
Formally Verified Implementation of an Idealized
Model of Virtualization
Gilles Barthe1, Gustavo Betarte2, Juan Diego Campo2,
Jesús Mauricio Chimento3, and Carlos Luna2

1 IMDEA Software, Madrid, Spain
gilles.barthe@imdea.org

2 InCo, Facultad de Ingeniería, Universidad de la República, Uruguay
{gustun,jdcampo,cluna}@fing.edu.uy

3 FCEIA, Universidad Nacional de Rosario, Argentina
checholcc@gmail.com

Abstract
VirtualCert is a machine-checked model of virtualization that can be used to reason about isol-
ation between operating systems in presence of cache-based side-channels. In contrast to most
prominent projects on operating systems verification, where such guarantees are proved directly
on concrete implementations of hypervisors, VirtualCert abstracts away most implementations
issues and specifies the effects of hypervisor actions axiomatically, in terms of preconditions and
postconditions. Unfortunately, seemingly innocuous implementation issues are often relevant for
security. Incorporating the treatment of errors into VirtualCert is therefore an important step
towards strengthening the isolation theorems proved in earlier work. In this paper, we extend
our earlier model with errors, and prove that isolation theorems still apply. In addition, we
provide an executable specification of the hypervisor, and prove that it correctly implements the
axiomatic model. The executable specification constitutes a first step towards a more realistic
implementation of a hypervisor, and provides a useful tool for validating the axiomatic semantics
developed in previous work.

1998 ACM Subject Classification D.2.4 Software/Program Verification, D.4.6 Security and
Protection

Keywords and phrases virtualization, cache and TLB, executable specification, error manage-
ment, isolation

Digital Object Identifier 10.4230/LIPIcs.TYPES.2013.45

1 Introduction

Virtualization is a prominent technology that allows high-integrity, safety-critical, systems
and untrusted, non-critical, systems to coexist securely on the same platform and efficiently
share its resources. To achieve the strong security guarantees requested by these application
scenarios, virtualization platforms impose a strict control on the interactions between their
guest systems. While this control theoretically guarantees isolation between guest systems,
implementation errors and side-channels often lead to breaches of confidentiality, allowing
a malicious guest system to obtain secret information, such as a cryptographic key, about
another guest system.

Over the last few years, there have been significant efforts to prove that virtualization
platforms deliver the expected, strong, isolation properties between operating systems. The
most prominent efforts in this direction are within the Hyper-V [13, 19] and L4.verified [17]

© Gilles Barthe, Gustavo Betarte, Juan Diego Campo, Jesús Mauricio Chimento, and Carlos Luna;
licensed under Creative Commons License CC-BY

19th International Conference on Types for Proofs and Programs (TYPES 2013).
Editors: Ralph Matthes and Aleksy Schubert; pp. 45–63

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62918984?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.45
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


46 Formally Verified Implementation of an Idealized Model of Virtualization

projects, which aim to derive strong guarantees for concrete implementations: more specific-
ally, Murray et al. [24] recently presented a machine-checked information flow security proof
for the seL4 microkernel.

Earlier work

In [4, 5], we have pursued a complementary approach in which verification of isolation
properties is conducted in an idealized model of virtualization, named VirtualCert [28].
In comparison with the Hyper-V and L4.verified projects, our proofs are based on an
axiomatization of the semantics of a hypervisor, and abstract away many details from the
implementation; on the other hand, our model integrates caches and Translation Lookaside
Buffers (TLBs), two security relevant components that are not considered in these works.
Specifically, we formalize using the Coq proof assistant [31] the semantics of a hypervisor.
The semantics accounts for cache-based side-channels, by allowing that a malicious operating
system can draw observations from the history of the cache; the treatment of cache-based
side-channels is inspired from earlier work on physically observable cryptography [23], but is
specialized to caches and TLBs. Then, we prove that, for a wide range of replacement and
write policies, flushing the cache upon switching between guest operating systems ensures
OS isolation and prevents access-driven cache-based attacks [34].

Contributions

The axiomatic semantics of [4, 5] only considers correct execution. The first contribution of
this paper is an implementation of a hypervisor in the programming language of Coq, and a
proof that it realizes the axiomatic semantics. Although it remains idealized and far from a
realistic hypervisor, the implementation arguably provides a useful mechanism for validating
the axiomatic semantics.

The implementation is total, in the sense that it computes for every state and action a
new state or an error. Thus, soundness is proved with respect to an extended axiomatic
semantics in which transitions may lead to errors. The second contribution of this paper is a
proof that OS isolation remains valid for executions that may trigger errors.

Formal language and notation used

The Coq proof assistant [31, 9] is a free open source software that provides a (dependently
typed) functional programming language and a reasoning framework based on higher order
logic to perform proofs of programs. As examples of its applicability, Coq has been used
as a framework for formalizing programming environments and designing special platforms
for software verification: the Gemalto and Trusted Logic companies obtained the level CC
EAL 7 of certification for their formalization, developed in Coq, of the security properties of
the JavaCard platform [11, 10, 1]; Leroy and others developed in Coq a certified optimizing
compiler for a large subset of the C programming language [20]; Barthe and others used Coq
to develop Certicrypt, an environment of formal proofs for computational cryptography [7].

We developed our specification in the Calculus of Inductive Constructions (CIC) [14,
15, 27] – formal language that combines a higher-order logic and a richly-typed functional
programming language – using Coq.

We freely use enumerated types, option types, lists, streams and records. Enumerated
types and (parametric) sum types are defined using Haskell-like notation; for example, we
define for every type T the type option T

def= None | Some (t : T ). Record types are of the
form {l1 : T1, . . . , ln : Tn}, whereas their elements are of the form 〈t1, . . . , tn〉. Field selection



G. Barthe, G. Betarte, J. D. Campo, J. M. Chimento, and C. Luna 47

and field update are respectively written as r.l and r′[l := v]; we also use simultaneous field
update, which is defined in the usual way. We make an extensive use of partial maps, and
bounded partial maps: the type of partial maps from objects of type A into objects of type
B is written A 7→ B, and the type of partial maps from A to B whose domain is of size
smaller or equal to k (where k is a natural number) is written as A 7→k B. Application of
a map m on an object a of type A is denoted m[a] and map update is written m[a := b],
where b overwrites the value, if any, associated to the key a.

Organization of the paper

The rest of the paper is organized as follows. Section 2 provides a brief account of the basic
components of the idealized model focusing on the memory model and the notion of state
that has been formalized. Section 3 describes the formal axiomatic and executable semantics
of the hypervisor and outlines the proof of correctness of the implementation. In section 4
we present the isolation theorems for the model extended with execution errors. Section 5
discusses related work and concludes.

The formal development can be found in [28], and can be verified using Coq.

2 Background

In this section we provide insights into the basic structures of VirtualCert, namely, the
memory model and the set of (valid) states.

Memory model

The formalized memory model includes the main memory of the platform, various kinds of
memory spaces, and the cache and the TLB. Our modelling choices are guided by Xen [3],
and specifically, by Xen on ARM [16]. As shown in Figure 1 there are three different
types of memory addresses: i) the machine addresses (written madd) model real hardware
memory on the host machine and it is never directly accessed by the guest operating systems,
ii) the physical addresses (padd) are an abstraction provided by the hypervisor, in order
for the guest operating systems to use a contiguous memory space when dealing with its
memory pages. The mapping between physical and machine addresses is managed exclusively
by the hypervisor, and is transparent to the guest operating systems, and iii) the virtual
addresses (vadd) are used by applications running on guest operating systems. Each OS
has a designated portion of its virtual address space that is reserved for the hypervisor to
attend hypercalls. A hypercall interface allows OSs to perform a synchronous software trap
into the hypervisor to perform a privileged operation, analogous to the use of system calls
in conventional operating systems. The hypervisor maintains page tables that map virtual
addresses to machine addresses in special memory pages. The operating systems must call
the hypervisor to modify these mappings.

The figure also shows the cache and the TLB. The cache is indexed by a virtual address,
modeling a Virtually Indexed Virtually Tagged (VIVT) cache, and holds a (partial) copy
of memory pages. The TLB is used in conjunction with the current page table of the
active OS to map virtual to machine addresses. In [5], we present a brief overview of
cache management, where we describe different cache types and alternatives policies for
implementing cache content management, in particular concerning the update and replacement
of cache information.

TYPES 2013



48 Formally Verified Implementation of an Idealized Model of Virtualization

Machine Memory

...

OS1
RW

OS1
RW

OS1
RW

OS1
RW

OS1
RW

OS2
RW

OS2
RW

OS2
RW

Hyp

Hyp

Hyp

OS1
PT

OS1
PT

OS2
PT

OS
Current Virtual

Memory

Hypervisor
reserved
region

OS accessible
region

...

OS Physical
Memory

OS hypervisor
mapping

Active OS Cache

OS1
RW

Hyp

OS1
RW

Hyp

OS1
RW

OS1
RW

OS1
RW

OS1
RW

OS1
RW

Hyp

va1

va2

ma1

ma2

.

.

.

.

.

.

TLB

OS current
PT page
mapping

Figure 1 Memory model of the platform.

Platform states
States are modeled as records:

State def= { oss : oss_map,

active_os : os_ident,
mode : exec_mode,

activity : os_activity,

hypervisor : hypervisor_map,

memory : machine_memory,

cache : cache_vivt,
tlb : tlb_struct } .

We define a type os_ident of identifiers for guest OSs and a predicate trusted_os that
separates between trusted and untrusted OSs. The state contains information about each
guest OS such as its current page table, and whether the OS has a pending hypercall to be
resolved. Formally this information is captured by a mapping oss_map that associates OS
identifiers with objects of type os, where

os def= {curr_page : padd, hcall : option Hyper_call} ,

oss_map def= os_ident 7→ os .

The state also stores the current active operating system, and the execution mode of the
CPU (user or supervisor mode). Guest operating systems execute in user mode (where some
privileged instructions are not available) and the hypervisor executes in supervisor mode.
The activity registers whether the active OS is currently running or waiting for a hypercall
to be resolved. The mapping, that given an OS returns the corresponding mapping from
physical to machine addresses, is formalized as an object of the type hypervisor_map, where

hypervisor_map def= os_ident 7→ (padd 7→ madd) .

The real platform memory is formalized as a mapping that associates to a machine address
a page. A memory page consists of a page content (either a readable/writable value, an OS



G. Barthe, G. Betarte, J. D. Campo, J. M. Chimento, and C. Luna 49

page table mapping, or nothing) and a reference to the page owner (the hypervisor, an OS,
or none). Formally:

machine_memory def= madd 7→ page ,

content def= RW (v : option Value) | PT (va_to_ma : vadd 7→ madd) | Other ,

page_owner def= Hyp | Os (osi : os_ident) | No_Owner ,

page def= { page_content : content, page_owned_by : page_owner } .

Finally, the cache and the TLB of the platform are formalized as partial maps, whose
domains are bounded in size with positive fixed constants size_cache and size_tlb:

cache_vivt def= vadd 7→size_cache page ,

tlb_struct def= vadd 7→size_tlb madd .

We define a notion of valid state, through the predicate valid_state on states, that
captures essential properties of the platform. The definition is provided in Appendix A.1.

3 Verified implementation

In this section we first provide a short account of the axiomatic semantics of the hypervisor,
to proceed to motivate the extension of the model with execution errors. Then we describe
the executable specification and show that it constitutes a correct implementation of the
behavior specified by the idealized model.

3.1 Actions semantics
The axiomatic semantics of the hypervisor is modeled by defining a set of actions, and
providing their semantics as state transformers. Table 1 summarises a small subset of the
actions specified in our model. The complete set of actions is included in Appendix A.2.
Actions can be classified as follows:

hypervisor calls new, delete, pin, unpin and lswitch;
change of the active OS by the hypervisor (switch);
access, from an OS or the hypervisor, to memory pages (read and write);
update of page tables by the hypervisor on demand of an untrusted OS or by a trusted
OS directly (new and delete);
changes of the execution mode (chmod, ret_ctrl); and
changes in the hypervisor memory mapping (pin and unpin), which are performed by
the hypervisor on demand of an untrusted OS or by a trusted OS directly. These actions
model (de)allocation of resources.

The behaviour of actions is specified by a precondition Pre and by a postcondition Post
of respective types:

Pre : State → Action → Prop ,

Post : State → Action → State → Prop .

Figure 2 provides the axiomatic semantics of the write action.
The precondition of the action write va val says that there exists a machine address ma

such that va is associated to it (va_mapped_to_ma) and that the page associated to it in
the memory is readable/writable (is_RW ); that the guest OS activity must be running; and

TYPES 2013



50 Formally Verified Implementation of an Idealized Model of Virtualization

Table 1 Actions.
read_hyper va The hypervisor reads virtual address va.
write va val A guest OS writes value val in virtual address va.
new_tr va pa The virtual address va is mapped to the machine address ma in the

memory mapping of the trusted active OS, where pa translates to ma
for the active OS.

switch o The hypervisor sets o to be the active OS.
lswitch_untr o pa The hypervisor changes the current memory mapping of the untrusted

active OS, to be the one located at physical address pa.
hcall c An untrusted OS requires privileged service c to be executed by the

hypervisor.
pin_untr o pa t The memory page that corresponds to physical address pa (for untrus-

ted OS o) is registered and classified with type t.
unpin_untr o pa The memory page that corresponds to physical address pa (for the

untrusted OS o) is un-registered.

Pre s (write va val) def= ∃ (ma : madd),
va_mapped_to_ma(s, va, ma) ∧ is_RW (s.memory[ma].page_content) ∧
os_accessible(va) ∧ s.activity = running

Post s (write va val) s′ def= ∃ (ma : madd) (pg : page),
let new_pg := {RW (Some val), pg.page_owned_by} in
va_mapped_to_pg_cache(s, va, pg) ∧ va_mapped_to_ma_cache(s, va, ma) ∧

s′ = s

 mem := (s.memory[ma := new_pg]),
cache := cache_add(fix_cache_synonym(s.cache, ma), va, new_pg),

tlb := tlb_add(s.tlb, va, ma)


Figure 2 Axiomatic specification of action write.

that va must be accessible by the active guest OS (os_accessible). Its postcondition sets up
that the only variations in the state after executing this action can be produced in the value
of the page associated to ma in memory, and in the values stored in the cache and the TLB.
It is not hard to see that, as the cache uses a write-through policy, both the memory and the
cache are updated when a write is performed. As explained in [5], a cache c2 is the result of
updating a cache c1 with a pair va and pg, written c2 = cache_add(c1, va, pg), iff

pg = c2[va] ∧
∀ (va′ : vadd) (pg′ : page), va 6= va′ → pg′ = c2[va′] → pg′ = c1[va′] .

The definition of c2 = tlb_add(c1, va, ma) is analogous. Moreover, in order to avoid aliasing
problems we fix synonyms before adding a new entry into the cache using the function
fix_cache_synonym. The result of fix_cache_synonym(c1, ma) is a cache c2 whose indexes
(virtual addresses) are translated to machine addresses ma′ which differ from ma. We recall
that we are modeling a VIVT cache.

3.2 Error management
There can be attempts to execute an action on a state that does not verify the precondition
of that action. In the presence of one such situation the system answers with a corresponding
error code. These error codes are defined in our model by the enumerated type ErrorCode.



G. Barthe, G. Betarte, J. D. Campo, J. M. Chimento, and C. Luna 51

Table 2 Preconditions and error codes.

Action Failure Error Code

write va val

s.aos_activity 6= running wrong_os_activity
¬ va_mapped_to_ma(s, va, ma) invalid_vadd
¬ os_accessible(va) no_access_va_os
¬ is_RW (s.memory[ma].page_content) wrong_page_type

new_tr va pa

s.aos_activity 6= running wrong_os_activity
¬ os_accessible(va) no_access_va_os
¬ trusted_os(osi) os_trust_failure
¬ page_of_OS(s.active_os, pa, ma) wrong_owner

lswitch_untr osi pa

s.aos_activity 6= waiting wrong_os_activity
trusted_os(osi) os_trust_failure
¬ is_PT(s.memory[ma].page_content) wrong_page_type
¬ lswitch_hypercall(s.oss[osi].hcall) wrong_pending_hcall
¬ page_of_OS(s.activeos, pa, ma) wrong_owner

unpin_untr osi pa

s.aos_activity 6= waiting wrong_os_activity
trusted_os(osi) os_trust_failure
¬ page_unpin_hypercall(s.oss[osi].hcall) wrong_pending_hcall
¬ pa_not_curr_page(s, s.oss, pa) wrong_currpage_add
s.hypervisor [osi][pa] 6= ma invalid_madd
¬ no_va_mapped_to_ma(s, osi, ma) invalid_vadd

We define the relation between an error code and the unfulfilled precondition of an action
with the predicate ErrorMsg. Formally,

ErrorMsg : State → Action → ErrorCode → Prop

where ErrorMsg s a ec means that the execution of the action a in the state s generates
the error ec. In Table 2 we show some examples about error codes associated to unverified
preconditions of some actions of our model. Notice that in the case of the write action,
for instance, to each of the propositions that compose the precondition of that action there
corresponds an element of ErrorCode that indicates the failure of the state s to satisfy that
proposition.

Executions with error management
Executing an action a over a state s produces a new state s′ and a corresponding answer r

(denoted s ↪
a/r−−→ s′), where the relation between the former state and the new one is given by

the postcondition relation Post.

valid_state(s) Pre(s, a) Post(s, a, s′)

s ↪
a/ok−−−→ s′

valid_state(s) ErrorMsg(s, a, ec)

s ↪
a/error ec−−−−−−−→ s

Whenever an action occurs for which the precondition holds, the (valid) state may change in
such a way that the action postcondition is established. The notation s ↪

a/ok−−−→ s′ may be read

TYPES 2013



52 Formally Verified Implementation of an Idealized Model of Virtualization

as the execution of the action a in a valid state s results in a new state s′. However, if the
precondition is not satisfied, then the state s remains unchanged and the system answer is
the error message determined by the relation ErrorMsg.

Formally, the possible answers of the system are defined by the following type:

Response def= ok : Response | error : ErrorCode → Response

where ok is the answer resulting from a successful execution of an action.
One-step execution with error management preserves valid states, that is to say, the state

resulting from the execution of an action is also a valid one.

I Lemma 1 (Validity is invariant).
∀ (s s′ : State)(a : Action)(r : Response),
valid_state(s) → s ↪

a/r−−→ s′ → valid_state(s′) .

Platform state invariants, such as state validity, are useful to analyze other relevant
properties of the model. In particular, the results presented in this work are obtained from
valid states of the platform.

3.3 Executable specification
The executable specification of the hypervisor has been written using the Coq proof assistant
and it ultimately amounts to the definition of functions that implement action execution.
The functions have been defined so as to conform to the axiomatic specification of action
execution as provided by the idealized model. The implementation of the hypervisor consists
of a set of Coq functions, such that for every predicate involved in the axiomatic specification
of action execution there exists a function which stands for the functional counterpart of
that predicate. An important characteristics of our formalization is that the definition of
state that is used for defining the executable semantics of the hypervisor is exactly the same
as the one introduced in the idealized model. This simplifies the formal proof of soundness
between the inductive and the functional semantics of the hypervisor. The execution of
the virtualization platform consists of a (potentially infinite) sequence of action executions
starting in an (initial) platform state. The output of the execution is the corresponding
sequence of memory states (the trace of execution) obtained while executing the sequence of
actions.

3.3.1 Action execution
The execution of actions has been implemented as a step function, that given a memory
state s and an action a invokes the function that implements the execution of a in s, which
in turn returns an object res of type Result:

Result def= { resp : Response, st : State }

where res.resp is either an error code ec, if the precondition of the actions does not hold in
state s, or otherwise the value ok, and the state res.st represents the execution effect. The
step function acts basically as an action dispatcher. Figure 3, which shows the structure of
the dispatcher, details the branch corresponding to the dispatching of action write, which is
the action we shall use along this section to illustrate the working of the implementation.

The functions invoked in the branches, like write_safe, are state transformers whose
definition follows this pattern: first it is checked whether the precondition of the action is



G. Barthe, G. Betarte, J. D. Campo, J. M. Chimento, and C. Luna 53

Definition step s a :=
match a with

| . . .⇒ . . .

| Write va val ⇒ write_safe(s, va, val)
| . . .⇒ . . .

end.

Figure 3 The step function.

Definition write_safe (s : state) (va : vadd) (val : value) : Result :=
match write_pre(s, va, val) with

| Some ec ⇒ {error(ec), s}
| None ⇒ {ok, write_post(s, va, val)}

end.

Figure 4 Execution of write action.

Definition write_pre (s : state) (va : vadd) (val : value) : option ErrorCode :=
match get_os_ma(s, va) with
| None ⇒ Some invalid_vadd
| Some ma
⇒match page_type(s.memory, ma) with
| Some RW
⇒match aos_activity(s) with
| Waiting ⇒ Some wrong_os_activity
| Running
⇒ if vadd_accessible(s, va)

then None
else Some no_access_va_os

end
| _⇒ Some wrong_page_type
end

end.

Figure 5 Validation of write action precondition.

satisfied in state s, and then, if that is the case, the function that implements the execution of
the action is invoked, otherwise, the state s, unchanged, is returned along with an appropriate
response.

In Figure 4 we show the definition of the function that implements the execution of the
write action. The Coq code of this function, together with that of the remaining functions,
can be found in [28].

The function write_pre is defined as the nested validation of each of the properties of
the precondition (see Figure 5). The function write_post, shown in Figure 6, implements
the expected behavior of the write action: when a new value has to be written in a certain
virtual address va, first it must be checked whether va is in the cache (i.e. is an index of
the cache). If that is the case, then the function updates both the cache and the memory,

TYPES 2013



54 Formally Verified Implementation of an Idealized Model of Virtualization

Definition write_post (s : state) (va : vadd) (val : value) : state :=
match s.cache[va] with
| Value old_pg ⇒
let new_pg := Page (RW_c (Some val)) (page_owned_by old_pg) in
let val_ma := va_mapped_to_ma_system(s, va) in
match val_ma with

| Value ma ⇒
s · [ mem := s.memory[ma := new_pg],

cache := fcache_add(fix_cache_synonym(s.cache, ma), va, new_pg) ]
| Error _ ⇒ s end

| Error _⇒
match s.tlb[va] with
| Value ma ⇒
match s.memory[ma] with
| Value old_pg ⇒
let new_pg := Page (RW_c (Some val)) (page_owned_by old_pg) in
s · [ mem := s.memory[ma := new_pg],

cache := fcache_add(fix_cache_synonym(s.cache, ma), va, new_pg) ]
| Error _⇒ s end

| Error _⇒
match va_mapped_to_ma_currentPT (s, va) with
| Value ma ⇒
match s.memory[ma] with
| Value old_pg ⇒
let new_pg := Page (RW_c (Some val)) (page_owned_by old_pg) in
s · [ mem := s.memory[ma := new_pg],

cache := fcache_add(fix_cache_synonym(s.cache, ma), va, new_pg),
tlb := ftlb_add(s.tlb, va, ma) ]

| Error _⇒ s end
| Error _⇒ s end end end.

Figure 6 Effect of write execution

because it implements a write-through policy. Otherwise, i.e. if the virtual address va is not
already in the cache, the machine address associated to va has to be determined in order
to write the new value in memory. First, the TLB is inspected to check whether va has
already been translated. If there is a translation of va in the TLB, then the machine address
is used to update the memory and the new entry 〈va, new_pg〉 is added to the cache. If
there is no translation of va in the TLB, then the corresponding machine address has to be
recovered using the current page table of the active guest OS. Once that translation has
been found, the memory is updated, the new entry 〈va, new_pg〉 is added to the cache and
the corresponding translation of va is added to the TLB.

3.3.2 Cache and TLB update
In the axiomatic semantics of cache and TLB management the replacement policy has
been left abstract. For the execution semantics we have chosen to implement a simple
FIFO replacement mechanism. However, this behavior is encapsulated in the definition



G. Barthe, G. Betarte, J. D. Campo, J. M. Chimento, and C. Luna 55

Definition fcache_add (c : cache_struct) (va : vadd) (pg : page) : cache_struct :=
if map_valid_index(c, va)
then map_add(c, va, pg)
else if is_full_cache(c)

then fifo_replace(c, va, pg)
else fifo_add(c, va, pg).

Figure 7 Cache update.

of the functions fcache_add and ftlb_add, which implement cache and TLB replacement,
respectively. Therefore, for the implementation of an alternative replacement policy it
suffices to modify correspondingly these two functions leaving the rest of the code unchanged.
Figure 7 shows the definition of the fcache_add function: first, it is checked whether the
virtual address va is the index of an entry of the cache c (map_valid_index). If this is the
case, it suffices to perform a simple update of c with the page pg (caches are implemented as
bounded maps of virtual addresses to machine addresses). Otherwise, the behaviour of the
function depends on whether c has room for a new entry or it is full (is_full_cache). If c is
full, the cache update, and entry eviction, is handled using the FIFO replacement algorithm
(fifo_replace). If there is room left for a new entry, then c must be updated following the
FIFO replacement algorithm guidelines for adding new entries in the cache (fifo_add). The
definitions of the replacement and update function for the TLB are analogous.

3.4 Soundness

We proceed now to outline the proof that the executable specification of the hypervisor
correctly implements the axiomatic model. It has been formally stated as a soundness
theorem and verified using the Coq proof assistant.

I Theorem 2 (Soundness of hypervisor implementation).
∀ (s : State) (a : Action),
valid_state(s)→ s ↪

a/step(s,a).resp−−−−−−−−−−→ step(s, a).st .

The proof of this theorem follows by, in the first place, performing a case analysis on
Pre(s, a) (this predicate is decidable) and then: if Pre(s, a) applying Lemma 3; otherwise
applying Lemma 5.

I Lemma 3 (Soundness of valid execution).
∀ (s : State) (a : Action),
valid_state(s)→ Pre(s, a) →
s ↪

a/ok−−−→ step(s, a).st ∧ step(s, a).resp = ok .

The proof of Lemma 3 proceeds by applying functional induction on step(s, a) and then by
providing the corresponding proof of soundness of the function that implements the execution
of each action. Thus, in the case of the action write we have stated and proved Lemma 4.
This lemma, in turn, follows by performing a case analysis on the result of applying the
function write_pre on s and the action: if the result is an error code then the thesis follows
by contradiction. Otherwise, it follows by the correctness of the function write_post.

TYPES 2013



56 Formally Verified Implementation of an Idealized Model of Virtualization

I Lemma 4 (Correctness of write execution).
∀ (s : State) (va : vadd) (val : value),
valid_state(s)→ Pre(s, (write va val)) →
Post(s, (write va val), write_post(s, va, val)) .

As to Lemma 5, the proof also proceeds by first applying functional induction on step(s, a).
Then, for each action a, it is shown that if ¬Pre(s, a) the execution of the function that
implements that action yields the values returned by the branch corresponding to the case
that the function that validates the precondition of the action a in state s fails, i.e., an error
code ec and the (unchanged) state s.

I Lemma 5 (Soundness of error execution).
∀ (s : State) (a : Action),
valid_state(s)→ ¬Pre(s, a)→ ∃ (ec : ErrorCode),
step(s, a).st = s ∧ step(s, a).resp = error(ec) ∧ ErrorMsg(s, a, ec) .

4 Isolation

Isolation theorems ensure that the virtualization platform protects guest operating systems
against each other, in the sense that a malicious operating system cannot gain information
about another victim operating system executing on the same platform. In earlier work [5],
we adopted ideas from physical cryptography and in particular the idea of leakage function to
model possible leaks of information via the cache, and prove that the virtualization platform
can guarantee perfect isolation by flushing the cache at every context switch. In this section,
we extend the proof of OS isolation from [5], yielding modifications in some key technical
definitions and lemmas below, so that it accounts for errors in execution traces.

4.1 OS Isolation
OS isolation is a 2-safety property [32, 12], cast in terms of two executions of the system, and
is closely related to the non-influence property studied by Oheimb and co-workers [25, 26].
Unfortunately, the technology for verifying 2-safety properties is not fully mature, making
their formal verification on large and complex programs exceedingly challenging.

Informally, OS isolation states that starting from states with the same information for an
operating system osi, osi cannot distinguish between the two traces, as long as it executes
the same actions in both. This captures the idea that the execution of osi does not depend
on the state or behaviour of the other systems, even in the presence of erroneous executions.

Note that there is one particular error (the out_of_memory error in [28]) that can in
principle influence the execution of an operating system, if during its execution the platform
runs out of memory. Since we are specifically interested in modelling observations on states
(and the cache, in particular), we treat this error as transparent for the executing operating
system, and only make sure it does not modify the state. This is consistent with what
usually happens in real implementations, where there are no data leaks from the victims
when the platform runs out of memory, and the only information an attacker learns is the
total memory consumption of the other operating systems in the platform. Additionally it
is possible, in this case, to assign to each guest OS a fixed pool of memory from which to
allocate, so whether allocation succeeds or fails for one OS doesn’t depend on what any other
guest OS does.

To formalize OS isolation we use a notion of state equivalence w.r.t. an operating system
osi. The definition of osi-equivalence (≡osi), which is stated in Appendix A.3, coincides



G. Barthe, G. Betarte, J. D. Campo, J. M. Chimento, and C. Luna 57

with the one used in [4]; in particular, it does not mention the cache and the TLB. However,
one can prove that it entails some form of cache equivalence and TLB equivalence on valid
states. Formally, we define two valid states s1 and s2 to be cache equivalent for osi, written
s1 ≡cache

osi s2, iff osi is the active OS in both states and the caches hold equal values for all
accessible virtual addresses va that are in the domain of the cache of both states, i.e. for all
virtual address va and pages p1 and p2

s1.active_os = s2.active_os = osi → os_accessible(va) →
s1.cache[va] = p1 → s2.cache[va] = p2 → p1 = p2 .

Note that we do not require that the domains of both caches coincide, as it would invalidate
the following lemma.

I Lemma 6 (Cache equivalence).
∀ (s1 s2 : State) (osi : os_ident),
valid_state(s1) → valid_state(s2) → s1 ≡osi s2 → s1 ≡cache

osi s2 .

The notion of TLB equivalence is defined in a similar way. We say that two valid states s1
and s2 are TLB equivalent for osi, written s1 ≡tlb

osi s2, iff osi is the active OS in both states
and for all accessible virtual addresses va that are in the domain of the TLB of both states,
if the machine address s1.tlb[va] holds a page with RW memory content, then if va appears
in s2.tlb, it holds the same page, i.e. for all machine addresses ma1 and ma2, and page pg:

s1.active_os = s2.active_os = osi →
s1.tlb[va] = ma1 → s1.memory[ma1] = pg →
∃ (val : Value), pg.page_content = RW (Some val)→
s2.tlb[va] = ma2 → s2.memory[ma2] = pg

and conversely. We have:

I Lemma 7 (Tlb equivalence).
∀ (s1 s2 : State) (osi : os_ident),
valid_state(s1) → valid_state(s2) → s1 ≡osi s2 → s1 ≡tlb

osi s2 .

We write s1 ≡cache,tlb
osi s2 as a shorthand for s1 ≡osi s2 ∧ s1 ≡cache

osi s2 ∧ s1 ≡tlb
osi s2. We

can now generalize the unwinding lemmas of [4]: the first lemma states that equivalence is
preserved by the execution of all actions that do not generate errors.

I Lemma 8 (Step-consistent unwinding lemma).
∀ (s1 s′

1 s2 s′
2 : State) (a : Action) (osi : os_ident),

s1 ≡osi s2 → os_action(s1, a, osi)→ os_action(s2, a, osi)→
s1 ↪

a/ok−−−→ s′
1 → s2 ↪

a/ok−−−→ s′
2 → s′

1 ≡
cache,tlb
osi s′

2 .

where os_action(s, a, osi) denote that action a is an action successfully executed by the OS
osi in the state s; in particular, its execution does not cause an error. Note that an execution
that fails does not generate a change in the system state.

The second lemma states that execution does not alter the state of non-active OSs, or
active OS if it performs an execution that fails.

I Lemma 9 (Locally preserves unwinding lemma).
∀ (s s′ : State) (a : Action) (r : Response) (osi : os_ident),
¬ os_action(s, a, osi) → s ↪

a/r−−→ s′ → s ≡cache,tlb
osi s′ .

TYPES 2013



58 Formally Verified Implementation of an Idealized Model of Virtualization

4.2 OS isolation in execution traces
The extension to traces of the relation one-step execution with error management is defined
as follows: an execution trace is defined as a stream (an infinite list) of states that are related
by the transition relation ↪

a/r−−→, i.e. an object of the form

s0 ↪
a0/r0−−−→ s1 ↪

a1/r1−−−→ s2 ↪
a2/r2−−−→ s3 . . .

In the sequel, we let t[i] denote the i-th state of a trace t and we use s ↪
a/r−−→ t to denote the

trace obtained by prepending the valid execution step s ↪
a/r−−→ t[0] to a trace t. We let Trace

define the type of these traces. Isolation properties are eventually expressed on execution
traces, rather than execution steps.

Non-influencing execution (errors)
Using the unwinding lemmas previously presented, one can establish a non-influence result
in the style of [25]. We define for each operating system osi a predicate same_os_actions
stating that two traces have the same set of actions w.r.t. osi; so that two traces are related
iff they perform the same valid osi-actions. Then we define two traces t1 and t2 to be
osi-equivalent, written t1 ≈osi,cache,tlb t2, co-inductively by the following rules:

t1 ≈osi,cache,tlb t2 ¬ os_action(s, a, osi)

(s ↪
a/r−−→ t1) ≈osi,cache,tlb t2

t1 ≈osi,cache,tlb t2 ¬ os_action(s, a, osi)

t1 ≈osi,cache,tlb (s ↪
a/r−−→ t2)

t1 ≈osi,cache,tlb t2 os_action(s1, a, osi) os_action(s2, a, osi) s1 ≡cache,tlb
osi s2

(s1 ↪
a/ok−−−→ t1) ≈osi,cache,tlb (s2 ↪

a/ok−−−→ t2)

I Theorem 10 (OS isolation).
∀ (t1 t2 : Trace) (osi : os_ident),
same_os_actions(osi, t1, t2)→ (t1[0] ≡osi t2[0])→ t1 ≈osi,cache,tlb t2 .

OS isolation formally establishes that two traces are osi-equivalent if they have the same
set of osi-actions and if their initial states are osi-equivalent. The proof of OS isolation
is based on co-induction principles and on the previous unwinding lemmas. Note that the
definition of osi-equivalent traces conveniently generalizes the notion used in [4] (by allowing
related traces to differ in the number of actions executed by other OSs) and extends that
presented in [5] considering executions with error management. In particular, Theorem 10
states that the OS isolation property introduced in [5] is also valid in the context of executions
that include error handling, considering that an osi-action is an action successfully executed
by the OS osi.

Though it is left as future work, it is interesting to comment on the validity of isolation
properties under other policies. On the one hand, the replacement policy for the cache
and the TLB is left abstract in our model, so any reasonable algorithm will preserve these
properties (as embodied e.g. in the definition of cache_add in Section 3.1). On the other
hand, we have fixed a write-through policy for the main memory: this policy entails that
updates to memory pages are done simultaneously to the cache and main memory, and we
have used throughout the development the invariant property that cache data is included
in the memory. This inclusion property will not hold if we were to use a write-back policy,



G. Barthe, G. Betarte, J. D. Campo, J. M. Chimento, and C. Luna 59

in which written entries are marked dirty and updates to main memory are done when a
page is removed from the cache. We believe that it remains possible to prove strong isolation
properties under the write-back policy, since page values, even if different in memory, will be
equal if we consider the cache and memory together.

Finally, the flushing policy is assumed to be a total flush on switch and local switch
execution. An alternative would be to tag cache (and TLB) entries with the virtual spaces
allowed to access the entry. This will not have as much impact on the current model as the
write policy, though changes will need to be done to the cache definition to include the tags.
Isolation properties would still hold, given correct semantics of access control of cache entries.

5 Related work and conclusion

Thanks to recent advances in verification technology, it is now becoming feasible to verify
formally realistic specifications and implementations of operating systems. A recent account
of existing efforts can be found in the surveys [18, 30]. Many of these works focus on
functional correctness of the hypervisor; one notable exception is [24], which proves that
the seL4 microkernel guarantees information flow security; this work builds on a proof of
integrity [29] and a proof of correctness and culminates a 30+ man-year verification effort.
In addition, many of these works do not consider cache, which is a distinctive focus of our
work. On the other hand, most of these works focus on implementations, and provide an
explicit treatment of errors – that was missing in our earlier work [5].

Moving away from OS verification, many works have addressed the problem of relat-
ing inductively defined relations and executable functions, in particular in the context of
programming language semantics. For instance, Tollitte et al [33] show how to extract a
functional implementation from an inductive specification in the Coq proof assistant. Similar
approaches exist for Isabelle, see e.g. [8]. Earlier, alternative approaches such as [2, 6] aim to
provide reasoning principles for executable specifications.

We have enhanced the idealized model of virtualization considered in [5] with an explicit
treatment of errors, and showed that OS isolation is preserved in this setting. Moreover we
have implemented an executable specification that realizes the axiomatic semantics used
in [5]. The formal development in this paper is about 15 kLOC of Coq, where 8k correspond
to the verified executable specification and 7k to the OS isolation proof on the extended
model with errors. In [28] we derive two certified hypervisor implementations, using the
extraction mechanism of Coq [22, 21], in functional languages Haskell and OCaml.

In future work, we intend to implement alternative executable semantics for different
models of cache and policies. Moreover, we plan to use our extended model as a basis for
investigating whether error management can lead to side-channels.

Acknowledgements. The authors want to thank TYPES reviewers for helpful feedback on
the paper.

The work of Gilles Barthe has been partially funded by European Project FP7 256980
NESSoS, Spanish project TIN2009-14599 DESAFIOS 10 and Madrid Regional project
S2009TIC-1465 PROMETIDOS and the work of Gustavo Betarte, Juan Diego Campo and
Carlos Luna by Uruguayan project CSIC-Convocatoria 2012, Proyectos I + D, VirtualCert –
Fase II.

TYPES 2013



60 Formally Verified Implementation of an Idealized Model of Virtualization

References
1 June Andronick. Modélisation et Vérification Formelles de Systèmes Embarqués dans les

Cartes à Microprocesseur – Plate-Forme Java Card et Système d’Exploitation. PhD thesis,
Université Paris-Sud, 2006.

2 Antonia Balaa and Yves Bertot. Fix-point equations for well-founded recursion in type
theory. In Mark Aagaard and John Harrison, editors, TPHOLs, volume 1869 of LNCS,
pages 1–16. Springer, 2000.

3 P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,
and A. Warfield. Xen and the art of virtualization. In SOSP’03: Proceedings of the 19th
ACM Symposium on Operating Systems Principles, pages 164–177, New York, NY, USA,
2003. ACM Press.

4 G. Barthe, G. Betarte, J.D. Campo, and C. Luna. Formally verifying isolation and availab-
ility in an idealized model of virtualization. In FM 2011, pages 231–245. Springer-Verlag,
2011.

5 G. Barthe, G. Betarte, J.D. Campo, and C. Luna. Cache-Leakage Resilient OS Isolation
in an Idealized Model of Virtualization. In CSF 2012, pages 186–197, 2012.

6 G. Barthe, J. Forest, D. Pichardie, and V. Rusu. Defining and reasoning about recursive
functions: A practical tool for the coq proof assistant. In M. Hagiya and P. Wadler, editors,
FLOPS, volume 3945 of LNCS, pages 114–129. Springer, 2006.

7 Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. Formal certification of
code-based cryptographic proofs. SIGPLAN Not., 44(1):90–101, January 2009.

8 Stefan Berghofer, Lukas Bulwahn, and Florian Haftmann. Turning inductive into equa-
tional specifications. In S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel, editors,
TPHOLs, volume 5674 of LNCS, pages 131–146. Springer, 2009.

9 Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Sci-
ence. Springer-Verlag, 2004.

10 G. Betarte, E. Giménez, C. Loiseaux, and B. Chetali. FORMAVIE: Formal Modeling and
Verification of the Java Card 2.1.1 Security Architecture. In Proceedings of eSmart’02,
2002.

11 Boutheina Chetali and Quang-Huy Nguyen. About the world-first smart card certificate
with eal7 formal assurances. Slides 9th ICCC, Jeju, Korea, September 2008.

12 M.R. Clarkson and F.B. Schneider. Hyperproperties. Journal of Computer Security,
18(6):1157–1210, 2010.

13 E. Cohen. Validating the microsoft hypervisor. In J. Misra, T. Nipkow, and E. Sekerinski,
editors, FM’06, volume 4085 of LNCS, pages 81–81. Springer, 2006.

14 Thierry Coquand and Gérard P. Huet. The calculus of constructions. Inf. Comput.,
76(2/3):95–120, 1988.

15 Thierry Coquand and Christine Paulin. Inductively defined types. In Per Martin-Löf and
Grigori Mints, editors, Conference on Computer Logic, volume 417 of Lecture Notes in
Computer Science, pages 50–66. Springer, 1988.

16 J.-Y. Hwang, S.-B. Suh, S.-K. Heo, C.-J. Park, J.-M. Ryu, S.-Y. Park, and C.-R. Kim. Xen
on arm: System virtualization using xen hypervisor for arm-based secure mobile phones.
In 5th IEEE Consumer and Communications Networking Conference, 2008.

17 G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
Formal verification of an OS kernel. Communications of the ACM (CACM), 53(6):107–115,
June 2010.

18 Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas



G. Barthe, G. Betarte, J. D. Campo, J. M. Chimento, and C. Luna 61

Sewell, Harvey Tuch, and Simon Winwood. seL4: formal verification of an OS kernel. In
SOSP 2009, pages 207–220. ACM, 2009.

19 D. Leinenbach and T. Santen. Verifying the microsoft hyper-v hypervisor with vcc. In
A. Cavalcanti and D. Dams, editors, FM 2009, volume 5850 of LNCS, pages 806–809.
Springer, 2009.

20 Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52:107–115, July
2009.

21 P. Letouzey. Programmation fonctionnelle certifiée – L’extraction de programmes dans
l’assistant Coq. PhD thesis, Université Paris-Sud, July 2004.

22 Pierre Letouzey. A New Extraction for Coq. In Herman Geuvers and Freek Wiedijk, editors,
Types for Proofs and Programs, Second International Workshop, TYPES 2002, Berg en Dal,
The Netherlands, April 24-28, 2002, volume 2646 of Lecture Notes in Computer Science.
Springer-Verlag, 2003.

23 Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended abstract).
In TCC 2004, pages 278–296, 2004.

24 T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried, C. Lewis, X. Gao,
and G. Klein. seL4: from General Purpose to a Proof of Information Flow Enforcement.
In Proc. of the 2013 IEEE Symp. on Security and Privacy (SP’13), pages 415–429, 2013.

25 David von Oheimb. Information flow control revisited: Noninfluence = Noninterference
+ Nonleakage. In P. Samarati, P. Ryan, D. Gollmann, and R. Molva, editors, Computer
Security – ESORICS 2004, volume 3193 of LNCS, pages 225–243. Springer, 2004.

26 David von Oheimb, Volkmar Lotz, and Georg Walter. Analyzing SLE 88 memory man-
agement security using Interacting State Machines. International Journal of Information
Security, 4(3):155–171, 2005.

27 C. Paulin-Mohring. Inductive definitions in the system coq - rules and properties. In
M. Bezem and J. F. Groote, editors, 1st Int. Conf. on Typed Lambda Calculi and Applica-
tions, volume 664 of LNCS, pages 328–345. Springer-Verlag, 1993.

28 The VirtualCert project. Supporting Coq formalization. See http://www.fing.edu.uy/
inco/grupos/gsi/proyectos/virtualcert.php.

29 Thomas Sewell, Simon Winwood, Peter Gammie, Toby Murray, June Andronick, and Ger-
win Klein. seL4 enforces integrity. In ITP 2011, Nijmegen, The Netherlands, 2011.

30 Zhong Shao. Certified software. Commun. ACM, 53(12):56–66, 2010.
31 The Coq Development Team. The Coq Proof Assistant Reference Manual, 2012.
32 T. Terauchi and A. Aiken. Secure information flow as a safety problem. In C. Hankin and

I. Siveroni, editors, Proceedings of SAS’05, volume 3672 of LNCS, pages 352–367. Springer-
Verlag, 2005.

33 Pierre-Nicolas Tollitte, David Delahaye, and Catherine Dubois. Producing certified func-
tional code from inductive specifications. In Chris Hawblitzel and Dale Miller, editors,
CPP, volume 7679 of LNCS, pages 76–91. Springer, 2012.

34 Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient cache attacks on AES, and
countermeasures. J. Cryptology, 23(1):37–71, 2010.

TYPES 2013

http://www.fing.edu.uy/inco/grupos/gsi/proyectos/virtualcert.php
http://www.fing.edu.uy/inco/grupos/gsi/proyectos/virtualcert.php


62 Formally Verified Implementation of an Idealized Model of Virtualization

A Appendix

A.1 Valid state
We define a notion of valid state that captures essential properties of the platform. Formally,
the predicate valid_state holds on state s if s satisfies the following properties:

if the active OS is in running mode then no hypercall requested by it is pending;
if the hypervisor or a trusted OS (respectively untrusted OS) is running the processor
must be in supervisor (respectively user) mode;
the hypervisor maps an OS physical address to a machine address owned by that same
OS. This mapping is also injective;
all page tables of an OS o map virtual addresses to pages owned by o;
the current page table of any OS is owned by that OS;
any machine address which is associated to a virtual address in a page table has a
corresponding pre-image, which is a physical address, in the hypervisor mapping;
all cache keys are related in a page table mapping of the memory;
all cache pages have the same owner and type as those in machine memory;
if va is translated into ma according to the TLB, then the machine address ma is
associated to va in the active memory mapping.

All properties have a straightforward interpretation in our model. For example, the first
property is captured by the proposition:

∀ osi : os_ident, trusted_os(osi)→ (s.oss[osi]).hcall = None .

A.2 Actions
Table 3 summarises the complete set of actions specified in the model, and their effects.

A.3 Observational equivalence of states
We say that two states s1 and s2 are osi-equivalent, written s1 ≡osi s2, iff:

osi is the active OS in both states and the processor mode is the same, or the active OS
is different to osi in both states;
osi has the same hypercall in both states, or no hypercall in both states;
the current page tables of osi are the same in both states;
all page table mappings of osi that map a virtual address to a RW page in one state,
must map that address to a page with the same content in the other;
the hypervisor mappings of osi in both states are such that if a given physical address
maps to some RW page, it must map to a page with the same content on the other state.

Note that we cannot require that memory contents be the same in both states for them to
be osi-equivalent, because on a page_pin action, the hypervisor can assign an arbitrary (free)
machine address to the OS, so we consider osi-equivalence without taking into account the
actual value of the machine addresses assigned. In particular, two osi-equivalent states can
have different page table memory pages, which contain mappings from virtual to arbitrary
machine addresses, but such that the content at these machine addresses be the same in
both states, if it corresponds to an RW page.



G. Barthe, G. Betarte, J. D. Campo, J. M. Chimento, and C. Luna 63

Table 3 Full set of actions.

read va A guest OS reads virtual address va.
read_hyper va The hypervisor reads virtual address va.
write va val A guest OS writes value val in virtual address va.
write_hyper va val The hypervisor writes value val in virtual address va.
new_tr va pa The virtual address va is mapped to the machine address ma in the

memory mapping of the trusted active OS, where pa translates to ma
for the active OS.

new_untr o va pa The hypervisor adds (on behalf of the OS o) a new ordered pair
(mapping virtual address va to the machine address ma) to the current
memory mapping of the untrusted OS o, where pa translates to ma
for o.

new_hyper va ma The hypervisor adds a new ordered pair to the current memory mapping
of the active OS (mapping virtual address va to the machine address
ma) for his own purposes.

del_tr va The trusted active OS deletes the ordered pair that maps virtual
address va from its memory mapping.

del_untr o va The hypervisor deletes (on behalf of the o OS) the ordered pair that
maps virtual address va from the current memory mapping of o.

del_hyper va The hypervisor deletes (for its own purposes) the ordered pair that
maps virtual address va from the current memory mapping of the
active OS.

switch o The hypervisor sets o to be the active OS.
lswitch_tr pa The trusted active OS changes its current memory mapping to be

the one located at physical address pa. This action corresponds to a
traditional context switch by the active OS.

lswitch_untr o pa The hypervisor changes the current memory mapping of the untrusted
active OS, to be the one located at physical address pa.

silent Represents the silent action (the system does not advertise any effects).
hcall c An untrusted OS requires privileged service c to be executed by the

hypervisor.
ret_ctrl Returns the execution control to the hypervisor.
chmod The hypervisor changes the execution mode from supervisor to user

mode, if the active OS is untrusted, and gives to it the execution
control.

pin_tr pa t The memory page that corresponds to physical address pa (for the
active OS) is registered and classified with type t.

pin_untr o pa t The memory page that corresponds to physical address pa (for untrus-
ted OS o) is registered and classified with type t.

unpin_tr pa The memory page that corresponds to physical address pa (for the
active OS) is un-registered.

unpin_untr o pa The memory page that corresponds to physical address pa (for the
untrusted OS o) is un-registered.

TYPES 2013


	Introduction
	Background
	Verified implementation
	Actions semantics
	Error management
	Executable specification
	Action execution
	Cache and TLB update

	Soundness

	Isolation
	OS Isolation
	OS isolation in execution traces

	Related work and conclusion
	Appendix
	Valid state
	Actions
	Observational equivalence of states


