq [9, 17],
Minlog [18, 4], Agda [2, 8], NuPRL [22], Isabelle [13, 6]) whereas relatively little research and
tool development has been explored addressing the problem of extracting imperative programs
from proofs. Since most programs that are written today are more towards the imperative
paradigm (cf TIOBE Index [28]) and imperative programs, in general, are notoriously difficult
to verify, it would be highly desirable to have tools that allow the extraction of verified
imperative programs.

In this paper we show that imperative program extraction is possible. We start with a
case study where we extract an imperative In-place Quicksort algorithm from a proof. First,
we informally describe In-place Quicksort, then we present a formalisation of a proof that
every array can be sorted. From this proof we extract a first version of Quicksort using the
Minlog system. This version of Quicksort, which is still functional, is then translated into a
program that uses the well-known state monad and can be directly interpreted as the desired
imperative In-place Quicksort algorithm.

An analysis of the program obtained from this case study leads us to a restricted functional
calculus, called SIT (Single-Threaded Functional Language), that singles out programs

© Ulrich Berger, Monika Seisenberger, and Gregory J.M. Woods;
licensed under Creative Commons License CC-BY

19th International Conference on Types for Proofs and Programs (TYPES 2013).
Editors: Ralph Matthes and Aleksy Schubert; pp. 84–106

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62918988?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.84
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


U. Berger, M. Seisenberger, and G. J.M. Woods 85

which use their array argument in a single-threaded way. All well-typed SIT programs can
be translated into well-typed programs of a monadic language, called MON, that directly
admits an imperative interpretation. We prove the correctness of this translation by showing
that it is the inverse of the natural interpretation of MON in SIT.

The next step will be to analyse the proof from which our Quicksort program was
extracted, and develop a proof calculus which only extracts programs in the language SIT,
or a suitable generalisation of SIT, for which a similar automatic translation into imperative
code is possible. We leave this, as well as the actual translation of MON programs into
imperative code, for further work.

1.1 Related work
There are other attempts at extracting imperative programs from proofs. A notable one
is carried out in [23] where the authors combine the proofs-as-programs concept with
Intuitionistic Hoare Logic. However, this work leans more towards a verification strategy,
which builds on the specification of the program.

A different route is Krivine’s Classical Realizability ([16]) which is based on an abstract
machine model that has imperative features. Krivine’s work has further been adapted by
Miquel [19]. The precise links between these methods and ours have yet to be investigated.

Quicksort has traditionally been a case study for many verification techniques and as
such, there are many examples in the literature. A recent case study of the In-place Quicksort
algorithm was formed in [11] using Event-B[1]. The behaviour of the algorithm is specified
and then the algorithm is verified through a series of “refinements” where the problem is
simplified into abstract machines and the effect of the abstraction makes the verification
tasks more simple.

Another interesting verification is undertaken in [26] using ACL2 (see [7]) with an efficient
version of the In-place Quicksort algorithm using single-threaded objects. The verification
task involves showing that the efficient version of Quicksort is equivalent to a non single-
threaded version and then showing that this algorithm satisfies the properties of a sorting
algorithm. Once the equivalence is established, the process of verification is in some ways
similar to Event-B using a “refinement” process to obtain correctness.

In relation to our work, the Event-B case study has an extraction process, through
refinement, of the imperative In-place Quicksort algorithm whereas the ACL2 case study
shows correctness of an already written imperative program w.r.t. the behaviour of the
original functional Quicksort algorithm. The crucial difference between these works and
ours is that we synthesize programs from mathematical proofs that do not require particular
representations of data, and do not involve the process of programming. Therefore, our
approach is highly modular, language independent, and more accessible to users outside the
programming community.

1.2 Minlog
Minlog [18, 3] is an interactive proof system based on a first-order natural deduction calculus.
It is not a type-theoretic system, like Coq or Agda, since it keeps formulas and proofs separate
from (non-dependent) types and terms. Terms and types have a simple domain-theoretic
denotational semantics. The theoretical background of Minlog is explained in [27]. One
of the main motivations behind Minlog is to exploit the proofs-as-programs paradigm for
program development and program verification. Minlog implements various methods of
program extraction (realizability, dialectica interpretation) which also include extraction
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86 Extracting Imperative Programs from Proofs: In-place Quicksort

from classical proofs via the Friedman A-translation (see [25] for a comparative case study).
Recent work on Minlog has been extending program extraction to simultaneous inductive and
coinductive definitions and extraction to Haskell [20]. The system is supported by automatic
proof search and normalization by evaluation as an efficient term rewriting device. Minlog
is implemented in Scheme, and is an open system which invites users to contribute to its
development and explore new methods.

2 Informal description of In-Place Quicksort

Quicksort, as we consider it in this paper, is a sorting algorithm that takes an array of natural
numbers as input and sorts its elements into order of lowest to highest. The Quicksort
algorithm was invented by Tony Hoare [12, p11]. Here we focus on an imperative variant of
Quicksort, called In-place Quicksort, which sorts an array by repeatedly swapping elements,
without using extra memory space (for creating new arrays).

In-place Quicksort works as follows:

1. We are given an array a and indices l, r. We wish to sort a on the interval [l, r] = {i ∈
N | l ≤ i ≤ r}:

α .. .. .. .. ε

l r

If l ≥ r, nothing needs to be done. Hence, in the following we assume that l < r.
2. Pick l as the pivot index p, and pick r as the max swap index m:

α .. .. .. .. ε

p = l m = r

We call a[p], the element of the array at p, the pivot.
3. Now we compare the pivot with the element at p+ 1:

α β .. .. .. ε

p p+ 1 m

a. If the pivot is greater than or equal to the element at p + 1, then we swap the two
elements of the array and increment the pivot index by 1:

β α .. .. .. ε

p m

b. If the pivot is smaller than the element at p+ 1, then we swap the element at p+ 1
with the element at m and decrement the index m by 1:

α ε .. .. .. β

p p+ 1 m

4. Repeat step 3 until the markers p and m are equal.
5. Repeat steps 1–4 recursively on the array between l and p− 1 and on the array between

p+ 1 and r.

We will show that this imperative algorithm can be extracted automatically from a proof
that contains no reference to imperative features at all in contrast to [23].
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3 A formal proof that every array can be sorted

We sketch a formal proof that every array can be sorted. The proof is organized in such a way
that its computational content corresponds to the previously described In-place Quicksort
algorithm. We present the proof in some detail, so that the reader can use it as a guide
through the Minlog proof script (see [24]).

For simplicity, we assume that the array to be sorted has as index set the whole set of
natural numbers and every cell of the array holds a natural number (the array could hold
any type of elements with a computable ordering). We view arrays as an abstract data type
equipped with operations a[i], for accessing the content of the array a at index i and a[i := x]
for changing the value of the array a at index i to x. Hence we assume the following axioms

(RW1) b = a[i := x]→ b[i] = x .

(RW2) b = a[i := x] ∧ k 6= i→ b[k] = a[k] .

Our goal is to prove that every array can be permuted into a sorted one between any
given index bounds l ≤ r

I Theorem 1 (Sorting Theorem). ∀l, r, a. l ≤ r → ∃b.Permuted(a, b, l, r) ∧ Sorted(b, l, r)1

where

Sorted(a, l, r) := ∀i, j.l ≤ i < j ≤ r → a[i] ≤ a[j]

and the intuitive meaning of the predicate Permuted is

Permuted(a, b, l, r) := ∃ permutation σ of [l, r]. ∀i ∈ [l, r] b[i] = a[σ(i)] ∧
∀i 6∈ [l, r]. b[i] = a[i]

where [l, r] = {i | l ≤ i ≤ r}.
In the proof it will be convenient to work with a different (but equivalent) inductive

definition of the predicate Permuted, based on the fact that every permutation is a composition
of swappings (transpositions). First, we define what it means for two arrays a and b to differ
only by swapping the contents at the indices i and j:

Swap(a, b, i, j) := b[i] = a[j] ∧ b[j] = a[i] ∧ ∀k 6∈ {i, j}. b[k] = a[k] .

The predicate Permuted is now defined inductively by the clauses:
(P1) Permuted(a, a, l, r) .
(P2) l ≤ i, j ≤ r ∧ Swap(a, b, i, j)→ Permuted(a, b, l, r) .
(P3) Permuted(a1, a2, l, r) ∧ Permuted(a2, a3, l, r)→ Permuted(a1, a3, l, r) .

This means that Permuted is the least predicate satisfying the clauses P1–3.
We first prove we can always swap two elements of an array and that the predicate

Permuted has the expected properties:

I Lemma 2 (Swap). ∀a, i, j. ∃b. Swap(a, b, i, j) .

1 We use the dot notation where the dot allows the quantifiers to have the largest possible range. For
example ∀i.A → B is the same as ∀i(A → B).
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88 Extracting Imperative Programs from Proofs: In-place Quicksort

I Lemma 3 (Permutation). For all a, b, l, r with Permuted(a, b, l, r)
(a) ∀i ∈ [l, r].∃j ∈ [l, r]. b[i] = a[j] .
(b) ∀i 6∈ [l, r]. b[i] = a[i] .
(c) ∀l′, r′. l′ ≤ l ∧ r ≤ r′ → Permuted(a, b, l′, r′) .

The proofs of both lemmas are easy. The proof of the Permutation Lemma proceeds by
induction on the definition of Permuted(a, b, l, r). We omit further details.

3.1 Partitioning an array
The crucial idea of Quicksort is the notion of a partition. A partition is an array together
with a selected pivot element such that every element to the left of the pivot is smaller than
or equal to the pivot and every element to the right is greater than the pivot.

Partition(a, l, p, r) := ∀i ( l ≤ i < p→ a[i] ≤ a[p]) ∧
∀i ( p < i ≤ r → a[p] < a[i]) .

For the proof of the Sorting Theorem (Theorem 1) we need to prove that every array can
be permuted into a partition:

I Lemma 4 (Partition).

∀l, r, a . l ≤ r → ∃p, b . l ≤ p ≤ r ∧ Permuted(a, b, l, r) ∧ Partition(b, l, p, r) .

Proof. We prove a slightly stronger statement stating in addition that b[p] = a[l]. The proof
is by induction on k := r − l. Formally, we prove

∀k, l, r, a . l+ k = r → ∃p ∈ [l, r], b . b[p] = a[l]∧ Permuted(a, b, l, r)∧ Partition(b, l, p, r)

by induction on k.

Base Case: k = 0. Assume l + 0 = k. Then l = k and we may take p = l and b = a.

Step: k + 1. We assume l + (k + 1) = r.

Case 1: a[l] ≥ a[l + 1] .
We use the induction hypothesis with l + 1, r and some a1 satisfying Swap(a, a1, l, l + 1),
which by the Swapping Lemma exists. Since (l + 1) + k = r we get p ∈ [l + 1, r] and b
with b[p] = a1[l + 1], Permuted(a1, b, l + 1, r) and Partition(b, l + 1, p, r). We take the
same p and b. We have b[p] = a1[l+ 1] = a[l]. Furthermore, by definition of the predicate
Permuted, it follows that Permuted(a, b, l, r). In order to show Partition(b, l, p, r), we
assume first l ≤ i < p and show b[i] ≤ b[p]. If i = l, then b[i] = a1[l] by the Permutation
Lemma, part (c), and hence b[i] = a[l + 1] ≤ a[l] = a1[l + 1] = b[p]. If i ≥ l + 1, the
in-equation b[i] ≤ b[p] follows from Partition(b, l + 1, p, r). That for p < i ≤ r we have
b[p] < b[r] follows immediately from Partition(b, l + 1, p, r).
Case 2: a[l] < a[l + 1] .
We use the induction hypothesis with l, r− 1 and a1 satisfying Swap(a, a1, l+ 1, r). Since
l + k = r − 1 we get p ∈ [l, r − 1] and b with b[p] = a1[l], Permuted(a1, b, l, r − 1) and
Partition(b, l, p, r − 1). Again, we take the same p and b. We have b[p] = a1[l] = a[l]
since l 6∈ {l + 1, r}. Furthermore, by definition of the predicate Permuted, it follows
Permuted(a, b, l, r). In order to show Partition(b, l, p, r), we assume first p < i ≤ r − 1
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and show b[i] > b[p]. If i = r, then b[i] = a1[r] by the Permutation Lemma, part (c), and
hence b[i] = a[l + 1] > a[l] = b[p]. If i ≤ r − 1, the in-equation b[i] > b[p] follows from
Partition(b, l + 1, p, r). That for l ≤ i < p we have b[i] ≤ b[p] follows immediately from
Partition(b, l, p, r − 1).

This completes the proof of the Partition Lemma. J

3.2 Proof of the Sorting Theorem
Now we have everything we need to prove the Sorting Theorem (1). If l ≥ r, the proof is
trivial. Hence, in the following we assume l < r.

Proof. We do an induction on the length r − l of the segment to be sorted. Therefore, we
have an induction hypothesis for all shorter segments. Our goal is

∃b. Sorted(b, l, r) ∧ Permuted(a, b, l, r) .

By the Partition Lemma (4) we have an array a1 and a pivot index p that fulfil the partition
property

Permuted(a, a1, l, r) ∧ Partition(a1, l, p, r) . (1)

Case 1: Both sides of the partition are non-empty, i.e. l < p < r.
We use the induction hypothesis with the left side of the partition with the array l, p− 1
and a1 and get a2 such that

Sorted(a2, l, p− 1) ∧ Permuted(a1, a2, l, p− 1) . (2)

We now do the same on the right side of the partition using the induction hypothesis
with p+ 1, r and a2 and get b with:

Sorted(b, p+ 1, r) ∧ Permuted(a2, b, p+ 1, r) . (3)

We show that our b satisfies:

Sorted(b, l, r) ∧ Permuted(a, b, l, r) .

Sorted(b, l, r): by (2) we have Sorted(a2, l, p − 1) and by (3), Sorted(b, p + 1, r).
Furthermore, by the Permutation Lemma (3), part (b), and by using the other
conjunct of (2) it follows Sorted(b, l, p−1). Furthermore, from (1) and the Permutation
Lemma (3), part (a), it follows Partition(b, l, p, r). From these facts one easily derives
Sorted(b, l, r).
Permuted(a, b, l, r): this follows easily from the Permutation Lemma, part (c), and the
last clause of the inductive definition of the predicate Permuted.

Case 2: One side of the partition is empty.
If the left side is empty, i.e. p = l, then we apply the induction hypothesis to a1, l + 1, r.
If the right side is empty we use the induction hypothesis for a1, l, r − 1. The rest of the
proof is similar to the previous Case 1, but simpler. J

4 Program Extraction

In this section we address some technical issues of the implementation in Minlog, present
the extracted programs and explain why they can be considered as imperative programs.
The Minlog source files for this extraction example can be found on the Swansea Minlog
Repository web page [24].
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4.1 Implementation in Minlog
We highlight some aspects of the implementation in Minlog that are necessary to understand
the proof scripts and the extracted programs.

We present the theorems as they appear in Minlog:

Listing 1 Sorting Theorem (1)
(set -goal (pf "all l,r,a . l<= r ->

ex b. Permuted a b l r & Sorted b l r"))

Listing 2 Partition Lemma (4)
(set -goal (pf "all k,l,r,a. l+k=r ->

(ex a1 ,p. (( all i (l<=i -> i<p -> Rd a1 i <= Rd a1 p)) &
(all i (p<i -> i<=r -> Rd a1 p < Rd a1 i)) &
Permuted a a1 l r &
Rd a1 p = Rd a l &
l <= p &
p <= r))"))

Listing 3 Swap Lemma (2)
(set -goal (pf "all a,i,j ex b. Swap a b i j"))

4.1.1 Arrays
Minlog does not have a built-in data type of arrays. We chose to define arrays as a free
algebra with the nullary constructor Empty, denoting the constant zero array, and a ternary
constructor Wr (for “write”):

Listing 4 Minlog Array Definition
(add -alg "ar" ’(" Empty" "ar") ’("Wr" "ar=>nat=>nat=>ar "))

The earlier used notation a[i := x] was just syntactic sugar for Wr a x i.
By structural recursion on the free algebra of arrays we define a reading operation:
Listing 5 Minlog Read Definition

(apc "Rd" (py "ar=>nat=>nat "))
(add - computation -rule

(pt "Rd (Wr a n i) j")
(pt "[if (i=j) n (Rd a j)]"))

This means that Rd is introduced as a program constant with the computation rule
rewriting Rd (Wr a n i) j to [if (i=j) n (Rd a j)]. We do not use a rewrite rule for
Rd Empty j in the proof.

Using the notation a[i] for Rd a i the Axioms (RW1) and (RW2) (cf. Sect. 3) now become
easily provable theorems.

4.1.2 Equational reasoning via normalisation
The reader might have noticed that we slightly deviated from Sect. 3 where we said that we
consider arrays as an abstract data type. The reason for our choice is purely a matter of
convenience since equational reasoning becomes much easier if certain equations are expressed
via (strongly normalizing and confluent) term rewriting rules, allowing us to prove equations
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by checking syntactic equality of normal forms. One could, of course, replace arrays by a
different data structure where accessing an element takes logarithmic instead of linear time.
However, this would have no effect on the extracted program.

4.1.3 Realizability
In this paper we work with Minlog’s program extraction module based on modified realizability
[15] which can be viewed as a typed version of Kleene’s realizability for numbers [14].

Realizability provides a very intuitive way of extracting the computational content from
a formal constructive proof in the spirit of the Curry-Howard correspondence that associates
propositions with types and proofs with programs. It does not establish an isomorphism
between proofs and programs, but a highly non-injective homomorphism that eliminates
large parts of proofs that are computationally irrelevant. In order to widen the range of
applications, Minlog uses an extended form of realizability that allows, for example, to extract
algebraic data types from inductive definitions [18].

4.1.4 Induction and recursion
There occur two kinds of induction in our formalization:

1. Ordinary “Zero-successor”-induction on the natural numbers. This is used, for example
in the proof of the Partition Lemma. In Minlog this axiom scheme is interpreted
computationally (via realizability) as a constant-scheme: Rec.

2. The other form of induction we use is “induction with respect to a measure function”.
This is used in the Sorting Theorem. The realizability interpretation of this form of
induction is a constant-scheme: GRecGuard.

4.2 The extracted programs
4.2.1 Program extracted from the proof of the Sorting Theorem.

Listing 6 Qsort Extracted Program
qsort =

cGIND
[n3 ,n4 ,g5 ,a6]

[let ap7 (cPart(n4 --n3)n3 n4 a6)
[if (n3 <right ap7)

[if (right ap7 <n4)
[let a8 (g5 n3(Pred right ap7)left ap7)

[let a9 (g5(Succ right ap7)n4 a8)
a9]]

(g5 n3(Pred right ap7)left ap7 )]
[if (right ap7 <n4)

(g5(Succ right ap7)n4 left ap7)
(left ap7 )]]]

Note: ap7 corresponds to (a1, p) in the proof of the Partition Lemma. left ap7 and
right ap7 correspond to p and a1 respectively. g5 plays the role of the recursive call, cGIND
is a particular instance of the constant-scheme GRecGuard and cPart corresponds to the
Partition lemma. The letter c in cPart indicates that it is an automatically generated name
for the program from partition lemma Part. For better readability, we omit the c in the
further discussion.
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4.2.2 Program extracted from the proof of the Partition Lemma.
Listing 7 Part Extracted Program

part =
[n0]

(Rec nat=>nat=>nat=>ar=> ar@@nat )
n0

([n4 ,n5 ,a6]a6@n4)
([n4 ,rec5 ,n6 ,n7 ,a8]

[if (Rd a8(Succ n6)<=Rd a8 n6)
[let a9 (Swap a8(Succ n6)n6) (rec5(Succ n6)n7 a9)]
[let a9 (Swap a8(Succ n6)n7) (rec5 n6(Pred n7) a9 )]])

Note: The variable rec5 has type nat=>nat=>ar=>ar@@nat and represents the recursive
call where ar@@nat is the pairing of an array and a natural number.

4.2.3 The swap function extracted from the proof of the Swapping
Lemma

Listing 8 Swap Extracted Program
swap =

[a0 ,n1 ,n2]
[let n3 (Rd a0 n1)

[let n4 (Rd a0 n2)
[let a1 (Wr a0 n4 n1) (Wr a1 n3 n2 )]]]

4.3 The extracted programs explained
Minlog’s formalization of recursive definitions via recursion operators is adequate from a
technical point of view, but it makes recursively defined functions hard to read. Therefore,
we replace the recursion operators by recursive equations, and re-name the (automatically
generated) variables so that they match the variable names used in the proofs. Furthermore,
we write the variable ap7 in the let expression of qsort as a pair (a1,p) which spares us
the use of the projection functions left and right. Also, in the function part we omit the
first parameter n0, which corresponds to k, since it always has the value r − l (n4-n5), and
replace, for example “k = 0” by l = r. All these changes are only cosmetic and intended to
ease the understanding of the programs. They do not affect their behaviour.

We use Haskell-like syntax in the pseudo-code below. For example, (N,N,A) stands for
the type N×N×A where A is the type of arrays. The programs qsort and part are intended
to be used for l ≤ r only.

Listing 9 Qsort (Haskell Style)
qsort(l,r,a) =

let (a1 ,p) = part(l,r,a)
in if l < p

then if p < r
then let {a2 = qsort(l,p-1,a1)} in qsort(p+1,r,a2)
else qsort(l,r-1,a1)

else if p < r
then qsort(l+1,r,a1)
else a1
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Listing 10 Part (Haskell Style)
part : (N,N,A) -> (A,N)
part(l,r,a) =

if l = r
then (a,l)
else if a[l+1] <= a[l]

then let {a1 = swap(a,l+1,l)} in part(l+1,r,a1)
else let {a1 = swap(a,l+1,r)} in part(l,r-1,a1)

Listing 11 Swap (Haskell Style)
swap : (A,N,N) -> A
swap(a,i,j) = let {x = a[i]; y = a[j]; a1 = a[i:=y]} in a1[j:=x]

4.4 How are these extracted programs imperative?

At first sight the extracted programs look clearly functional. Indeed they are, provided
the writing operation a[i:=y], which is the only operation where the array is modified,
is implemented functionally. However, nothing prevents us from implementing the write
operation as a procedure that destructively changes the array (instead of producing a new
array). But, are the extracted programs then still correct? Looking at the proof of the
Soundness Theorem (see eg [5]) for realizability, which is the source of correctness of our
extracted program, we see that the extracted programs are assumed to behave functionally,
i.e. have no side effects. In particular, functional programs do not destroy their input, and
as a consequence, referential transparency holds, which means that the value of a complex
programs only depends on the values of its subprograms and not, for example, on the order in
which the subprograms are evaluated. Referential transparency is crucial for the Soundness
Theorem, and it does, in general, not hold for imperative code. Therefore, an additional
argument is needed in order to show that, in our particular case, the programs stay correct
when the writing operation is implemented imperatively. The argument is simple: in the
extracted programs, arrays can be viewed as “single-threaded” objects, since, once an array
is used as an argument of the update operation, or a program that uses the writing operation
such as swap, part or qsort, it is never used again. Hence the correctness of the program is
not compromised if the write operation destroys its argument.

4.5 Monadic presentation of the extracted programs

The imperative nature of the programs qsort and part becomes particularly lucid when
they are formulated using the state monad where arrays play the role of states. Monads [21]
are a popular concept to incorporate imperative code into functional programs in an elegant
and clean way. The definitions below are standard in functional programming, but in order
to make the paper self-contained we include them.

We define a type operator M (the state monad with arrays as states) by

M u = A -> (u,A)

where u is a type variable. A value of type M u can be viewed as an action that, when
executed, produces a result of type u, but may, in addition, have a side effect on the state
(array in our case).

We have the general monad operators
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return : u -> M u
return x a = (x,a)

bind : M u -> (u -> M v) -> M v
bind m f a = let {(x,b) = m a} in f x b

and the special operators for this particular monad:
get : N -> M N
get i a = (a[i],a)

put : (N,N) -> M ()
put(i,x) a = ((),a[i:=x])

where () is a singleton type, We will use the suggestive “do-notation”: If m1 : M u and
m2 : M v are expressions where m2 may depend on a variable x : u, then
do { x <- m1 ; m2 } := bind m1 (\x-> m2) : M v

where \x-> denotes lambda-abstraction. If m2 does not depend on x, then
do { m1 ; m2 } := bind m1 (\_ -> m2) : M v

This notation can be extended to more than two actions in the obvious way. Furthermore,
expressions of the form do { ... x <- m ; return x } can be simplified to do { ... m }.

Using canonical isomorphisms such as

N× N×A→ A ' N× N→ (A→ ()×A)

we can write the programs qsort, part, and swap equivalently as follows, using the new
names mqsort, mpart and mswap:

Listing 12 Qsort (Monadic Style)
mqsort (l,r) =

do {
p <- mpart(l,r) ;
(if l < p

then if p < r
then do { mqsort (l,p -1) ; mqsort (p+1,r) }
else mqsort (l,r -1)

else if p < r
then mqsort (l+1,r)
else return ()

}

Listing 13 Part (Monadic Style)
mpart : (N,N) -> M N
mpart(l,r) =

if l = r
then return l
else do {

x <- get l ;
y <- get (l+1) ;
(if x >= y

then do { mswap(l,l+1); mpart(l+1,r) }
then do { mswap(l+1,r); mpart(l,r -1) }

}
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Listing 14 Swap (Monadic Style)
mswap : (N,N) -> M ()
mswap(i,j) = do { x <- get(i) ; y <- get(j) ; put(i,y) ; put(j,x) }

The significance of the monadic notation is that the syntax alone enforces that arrays,
once they have been used as input to a program involving the write operation, can no longer
be accessed, thus enabling destructive interpretations of these operations. For example, we
might want a modified sorting program qsort1 that outputs the sorted array together with
the original array. In the non-monadic style this can be done by simply defining

qsort1 (l,r,a) = (qsort(l,r,a),a)

This would exhibit the desired behaviour if qsort is interpreted functionally, but not if it is
interpreted imperatively. However, in the monadic style we need a copying operation

copy : M A
copy a = (a,a)

in order to define

mqsort1 (l,r) = do { a <- copy ; mqsort (l,r) ; return a }

The latter program is correct w.r.t. the functional and the imperative interpretation.

5 Automated Monadification

Abstracting from the Quicksort case study we now define a functional language SIT modelling
a subset of Minlog’s term language which captures the idea of single-threadedness and includes
the original functional Quicksort program extracted by Minlog. Then we describe a (meaning
preserving) translation of this language into a monadic language which admits an imperative
interpretation.

5.1 Remark
A different monadification process has been studied by Erwig and Ren [10]. They consider
the problem of transforming a program of type ρ → σ into one of type ρ → M(σ) where
M is a “runnable” monad (i.e. a monad with a left inverse of the return operation) and
the resulting program is again functional. On the other hand, our translation transforms
programs of type (ρ,A)→ (σ,A) into programs of type ρ→M(σ) whereM is specifically the
state monad, i.e. we deal with programs where the input and output may be state dependent.
In addition we are careful that the resulting program has an imperative interpretation.

5.2 The Single-Threaded Functional Language SIT
In the SIT language we have two different kinds of types. A distinguished type A of states
and other “ordinary” types ρ, σ different from A. For the Quicksort example the state is an
array and the only other types are natural numbers and Boolean values.

SIT is parametrized by three different kinds of functions which are distinguished by the
types of values they access and return:

Basic Functions – functions that neither access or modify the state:
fbas : ~ρ→ σ

Accessor Functions – functions which may require access to the state, but do not modify
it:
facc : (~ρ,A)→ σ
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Quasi Side-Effect Functions – functions that may modify the state (“Quasi” because they
are SIT functions which are side-effect free, but will later be translated into functions
with side-effects):
f sid : (~ρ,A)→ (~σ,A)

In (ρ1, . . . , ρn, A) the number n may be zero in which case we write just (A). We let
x, y, z range over an infinite set of variables which will later be given ordinary types. We
only need one state variable a.

The terms t and expressions e of SIT are defined as follows:
SitTerm 3 t ::= x | fbas(~t) | facc(~t, a)
SitExpr 3 e ::= (~t, a) | f sid(~t, a) | if t then e1 else e2 | let (~x, a) = e1 in e2

where all variables in ~x are different. In general, ~x, ~y, . . . will always denote vectors of pairwise
different variables.

A SIT program is a finite list of equations of the form

f sid1 (~x1, a) = e1
. . .

f sidn (~xn, a) = en .

The functions f sidi may occur in the expressions ej and are considered to be (possibly
recursively) defined by the equations. All other functions symbols occurring in the ej are
considered as predefined functions (or parameters of the program).

The “let” is the only construction which binds free variables. In fact, the “let” expression
let (~x, a) = e1 in e2 is to be understood as the β-redex (λ(~x, a).e2)e1. This intuition is
reflected by the following axiom:
I Axiom 1. let (~x, a) = (~t, a) in e ≡ e[~t/~x] for all ~t ∈ SitTerm, e ∈ SitExpr,
where substitution of terms into expressions, e[~t/~x], is defined below.

Note that in a “let” expression, let (~x, a) = e1 in e2, the equation (~x, a) = e1 is not to
be understood as a (potentially) recursive definition of (~x, a) as it is the case in Haskell.
Therefore, our “let” rather corresponds to Scheme’s “let” while Haskell’s “let” corresponds
to Scheme’s “letrec”.

The free variables for “let” constructs are defined as:

FV(let (~x, a) = e1 in e2) := FV(e1) ∪ (FV(e2) \ {~x, a}) .

The notion of α-equivalence is defined as usual, in particular:

let (~x, a) = e1 in e2
α≡ let (~y, a) = e1 in e2[~y/~x]

where ~y are fresh variables. Simultaneous substitution, e[~t/~x], of terms ~t for variables ~x in a
SIT expression e is defined as follows:

y[~t/~x] :=
{
ti, if y ∈ {x1, . . . , xn},where y = xi

y, otherwise

fbas(~s)[~t/~x] := fbas(s1[~t/~x], . . . , sn[~t/~x])
facc(~s, a)[~t/~x] := facc(s1[~t/~x], . . . , sn[~t/~x], a)

(~s, a)[~t/~x] := (s1[~t/~x], . . . , sn[~t/~x], a)
f sid(~s, a)[~t/~x] := f sid(s1[~t/~x], . . . , sn[~t/~x], a)

(if t then e1 else e2)[~t/~x] := if s[~t/~x] then e1[~t/~x] else e2[~t/~x]
(let (~y, a) = e1 in e2)[~t/~x] := let (~y, a) = e1[~t/~x] in e2[~t/~x]

where in the “let” case we can assume, possibly after α-renaming, that ~y ∩ (~x ∪ FV(~t)) = ∅.
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5.3 SIT Typing System
In the following we define a typing system which derives judgements of the form Γ ` t : ρ or
Γ ` e : (~ρ,A) where the context Γ is a finite set of type declarations x : ρ:

Γ, x : σ ` x : σ

fbas : ~ρ→ σ Γ ` ~t : ~ρ
Γ ` fbas(~t) : σ

facc : (~ρ,A)→ σ Γ ` ~t : ~ρ
Γ ` facc(~t, a) : σ

Γ ` ~t : ~ρ
Γ ` (~t, a) : (~ρ,A)

f sid : (~ρ,A)→ (~σ,A) Γ ` ~t : ~ρ
Γ ` f sid(~t, a) : (~σ,A)

Γ ` t : B Γ ` e1 : (~σ,A) Γ ` e2 : (~σ,A)
Γ ` if t then e1 else e2 : (~σ,A)

Γ ` e1 : (~ρ,A) Γ, ~x : ~ρ ` e2 : (~σ,A)
Γ ` let (~x, a) = e1 in e2 : (~σ,A)

A SIT program

f sid1 (~x1, a) = e1
. . .

f sidn (~xn, a) = en

is well-typed if for each of the defined functions f sidi : (~ρi, A)→ (~σi, A) the typing judgement
~xi : ~ρi ` ei : (~σi, A) is derivable.

Since the typing rules are syntax directed it is clear that the typing rules are decidable
(in linear time) and therefore can be automated.

The single-threadedness of SIT is enforced by the fact that there are no functions with
result type A. For example, Wr has result type (A) but not A. Otherwise, one could form
well-typed, but non single-threaded terms such as Rd(i, Wr(i, x, a)) + Rd(i, a).

5.4 Quicksort as a SIT program
We briefly demonstrate that the extracted Quicksort program (written as recursive equations)
can be written in SIT. We have the predefined functions <,≤,= : (N,N) → B (basic
functions), Rd : (N, A) → N (accessor function) and Wr : (N,N, A) → (A) (quasi side-
effect function). Semantically (expressed outside the SIT language), Rd(i, a) = a[i] and
Wr(i, x, a) = (a[i := x]). The SIT program defining Quicksort is as follows:

TYPES 2013



98 Extracting Imperative Programs from Proofs: In-place Quicksort

Listing 15 Qsort (SIT)
qsort : (N,N,A) -> (A)
qsort(l,r,a) =

let (p,a) = part(l,r,a) in
if l < p
then if p < r

then let (a) = qsort(l,p-1,a) in qsort(p+1,r,a)
else qsort(l,r-1,a)

else if p < r
then qsort(l+1,r,a)
else (a)

Listing 16 Part (SIT)
part : (N,N,A) -> (N,A)
part(l,r,a) =

if l = r
then (l,a)
else if Rd(l+1,a) <= Rd(l,a)

then let (a) = swap(l+1,l,a) in part(l+1,r,a)
else let (a) = swap(l+1,r,a) in part(l,r-1,a)

Listing 17 Swap (SIT)
swap : (N,N,A) -> (A)
swap(i,j,a) = let (x,y,a) = (Rd(i,a),Rd(j,a),a) in

let (a) = Wr(i,y,a) in Wr(j,x,a)

The above SIT code wouldn’t run correctly in Haskell because, as mentioned in Sect. 5.2,
Haskell would interpret, for example, let (p,a) = part(l,r,a) as a recursive definition
of (p,a). In order to obtain correct Haskell code (up to minor syntactic details such
as capitalised functions) we can simply α-rename the state variables, for example, re-
name let (p,a) = part(l,r,a) in e to let (p,a1) = part(l,r,a) in e[a1/a]. Then
we would end up with essentially the same code as in listings 9–11.

5.5 The Monadic Language MON
We now introduce a monadic language MON with programs of type ~ρ→M~σ where M is a
monad. For convenience we let M operate on tuples of types rather than single types. For
the moment M is an arbitrary monad, but later in Sect. 6.1 we will interpret MON into
SIT where it will be pinned down as the state monad. In MON we have two different kinds
of functions:

The basic functions of the SIT language,
fbas : ~ρ→ σ .

Functions which may access and modify the state,
gsid : ~ρ→M~σ .

The terms u and expressions m of MON are defined as follows:
MonTerm 3 u ::= x | fbas(~u)
MonExpr 3 m ::= gsid(~u) | return ~u | if u then m1 else m2 | bind m1 (λ~x.m2)

where in bind m1 (λ~x.m2) we assume ~x /∈ FV(m1).
Notice that MonTerm ⊂ SitTerm. A MON program is a finite list of equations

gsid1 (~x1) = m1
. . .

gsidn (~xn) = mn .
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As with SIT, the functions gsidi are considered to be (possibly recursively) defined by the
equations. All other functions symbols occurring in the mj are considered as predefined
functions.

5.6 MON Typing System
We define a typing system for judgements of the form Γ ` u : σ and Γ ` m : M~σ where
contexts Γ are as before:

Γ, x : σ ` x : σ

fbas : ~ρ→ σ Γ ` ~u : ~ρ
Γ ` fbas(~u) : σ

Γ ` ~u : ~ρ
Γ ` return ~u : M~ρ

gsid : ~ρ→M~σ Γ ` ~u : ~ρ
Γ ` gsid(~u) : M~σ

Γ ` u : B Γ ` m1 : M~σ Γ ` m2 : M~σ

Γ ` if u then m1 else m2 : M~σ

Γ ` m1 : M~ρ Γ, ~x : ~ρ ` m2 : M~σ

Γ ` bind m1 (λ~x.m2) : M~σ

5.7 Translation from SIT to MON
The translation of SIT into MON is parametric in a translation of the predefined function
symbols. Hence, we assume that we have assigned in a one-to-one way:

to every SIT accessor function facc : (~ρ,A)→ σ a MON side-effect function F0(facc) :
~ρ→Mσ, and
to every SIT quasi side-effect function f sid : (~ρ,A)→ (~σ,A) a MON side-effect function
F0(f sid) : ~ρ→M~σ

Recall that basic SIT functions fbas : ~ρ→ σ are at the same time basic MON functions
and are hence translated into themselves. Based on this assignment we define a translation

F : SitTerm ∪ SitExpr→ MonExpr

Terms
F(x) := return x (where x is a variable)
F(fbas(~t)) := bind F(~t) λ~x.return fbas(~x)
F(facc(~t, a)) := bind F(~t) λ~x.F0(facc)(~x)
Where bind F(~t) λ~x.m is defined recursively as:
bind F(∅) λ∅.m := m

bind F(t,~t) λx.λ~x.m := bind F(t) (λx.bind F(~t) λ~x.m)
assuming ~x ∩ FV(~t) = ∅
Expressions
F((~t, a)) := bind F(~t) λ~x.return ~x
F(f sid(~t, a)) := bind F(~t) λ~x.F0(f sid)(~x)
F(if t then e1 else e2) := bind F(t) (λx.if x then F(e1) else F(e2))
F(let(~x, a) = e1 in e2) := bind F(e1) (λ~x.F(e2))
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where all introduced λ-abstractions use fresh variables. This induces a translation of any
SIT program:

f sid1 (~x1, a) = e1
. . .

f sidn (~xn, a) = en

into the MON program:

F0(f sid1 )(~x1) = F(e1)
. . .

F0(f sidn )(~xn) = F(en) .

I Lemma 5 (Type preservation of translation F).
If Γ ` t : ρ then Γ ` F(t) : Mρ, and
If Γ ` e : (~ρ,A) then Γ ` F(e) : M~ρ

Proof. By induction on the typing derivations. J

I Corollary 6. If a SIT program is well-typed then its monadic translation is also well-typed.

5.8 Translating the SIT code of Quicksort into MON
We apply the translation F to the SIT code of the Quicksort program shown in Sect. 5.4.
Defining the function F0 as:

F0(Rd) = get
F0(Wr) = put
F0(qsort) = mqsort
F0(part) = mpart
F0(swap) = mswap

and using the “do-notation” introduced in Sect. 4.5 we obtain exactly the MON programs
in the same section (listings 12-14).

6 Soundness of the translation

To prove the soundness of the monadic translation F we define a new translation:

G : MON→ SIT

which “demonadifys” the program. We will prove the following theorem (which will be
Theorem 10 below):

For all typable SIT expressions e, G(F(e)) ≡ e.

6.1 Translation from MON to SIT
The following translation of MON into SIT can be viewed as a definition of the monadic
constructs in functional terms. In fact, it expresses that M is the state monad. To every
MON side-effect function gsid : ~ρ→M~σ, each of which we may assume to be in the image
of F0, we assign a SIT quasi side-effect function G0(gsid) : (~ρ,A)→ (~σ,A) as follows:

If gsid = F0(f sid), then G0(gsid) := f sid ,

If gsid = F0(facc), then G0(gsid) := f̂acc ,
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where for a SIT accessor function facc : (~ρ,A) → σ, f̂acc : (~ρ,A) → (σ,A) is a new SIT
quasi side-effect function that “behaves” like facc, that is, we postulate:

I Axiom 2. f̂acc(~x, a) ≡ (facc(~x, a), a) .

Now we define the function

G : MonExpr→ SitExpr .

Recall that MonTerm ⊂ SitTerm, and SIT has only one state variable a which is used below.

G(gsid(~u)) := G0(gsid)(~u, a)
G(return ~u) := (~u, a)
G(if u then m1 else m2) := if u then G(m1) else G(m2)
G(bind m1 λ~x.m2) := let (~x, a) = G(m1) in G(m2)

6.2 Auxiliary Lemmas
We prepare the proof of Theorem 10 by a sequence of lemmas.

I Lemma 7. Let ~t = t1, . . . , tn. Assume Γ ` ~t : ~ρ, and G(F(ti)) ≡ (ti, a). Let ~x = x1, . . . , xn
be pairwise different variables that are not free in ~t. Then:
(a) G(bind F(~t) λ~x.return fbas(~x)) ≡ (fbas(~t), a)
(b) G(bind F(~t) λ~x.F0(facc)(~x)) ≡ (facc(~t, a), a)

Proof. For part (a) we prove more generally:

G(bind F(tk+1, . . . , tn) λxk+1, . . . , xn.return fbas(x1, . . . , xn)) ≡
(fbas(x1, . . . , xk, tk+1, . . . , tn), a)

for all k ∈ 1, . . . , n, by induction on n− k.

Base case n− k = 0 (n = k).

G(bind F(∅) λ∅.return fbas(x1, . . . , xn))
≡ G(return fbas(x1, . . . , xn)) (def. of bind)
≡ (fbas(x1, . . . , xn), a) (def. of G)

Step n > 0 (k < n).

G(bind F(tk+1, . . . , tn) λxk+1, . . . , xn.return fbas(x1, . . . , xn))
≡ G(bind F(tk+1) (λxk+1.bind F(tk+2, . . . , tn) (def. of bind)

λxk+2, . . . , λxn.return fbas(x1, . . . , xn)))
≡ let(xk+1, a) = G(F(tk+1)) in (def. of G)

G(bind F(tk+2, . . . , tn) λxk+2, . . . , λxn.return fbas(x1, . . . , xn))
≡ let(xk+1, a) = (tk+1, a) in (assumption)

G(bind F(tk+2, . . . , tn) λxk+2, . . . , λxn.return fbas(x1, . . . , xn))
≡ let (xk+1, a) = (tk+1, a) in (fbas(x1, . . . , xk, xk+1, tk+2, . . . , tn), a) (I.H.)
≡ (fbas(x1, . . . , xk, xk+1, tk+2, . . . , tn), a)[tk+1/xk+1] (Axiom 1)
≡ (fbas(x1, . . . , xk, tk+1, tk+2, . . . , tn), a) (xk+1 /∈ FV(~t))
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Similarly for part (b) we prove the following more general statement:

G(bind F(tk+1, . . . , tn) λxk+1, . . . , xn.F0(facc)(x1, . . . , xn)) ≡
(facc(x1, . . . , xk, tk+1, . . . , tn, a), a)

for all k ∈ 1, . . . , n, by induction on n− k.

Base case n− k = 0 (n = k).

G(bind F(∅) λ∅. F0(facc)(x1, . . . , xn))
≡ G(F0(facc)(x1, . . . , xn)) (def. of bind)
≡ G0(F0(facc))(x1, . . . , xn, a) (def. of G)

≡ f̂acc(x1, . . . , xn, a) (def. of G0)
≡ (facc(x1, . . . , xn, a), a) (Axiom 2)

Step n > 0 (k < n).

G(bind F(tk+1, . . . , tn) λxk+1, . . . , xn. F0(facc)(x1, . . . , xn))
≡ G(bind F(tk+1) (λxk+1.bind F(tk+2, . . . , tn) (def. of bind)

λxk+2, . . . , λxn.F0(facc)(x1, . . . , xn)))
≡ let(xk+1, a) = G(F(tk+1)) in (def. of G)

G(bind F(tk+2, . . . , tn) λxk+2, . . . , λxn.F0(facc)(x1, . . . , xn))
≡ let(xk+1, a) = (tk+1, a) in (assumption)

G(bind F(tk+2, . . . , tn) λxk+2, . . . , λxn.F0(facc)(x1, . . . , xn))
≡ let (xk+1, a) = (tk+1, a) in (facc(x1, . . . , xk, xk+1, tk+2, . . . , tn, a), a) (I.H.)
≡ (facc(x1, . . . , xk, xk+1, tk+2, . . . , tn, a), a)[tk+1/xk+1] (Axiom 1)
≡ (facc(x1, . . . , xk, tk+1, tk+2, . . . , tn, a), a) (xk+1 /∈ FV(~t))

J

I Lemma 8 (Soundness for a single term)).
If Γ ` t : σ (i.e. t is typable in the SIT language), then G(F(t)) = (t, a).

Proof. By induction on SIT terms.

G(F(x))
≡ G(return x) (def. of F)
≡ (x, a) (def. of G)

G(F(fbas(~s))
≡ G(bind F(~s) λ~x.return fbas(~x)) (def. of F)
≡ (fbas(~s), a) (Lemma 7)

G(F(facc(~s, a)))
≡ G(bind F(~s) λ~x. F0(facc)(~x)) (def. of F)
≡ (facc(~x, a), a) (Lemma 7)

J
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I Lemma 9 (Bind Lemma). If Γ ` ~t : ~ρ and ~x ∩ FV(~t) = ∅, then G(bind F(~t) λ~x.m) ≡
G(m)[~t/~x].

Proof. By induction on the length of ~t.
Base len(~t) = 0 (i.e. ~t = ∅)

G(bind F(∅) λ∅.m)
≡ G(m) (def. of bind)

Step

G(bind F(t,~t) λxλ~x.m)
≡ G(bind F(t) (λx.bind F(~t) λ~x.m)) (def. of bind)
≡ let (x, a) = G(F(t)) in G(bind F(~t) λ~x.m) (def. of G)
≡ let (x, a) = G(F(t)) in (G(m)[~t/~x]) (I.H.)
≡ let (x, a) = (t, a) in (G(m)[~t/~x]) (Lemma 8)
≡ G(m)[~t/~x][t/x] (Axiom 1)
≡ G(m)[t,~t/x, ~x] (x /∈ FV(~t))

J

6.3 Soundness Proof

Now we show the main Theorem:

I Theorem 10 (Soundness for expressions). If Γ ` e : (~ρ,A), then G(F(e)) ≡ e

Proof. By induction on SIT expressions.
e ≡ (~t, a).

G(F((~t, a)))
≡ G(bind F(~t) λ~x.return ~x) (def. of F)
≡ G(return ~x)[~t/~x] (Lemma 9)
≡ (~x, a)[~t/~x] (def. of G)
≡ (~t, a)

e ≡ f sid(~t, a).

G(F(f sid(~t, a)))
≡ G(bind F(~t) λ~x. F0(f sid)(~x)) (def. of F)
≡ G(F0(f sid)(~x))[~t/~x] (Lemma 9)
≡ (G0(F0(f sid))(~x, a)[~t/~x] (def. of G)
≡ f sid(~x, a)[~t/~x] (def. of G0)
≡ f sid(~t, a)

TYPES 2013



104 Extracting Imperative Programs from Proofs: In-place Quicksort

e ≡ if t then e1 else e2.

G(F(if t then e1 else e2))
≡ G(bind F(t) λx. if x then F(e1) else F(e2)) (def. of F)
≡ G(if x then F(e1) else F(e2))[t/x] (Lemma 9)
≡ (if x then G(F(e1)) else G(F(e2)))[t/x] (def. of G)
≡ (if x then e1 else e2)[t/x] (I.H.)
≡ if t then e1 else e2 (Since x /∈ FV(e1) and x /∈ FV(e2))

e ≡ let (~x, a) = e1 in e2.

G(F(let (~x, a) = e1 in e2))
≡ G(bind F(e1) λ~x.F(e2)) (def. of F)
≡ let (~x, a) = G(F(e1)) in G(F(e2)) (def. of G)
≡ let (~x, a) = e1 in e2 (I.H.)

J

Since we understand the translation G as the definition of the semantics of monadic
expressions this theorem states that the transformation F is a semantic preserving translation.

7 Conclusion and Further Work

We started by extracting a program from a formal proof of the Quicksort algorithm using
the interactive theorem prover Minlog. We then observed, using Monads, that the extracted
program behaves imperatively. Using this example for inspiration we defined a restricted
functional language SIT, a monadic language MON and an automatic translation between
the two that would allow for fully automatic imperative program extraction. At present it is
by chance that the program extracted from the proof behaves imperatively, but we plan to
develop a restricted proof calculus which only yields imperative programs. The situation is
depicted in the diagram below:

FPL PROOF

MON SIT PROOF−

IMP

extraction

G
H

F

⊆

extraction

imperative extraction

The full arrows correspond to the results of this paper whereas the dashed arrows hint at
further work:

a restricted proof calculus, called PROOF−, where the extracted programs from proofs
are always in the SIT language;
a translation H from MON to an imperative language IMP which would enable, through
composition of F and H, an automatic extraction of imperative programs;
a direct imperative extraction from PROOF− to H.



U. Berger, M. Seisenberger, and G. J.M. Woods 105

In this paper we considered only first-order constructs, but, ideally, we would like to develop
a proof calculus and a program extraction process which combines higher order constructs
with imperative features.
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