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Abstract
Measurement-based approaches with extreme value worst-case estimations are beginning to be
proficiently considered for timing analyses. In this paper, we intend to make more formal extreme
value theory applicability to safe worst-case execution time estimations. We outline complexities
and challenges behind extreme value theory assumptions and parameter tuning. Including the
knowledge requirements, we are able to conclude about safety of the probabilistic worst-case
execution estimations from the extreme value theory, and execution time measurements.
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1 Introduction

The measurement-based probabilistic timing analysis composes of measurements and statistic
analyses, particularly the Extreme Value Theory (EVT), to outline rare events out of
execution time measurements.

The EVT is a branch of statistics dealing with the extreme deviations from the median
of probability distributions. It seeks to assess, from an ordered sample of a given random
variable, the probability of events that are more extreme than any previously observed. The
EVT applies to execution time and Worst-Case Execution Time (WCET), since it offers
guarantees to have projected the tail of measurement distributions. Thus, EVT provides
what is called safe WCET estimations accounting for rare events.

Real-time relies on WCETs to model task execution behaviors: a real-time system becomes
predictable by always accounting for the worst-case at every task execution. As the input
space for the task code is finite and the hardware behavior is assumed to be deterministic, it
is reasonable to argue about the exact worst-case execution time. The WCETexact and its
estimation C are upper-bounds for any possible execution behavior of that task.

Unfortunately, systems are unpredictable as the environment can be diverse and dy-
namic with multiple possible evolutions in time. Both hardware and software elements
may experience some variability or even randomness1, e.g. multi-processor, cache, branch
predictors, DRAM refresh, interruptions that occur whenever they are most inappropriate,
and the interferences between interacting elements in the system lead to the dependences

1 Randomness is intended in the common sense, as lack of pattern or predictability in events.
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that emphasize unpredictabilities and variability, [7]. WCETexact is in general unknown and
potentially unknowable, and the estimation C could be extremely pessimistic.

Probabilities could model system indeterminacy and unpredictabilities, capturing multiple
behaviors with their frequencies of happening. Such a fine grained system probabilistic
representation reduces the pessimism brought by deterministic models, where only the
estimation of the worst-case is taken into account. Then, the challenge is to guarantee
probabilistic estimations of worst-case execution time, and build with the probabilities a safe
alternative to the deterministic real-time. The EVT has been recently applied with that
purpose, but it is still far from accomplishing such job.

1.1 State of the Art
A measurement-based approach to timing analysis implies a near-zero cost for system coding
and modeling in order to get task execution time observations [2]. The problem consists
of guaranteeing the coverage of all the possible execution conditions and obtaining reliable
WCET estimations.

Ensuring exhaustive execution condition coverage requires knowledge of the system,
slightly reducing the advantage of measurement-based approaches with respect to static
timing analysis approaches [14]. Even if the worst-case execution time is computed using
test generation techniques which ensure feasible path coverage, usual assumptions reduce
the input set variability. This fact decreases complexity, but demands an improved system
model to identify the worst-case execution condition.

More “analytical” approaches to measurement-based timing analysis, make use of the
statistics of extremes [8, 9] to construct predicted WCETs. In particular, recent works have
re-formalized the application of EVT to the WCET problem [2, 1] by making use of an
ad-hoc probabilistic hardware architecture. Those approaches are able to guarantee accurate
probabilistic WCET estimations from measured execution time distributions.
Contributions. In this article, we intend to show challenges and possibilities applying the
EVT to the task execution problem. Thus, we present the EVT resulting distribution for
different system conditions and parameters. Besides, we aim at continuing the discussion
around claimed robustness of the extreme value theory in terms of the guarantees it offers to
the probabilistic worst-case execution time estimation.

The idea of this work is to present some results from a set of experiments to show: i) the
impact of EVT parameters on the resulting worst-case execution time distributions; ii) the
differences between block maxima EVT and peak over threshold EVT, the two approaches
to EVT; iii) a qualitative evaluation of the EVT robustness. We focus on the required EVT
hypotheses and their impact on the resulting pWCET estimations. The whole statistical
analysis framework is to begin a complete and formal discussion about EVT sustainability
to the execution time problem.
Data Setup. For our tests we make use of real traces taken from an Intel(R) Xeon(R)
E5620 2.4 GHz dual socket, each socket with four cores and three levels of cache. The
schedMcore2 runtime support and Linux Trace Toolkit new generation (LTTNG) tracing
framework are applied to guarantee real-time execution and extract accurate execution
time measurements. The task implementations considered are single-path and multi-path
tasks from the Mälardelen benchmark suite3. Out of them we extract the execution time
measurements as traces called “single-path” and “multi-path”, respectively.

2 https://forge.onera.fr/projects/schedmcore
3 http://www.mrtc.mdh.se/projects/wcet

https://forge.onera.fr/projects/schedmcore
http://www.mrtc.mdh.se/projects/wcet
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Furthermore, we apply two artificial execution time random distributions as the normal
distribution and a multi-modal distribution (obtained from 3 normal random variables
combined). They are considered to compare results with realistic measurements. All the
execution time are in nsec, and the number of observations is 100000 per trace.

2 Probabilistic Timing Analysis

Execution Time Profiles (ETPs) C are measured execution time distributions.4 C are empirical
distributions that lack of completion and coverage, which means that from the ETPs it is not
possible to conclude about worst-case execution time. Nonetheless, ETPs are important to
investigate in order to derive execution pattern/trends from which define worst-case execution
conditions, and then worst-case execution times.

2.1 Probabilistic Worst-Case Execution Time
Statistical estimations of the worst-case execution time induce the notion of probabilistic
WCET (pWCET), alternative to the deterministic WCET. pWCET is as distributions of
WCET values Cj , each of them with associated a probability pj of being WCET, C =(

Cj
pj = P{C = Cj}

)
j∈{1,··· ,J}

; pj is the probability that Cj is an upper-bounds of the task

execution time. The following is a possible definition of pWCET.

I Definition 1 (probabilistic Worst-Case Execution Time). Given Ck the distribution of
execution time measured in a certain configuration/condition k. The probabilistic Worst-
Case Execution Time distribution C∗ of a task is a tight upper bound on the execution time
Ck of all possible execution conditions. Hence, ∀k, C∗ � Ck.5

The exact pWCET C∗ would be the tightest upper bound to any Ck, C∗ � C
∗ � Ck, ∀k.

The probabilistic worst-case execution time can also be defined from the exceeding
thresholds and the 1-Cumulative Distribution Function (1-CDF) representation. Given
a probability of exceedence p∗, the value C∗ is the worst-case execution time such that
P{C∗ ≥ C∗} ≤ p∗. Alternative to the pWCET distribution, we can call minimum probabilistic
worst-case execution time the tuple 〈C∗, p∗〉. In real-time and certification issues, safety is
validated with exceedence probability smaller than 10−9. We consider that threshold and
define the pWCET as 〈C∗, 10−9〉, although the following reasoning is open to any threshold.

A pWCET estimation C∗, in order to be safe, has to be greater than or equal to the exact
pWCET, which is unknown, and any measurement Ck. A distribution C∗ is greater than or
equal to a distribution Ck iff P{C∗ ≤ c} ≤ P{Ck ≤ c} for any c and the two random variables
are not identically distributed (two different distributions). For the 〈C∗, 10−9〉 estimation,
we say that it is safe if for each pWCET 〈C, p〉, including the exact one, for all C ≥ C∗,
p ≤ 10−9.

2.2 Extreme Value Theory
The extreme value theory is a branch of statistics dealing with the extreme deviations from
the median of probability distributions. It seeks assessing, from a given ordered sample of

4 We use calligraphic letters to represent probability distributions; non calligraphic letters are for single
values.

5 Total ordering of distributions is guaranteed by comparing distribution probabilities. Thus a distribution
Ci is greater than or equal to a distribution Cj , Ci � Cj , iff P{Ci ≤ c} ≤ P{Cj ≤ c}, for every c.

WCET 2014
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Figure 1 EVT applied to different cases.

a random variable, the probability of events that are more extreme than any previously
observed. The EVT allows to estimate tails of distributions and thus explores rare events,
where the WCET and its probabilistic version pWCET should lie. Two are the EVT
approaches possible: Block Maxima (BM) and Peak over Threshold (PoT). The safety of the
statistical pWCET estimation through EVT has always been referred to the independence
and identical distribution (i.i.d.) hypotheses. If both are verified, then the EVT distribution
tail projection can be considered as a safe pWCET estimation. Along this paper we discuss
those assumptions and extend them.

Figure 1 shows the tail projection effect of the EVT once applied to measured distributions.
With the 1-CDF representation we appreciate not strong difference between the measurements
distributions and the EVT distributions. For the scope of the paper, this is what we call
accuracy of the EVT estimations.

2.2.1 Law of sample maxima – Block maxima approach
EVT is notably very useful when one has to work with only a fixed set of data (measurement-
s/observations), not having other info outside those observed. Consequently it is assumed in
the following that a set of i.i.d. samples X1, . . . , XN of a time series (Xt)t>0 (equivalently as
distribution X being the samples from distributions6) is available. The associated ordered
sample set is defined with X(1), . . . , X(N). EVT enables to estimate for some thresholds S
the probability P{(Xt)t>0 > S}.

The main result of EVT [5], is that the maxima of an i.i.d. sequence converges to a
Generalized Extreme Value (GEV) distribution Gξ under some general conditions, which
admits a generic Cumulative Distribution Function (CDF) Gξ(x). GEV distributions are
composed of three distinct types, characterized by ξ = 0, ξ > 0 and ξ < 0 that correspond to
the Gumbel, Fréchet and Weibull distributions respectively. Let us define G, the CDF of the
i.i.d. samples X(1), . . . , X(N).

I Theorem 2. Suppose there exist aN and bN , with aN > 0 such that, for all y ∈ R
P
{
X(N)−bN

aN
≤ y
}

= GN (aNy + bN ) N→∞−→ G(y), where G is a non degenerate CDF, then G is
a GEV distribution Gξ. In this case, one denotes G ∈ MDA(ξ) (MDA = Maximum Domain
of Attraction).

Unless samples of maxima are directly available, it is then required to group the samples
X(1), . . . , X(N) into blocks and fit the GEV using the maximum of each block. While the
aN and bN distribution parameters are found by best fitting the input trace of events, the
grouping into block maximum is somewhat an arbitrary parameter. Although all three

6 A sample, equivalently an observation, comes from a distribution, thus the representation as calligraphic
or non-calligraphic letters are equivalent.
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parameters are influent, we focus on the block size, named b from now on, to show the impact
that it has on the EVT pWCET estimation.

2.2.2 Peak over threshold approach
Instead of grouping the samples into block maxima, PoT considers the largest samples Xi

to estimate the probability P{X > S}. The link between EVT and the distribution of a
threshold exceedence is firstly described in [13]. The following theorem can be obtained:

I Theorem 3. Let us assume that the distribution function G of i.i.d. samples X1, . . . , XN

is continuous. Set y∗ = sup{y, G(y) < 1} = inf{y, G(y) = 1}. Then, the next two assertions
are equivalent: a) G ∈ MDA(ξ), and b) there exists a positive and measurable function
u 7→ β(u) such that lim

u 7→y∗
sup

0<y<y∗−u
|Gu(y)−Hξ,β(u)(y)| = 0. Gu(y) = P{X − u ≤ y|X > u},

and Hξ,β(u) is the CDF of a generalized Pareto distribution (GPD) with shape parameter ξ
and scale parameter β(u).

The expression of the GPD distribution function Hξ,β(x) depends on both ξ and β.
Theorem 3 is in fact useful to estimate a probability of exceedance P (X > S) since it

can be rewritten as P{X > S} = P{X > S|X > u} · P{X > u}, for S > u. A natural
estimate of P{X > u} is given by the empirical mean P̂MC{X > u} = 1

N

∑N
i=1 1Xi>u, from

the Monte Carlo method (MC). With the Theorem 3 and for significant value of u, one
obtains P̂{X > S|X > u} = 1 −Hξ,β(u)(S − u). The estimate of P{X > S} is then built

with P̂POT{X > S} =
(

1
N

∑N
i=1 1Xi>u

)
·
(
1−Hξ,β(u)(S − u)

)
.

The parameter u can be selected arbitrarily, as it affects the accuracy as well as safety of
the EVT PoT estimation.

3 Extreme Value Theory applicability

First we describe what is the independence we are looking for in order to apply the EVT,
then we extend it to other conditions. The meaning of independence we are looking for
is whether individual observations within the same execution trace are correlated with
each other or not. Knowing one observation tells you something about another, in which
case they are dependent; knowing one observation tells you nothing about another, in
which case they are independent. In this section we investigate deeply stationarity and
independences/dependences for execution time traces.

The independence is not a necessary hypothesis for the EVT, since Leadbetter et al. [11]
and Hsing [10] developed EVT for stationary weakly dependent time series. Those two
references also establish statistical tools for that situation. For independent but not identic-
ally distributed random variables, a basic probabilistic result is in Mejzler [12]. In our
EVT investigation, we start considering and supporting less constraining hypotheses than
independence, such as stationarity and extremal dependences. We present tests to verify
them and the guarantees that can be provided to the results of the extreme value theory
with such assumptions.

3.1 Stationarity
Given execution time data sets, to verify stationarity the autocorrelation can be computed
with lag plots, or turning point test can be performed. These are to model the relationship
that exists between measured observations.

WCET 2014
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Table 1 Independence, stationarity and identical distribution tests.

runs test Kolmogorov-Smirnov test autoregressive Ljung-Box test
single-path 0.506 0.02804 AR(1) 0.07153
multi-path 0.6832 0.5434 AR(7) 0.2169
normal mono-variate 0.5755 0.8222 AR(0) 0.4593
multi-variate 0.729 0.4653 AR(0) 0.9825

Hypothesis testing means deciding, from a number of observations, whether one should
consider a property to be true or not. The resulting ρ-value tells whether accept or reject
the null hypothesis H0. Normally, ρ > 0.05 validates the null H0, while ρ ≤ 0.05 rejects H0,
thus validates the alternative H1.

With no mean of formalism, a process is stationary if its mean, variance and autocovariance
structure do not change over time. An autoregressive (AR) model is a representation of
type for random process: i) AR(0) denotes the sequence of observations without dependence
– white noise, ii) AR(1) is process with a positive ϕ parameter where only the previous
observation in the process and the noise term contribute to the output, and so on. We make
also use of the Ljung-Box (LB) test, which examines whether there is significant evidence for
non-zero correlations between lags. Large ρ-values from the LB test suggest that the series is
not stationary, thus there is no trend between consecutive observations; this would support
independence.

A test applied in [2] aims at proving that samples are independent by looking for
randomness. This is called runs test, or Wald Wolfowitz test, where randomness is sought
within the observed data series by examining the frequency of “runs”; a “run” is a series of
similar responses. Furthermore, we consider the Kolmogorov-Smirnov (KS) test to verify the
identical distribution hypothesis and check if the observations follow the same distribution.

Table 1 describes the hypothesis verification tests and their results with respect to the
input measurements. For runs test, KS test and LB test, results are given as ρ-value.
Noticeably, real execution traces are independent (single-path) or stationary (multi-path).
The EVT can be applied to real cases, since their randomicity is enough for the EVT
application. This means that there would not be the need for extra randomicity, as for
example with random replacement cache policies, [2, 1].

3.2 Dependence of the extreme samples
While showing that just stationarity is needed to apply EVT, we can still get independence
as far as extreme samples are concerned. Indeed, EVT can still be applied on time series
with temporal dependence if the extreme samples are sufficiently separated in time. In that
case, extreme samples can be considered as independent. To estimate the dependence level
of extreme samples, it can be interesting to compute the extremogram of the samples.

An extremogram is a measure of extremal dependence for time series measurement [3].
Contrary to the usual methods for characterizing the dependence of samples, it only focuses
on their extreme values. Let us firstly consider the theoretical definition of an extremogram.

The extremogram ρ(h) of a stationary time series (Xt)t≥0 is defined by: ρ(h) =
lim

n→+∞
P{X0>an,Xh>an}

P{X>an} , with an a sequence such that P{|X | > an} ≈ n−1. The variable h
can be seen as a correlation length.
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Figure 2 Extremogram of single-path time series and multi-path time series examples.

In practice, if one assumes that the consecutive samples (Xt)1≤t≤N are available, an

estimator ρ̂(h) of the extremogram ρ(h) has been proposed as ρ̂(h) =
∑N−h

t=1
1(Xt>a,Xt+h>a)∑N

t=1
Xt>a

,

where 1(Xt>a,Xt+h>a) is equal to 1 if (Xt > a,Xt+h > a) and 0 otherwise. The threshold a
is experimentally set as the 0.98-quantile of the samples.

Several remarks can be made on the estimator ρ̂(h). Firstly, this estimator varies between
0 and 1. When ρ̂(h) −→ 1, the extremal samples are highly correlated. In that case, group
of consecutive extremal samples can be observed in time. De-clustering algorithm is then
often required in order to apply safely EVT [6]. When ρ̂(h) −→ 0, the extremal samples are
uncorrelated and can arise as individual sample in the time series. EVT can then be applied
with more confidence.

Figure 2 shows the extremogram to single- and multi-path cases. The extreme samples of
these 2 time series have a limited correlation, ρ̂(h) < 0.1, and de-clustering is not required.

4 Extreme Value Theory approaches

The idea behind the EVT is close to a black box approach which is applied to avoid knowledge
of the system, thus overcoming the complexity that today’s systems have. The advantage
that EVT offers to pWCET estimation is about the relatively small cost and good accuracy
of the pWCET estimations. Unfortunately there exists complexity due to parameter selection.
Indeed, in both BM and PoT cases, there are parameters to be defined (respectively b and
u), and their impact to the resulting pWCET has to be considered. In this section we depict
the differences that exist between the two forms of EVT applied to task execution time.

4.1 EVT parameters
To evaluate the impact of block size and threshold parameters we apply EVT by changing
those parameters within a certain range. For BM, the size of the blocks b is such that
b ∈ {5, 10, 20, 50, 100, 200}. For PoT, the thresholds are selected via the quantiles q(p), where
p is the quantile probability. Thus, it is u ∈ q(0.7), q(0.8), q(0.9), q(0.95), q(0.98), q(0.9999).
Figure 3 compares the parameters effects with four different input distributions and the
1-CDF representations. For the empiric distributions there is more accuracy from the EVT
estimations, at least within a certain exceeding probability range [1, 10−6]. While in the
single-path case the PoT appears to be more accurate7, in case of multi-path execution
traces, it is BM which is more accurate. The effectiveness of the EVT depends on the shape
of the input distribution, and it is not possible to conclude about one EVT approach being
better than another. To note how increasing the parameters, i.e. increasing the block size or
the threshold (the quantile), the quality of the EVT estimation degrades not linearly.

7 Accuracy is empirically defined with respect to the measurements, since the exact pWCET is unknown.

WCET 2014
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Figure 3 EVT pWCET distributions and values varying block size and threshold.

Table 2 10−9 exceeding thresholds with different EVT parameters compared with the measured
value.

max BM b = 5 BM b = 10 BM b = 20 BM b = 50 BM b = 100 BM b = 200
single-path 13755 14388 14312 14184 13886 13894 13918
multi-path 6750 41812 26353 19065 6779 6820 6920

max PoT p(0.7) PoT p(0.8) PoT p(0.9) PoT p(0.95) PoT p(0.98) PoT p(0.9999)
single-path 13755 13758 13758 13769 14006 14729 13752
multi-path 6750 6861 6861 6974 34563 4.94 ∗ 108 6851

max u, p(0.7) u, p(0.8) u, p(0.9) u, p(0.95) u, p(0.98) u, p(0.9999)
single-path 13755 13623 13636 13684 13695 13701 13751
multi-path 6750 3985 6697 6712 6714 6715 6832.33

In Table 2 it considered the pWCET tuple definition 〈C∗, 10−9〉. Here is understandable
the difficulty that EVT has in accurately estimating the pWCET with extreme parameters,
such as small b and PoT with few values above the threshold (u = 0.9 or more). Estimated
C∗ at limit cases are either very far from the measured values, i.e. multi-path with u = 0.95,
u = 0.98, and b ≤ 20, or very close to the measured values, i.e. b = 100 and b = 200.
Both PoT and BM pWCET estimation remains safe with no underestimations. But while
increasing b the pessimism decreases, and perhaps the capability of embedding rare events
decreases, increasing u it is the accuracy of the pWCET estimation to reduce resulting into
more pessimistic pWCET estimations. In case of multi-path those trends are more evident
due to the multi-variate distribution the EVT has to handle. In there, interesting are the
results for u = 0.98 and u = 0.9999, respectively with a huge pWCET estimation and a
maybe too small one. Critical cases have to be avoided in order to PoT safe and sound. Last
three rows of the table are the thresholds used by the PoT at the respective quantiles, to
give an idea about where are the estimated pWCETs.

Both table and figure describe outline the complexity in selecting the best parameter,
which depends on the input measured distribution.

4.2 EVT robustness: estimation of relative error
Bootstrap [4] is a well-known statistical method that enables to estimate characteristics of a
statistics. It can notably be applied to estimate relative error and confidence interval of the
pWCET distribution and quantiles obtained with EVT.

For that purpose, it is firstly needed to re-sample the data X1, . . . , XN to obtain a
bootstrap re-sample X∗1 , . . . , X∗M . The term X∗j is a sample set of size N and is determined
from X1, . . . , XN by random sampling with replacement. From the bootstrap re-sample
X∗1 , . . . , X

∗
M , one can then estimate M pWCET distributions, pWCET1, . . . ,pWCETN and

the associated 10−9-quantiles obtained with EVT. The relative errors or the 95% confidence
interval of these quantities are then easily computable.
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Figure 4 pWCET and associated relative of single-path and multi-path time series examples.
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Figure 5 EVT path variation and frequency impact.

Let us apply bootstrap to estimate relative errors and confidence interval for single-
and multi-path series with M = 100. The pWCET distribution and its corresponding
relative error are plotted in Figure 4 for single-path series. The 10−9 quantile of the pWCET
distribution is equal to 13766 with [13743, 13797] as 95% confidence interval. The pWCET
distribution and its corresponding relative error are plotted in Figure 4 for multi-path series.
The 10−9 quantile of the pWCET distribution is equal to 6922 with [6730, 7454] as 95%
confidence interval. In both single- and multi-path series, the pWCET distribution obtained
with bootstrap is smooth since it is estimated with a mean operator. The accuracy of the
pWCET distribution decreases with execution time, indeed the probability associated to
pWCET becomes very low when execution time increases. This probability is thus badly
estimated since the number of samples N is constant.

4.3 EVT robustness: completeness

In this section we show some of the limits of the EVT once applied to the worst-case execution
time problem. It is due to the knowledge of the system: in order to be effective (and safe),
the EVT has to know which are the worst case execution conditions.

In Figure 5 we have applied the artificial multi-modal distribution as input to the EVT.
The multi-modal distribution has been obtained combining three normal distributions with
different mean values. In our test we have changed the execution time inputs. “first” is
the measurement trace obtained from the normal distribution with the smallest mean. The
EVT applied to that trace of observations is labeled “first”. “first-second” is the case where
the EVT is applied to a trace obtained with the least mean and second least mean normal
distributions. “all” has the whole set of observations from the three distributions. We notice
that, just with partial information (not the whole multi-modal distribution but portions of
it), the EVT is not able to safely infer the extremes, and thus pWCETs.

The EVT needs complete set of inputs (depicting the measurement conditions) in order
to be safe: EVT robustness depends on the knowledge of the system and its execution
conditions, including variability sources due to input variability and path coverage.
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5 Conclusion

With this work we begin a formal analysis of the extreme value theory applied to the
probabilistic worst-case execution time problem. We first present the problem as well as the
EVT and its two possible approaches, i.e. block maxima and peak over threshold. Their
applicability together with assumptions are verified, proving that the i.i.d. hypothesis is
too strict, while stationarity and extremal dependences are allowed for safe EVT pWCET
estimations. Furthermore, we provide initial verification means to EVT complexity and
parameter selection, outlining the impact that parameters have on the pWCET estimation.
Finally, we introduce the notion of robustness for EVT estimations.

In the future, we intend to continue in those directions aiming at listing the EVT limits
and its potential. This helping the developer better choosing between measurement-base
approach and static timing analysis, and perhaps combining both in an efficient hybrid
timing analysis.
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