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Abstract
In this paper, we show that the SR transformation, a computationally equivalent transforma-
tion proposed by Şerbănuţă and Roşu, is sound for weakly left-linear normal conditional term
rewriting systems (CTRS). Here, soundness for a CTRS means that reduction of the transformed
unconditional term rewriting system (TRS) creates no undesired reduction for the CTRS. We
first show that every reduction sequence of the transformed TRS starting with a term corres-
ponding to the one considered on the CTRS is simulated by the reduction of the TRS obtained
by the simultaneous unraveling. Then, we use the fact that the unraveling is sound for weakly
left-linear normal CTRSs.
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1 Introduction

Conditional term rewriting is known to be much more complicated than unconditional term
rewriting in the sense of analyzing properties, e.g., operational termination [14], conflu-
ence [23], reachability [5]. A popular approach to the analysis of conditional term rewriting
systems (CTRS) is to transform a CTRS into an unconditional term rewriting system (TRS)
that is an overapproximation of the CTRS in terms of reduction. This approach enables
us to use techniques for the analysis of TRSs, which are well investigated in the literature.
For example, if the transformed TRS is terminating, then the CTRS is operationally ter-
minating [4] — to prove termination of the transformed TRS, we can use many termination
proving techniques which have been well investigated for TRSs (cf. [19]). Another interesting
application of the approach is the analysis of (un)reachability on CTRSs, especially unreach-
ability for TRSs for, e.g., verifying cryptographic protocol [7]. Many techniques to construct
tree automata [3] for accepting all the reachable ground terms for given (a recognizable set
of) ground terms have been established (see, e.g., [12, 6, 24]), and thus, by transforming
CTRSs into TRSs, we can use such techniques for TRSs to analyze (un)reachablity.
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There are two approaches to transformations of CTRSs into TRSs: unravelings [15, 16]
proposed by Marchiori (see, e.g., [8, 17]), and a transformation [25] proposed by Viry (see,
e.g., [21, 8]).

Unravelings are transformations from a CTRS into a TRS over an extension of the
original signature for the CTRS. They are complete for (reduction of) the CTRS [15], i.e., for
every derivation of the CTRS, there exists a corresponding derivation of the unraveled TRS.
In this respect, the unraveled TRS is an overapproximation of the CTRS w.r.t. reduction, and
is useful for analyzing the properties of the CTRS, such as syntactic properties, modularity,
and operational termination, since TRSs are in general much easier to handle than CTRSs.

The latest transformation based on Viry’s approach is a computationally equivalent trans-
formation proposed by Şerbănuţă and Roşu [21, 22], called the SR transformation. This con-
verts a left-linear confluent normal CTRS into a TRS which is computationally equivalent
to the CTRS. This means that the converted TRS can be used to exactly simulate reduction
sequences of the CTRS to normal forms.

This paper aims at investigating sufficient conditions for soundness of the SR trans-
formation w.r.t. reduction. Neither any unraveling nor the SR transformation is sound for
(reduction of) all CTRSs. Here, soundness for a CTRS means that reduction of the con-
verted TRS creates no undesired reduction for the CTRS. Since soundness is one of the
most important properties for transformations of CTRSs, sufficient conditions for soundness
have been well investigated, especially for unravelings (see, e.g., [9, 17, 10]). For example,
the simultaneous unraveling [15], which is proposed by Marchiori (and then improved by
Ohlebusch [18]), is sound for weakly left-linear, confluent, non-erasing, or ground conditional
normal CTRSs [9].

As for unravelings, soundness of the SR transformation plays a very important role for,
e.g., computational equivalence. The main purpose of transformations along the Viry’s
approach is to use the soundly transformed TRS to simulate the reduction of the original
CTRS. The experimental results in [21] indicate that the rewriting engine using the soundly
transformed TRS is much more efficient than the one using the original left-linear confluent
CTRS. However, unlike unravelings, soundness conditions for the SR transformation have
not been investigated well, and the known conditions are left-linearity or confluence of
CTRSs [21, 22]. To get an efficient rewriting engine for CTRSs, soundness conditions for
the SR transformation are worth investigating.

To clarify the relationship between unravelings and the SR transformation in terms of
soundness, it has been shown that if the SR transformation is sound for a CTRS, then so is
the corresponding unraveling [17]. This is not so surprising since the SR transformation is
more powerful than unravelings in terms of evaluating conditions in parallel. For the same
reason, however, it is not so easy to prove the converse of the above claim — as shown later,
the converse does not hold for all normal CTRSs.

In this paper, we show that the SR transformation is sound for weakly left-linear normal
CTRSs. To this end, we first show that every reduction sequence of the transformed TRS
starting with a term corresponding to the one considered on the CTRS is simulated by the
reduction of the unraveled TRS obtained by the simultaneous unraveling [15, 18]. Then, we
use the fact that the unraveling is sound for weakly left-linear normal CTRSs. One of the
reasons why we take this approach is to avoid conditional rewriting in proofs for soundness.

As already described, unravelings are nice tools to analyze properties of CTRSs, and the
SR transformation is a nice tool to get a computationally equivalent TRS which provides
very efficient computation compared to the one on the original CTRS. For this reason,
we do not discuss the usefulness of our results for analyzing properties of CTRSs, and we
concentrate on soundness conditions of the SR transformation.
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This paper is organized as follows. In Section 2, we briefly recall basic notations of term
rewriting. In Section 3, we recall the notion of soundness, the simultaneous unraveling, and
the SR transformation for normal CTRSs. We will adopt a slightly different formulation of
the SR transformation from the original one [21], while the resulting TRSs are the same.
In Section 4, we show that the SR transformation is sound for weakly left-linear normal
CTRSs. In Section 5, we conclude this paper and describe future work on this research.

2 Preliminaries

In this section, we recall basic notions and notations of term rewriting [2, 19].
Throughout the paper, we use V as a countably infinite set of variables. Let F be a

signature, a finite set of function symbols each of which has its own fixed arity, and arityF (f)
be the arity of function symbol f. We often write f/n ∈ F instead of “f ∈ F and arityF (f)
= n”. The set of terms over F (⊆ F) and V (⊆ V) is denoted by T (F, V ), and the set of
variables appearing in any of the terms t1, . . . , tn is denoted by Var(t1, . . . , tn). A term t is
called ground if Var(t) = ∅. A term is called linear if any variable occurs in the term at
most once, and called linear w.r.t. a variable if the variable appears at most once in t. The
function symbol at the root position ε of term t is denoted by root(t). Given an n-hole
context C[ ] with parallel positions p1, . . . , pn, the notation C[t1, . . . , tn]p1,...,pn

represents
the term obtained by replacing hole � at position pi with term ti for all 1 ≤ i ≤ n. We
may omit the subscript “p1, . . . , pn” from C[. . .]p1,...,pn

. For positions p and p′ of a term, we
write p′ ≥ p if p is a prefix of p′ (i.e., there exists a sequence q such that pq = p′). Moreover,
we write p′ > p if p is a proper prefix of p′.

The domain and range of a substitution σ are denoted by Dom(σ) and Ran(σ), respect-
ively. We may denote σ by {x1 7→ t1, . . . , xn 7→ tn} if Dom(σ) = {x1, . . . , xn} and σ(xi) =
ti for all 1 ≤ i ≤ n. For F (⊆ F) and V (⊆ V), the set of substitutions that range over F
and V is denoted by Sub(F, V ): Sub(F, V ) = {σ | Ran(σ) ⊆ T (F, V )}. For a substitution σ
and a term t, the application σ(t) of σ to t is abbreviated to tσ, and tσ is called an instance
of t. Given a set X of variables, σ|X denotes the restricted substitution of σ w.r.t. X: σ|X
= {x 7→ xσ | x ∈ Dom(σ) ∩X}.

An (oriented) conditional rewrite rule over a signature F is a triple (l, r, c), denoted by
l → r ⇐ c, such that the left-hand side l is a non-variable term in T (F ,V), the right-hand
side r is a term in T (F ,V), and the conditional part c is a sequence s1 � t1; . . . ; sk � tk
of term pairs (k ≥ 0) where all of s1, t1, . . . , sk, tk are terms in T (F ,V). In particular, a
conditional rewrite rule is called unconditional if the conditional part is the empty sequence
(i.e., k = 0), and we may abbreviate it to l → r. We sometimes attach a unique label ρ to
the conditional rewrite rule l → r ⇐ c by denoting ρ : l → r ⇐ c, and we use the label to
refer to the rewrite rule.

An (oriented) conditional term rewriting system (CTRS) over a signature F is a set
of conditional rules over F . A CTRS is called an (unconditional) term rewriting system
(TRS) if every rule l → r ⇐ c in the CTRS is unconditional and satisfies Var(l) ⊇ Var(r).
The reduction relation of a CTRS R is defined as →R =

⋃
n≥0 →(n),R where →(0),R = ∅,

and →(i+1),R = {(C[lσ]p, C[rσ]p) | ρ : l → r ⇐ s1 � t1; . . . ; sk � tk ∈ R, s1σ →∗(i),R
t1σ, . . . , skσ →∗(i),R tkσ} for i ≥ 0. To specify the applied rule ρ and the position p

where ρ is applied, we may write →p,ρ or →p,R instead of →R. Moreover, we may write
→>ε,R instead of →p,R if p > ε. The parallel reduction ⇒R is defined as follows: ⇒R
= {(C[s1, . . . , sn]p1,...,pn

, C[t1, . . . , tn]p1,...,pn
) | s1 →R t1, . . . , sn →R tn}. To specify the

positions p1, . . . , pn in the definition, we may write⇒{p1,...,pn},R instead of⇒R, and we may
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write ⇒>ε,R instead of ⇒R if pi > ε for all 1 ≤ i ≤ n. We denote n-step parallel reduction
by ⇒n

R, and for m ≥ n, we may write ⇒≤mR instead of ⇒n
R.

A conditional rewrite rule l → r ⇐ c is called left-linear if l is linear, right-linear if r is
linear, non-erasing if Var(l) ⊆ Var(r), and ground conditional if c contains no variable. For
a syntactic property P of conditional rewrite rules, we say that a CTRS has the property P
if all of its rules have the property P, e.g., a CTRS is called left-linear if all of its rules are
left-linear.

A conditional rewrite rule ρ : l → r ⇐ s1 � t1; . . . ; sk � tk is called normal if
Var(s1, . . . , sk) ⊆ Var(l) and t1, . . . , tn are normal forms w.r.t. the underlying unconditional
system Ru = {l → r | l → r ⇐ c ∈ R}. A CTRS is called normal (or a normal CTRS) if
every rewrite rule of the CTRS is normal. Note that we consider 1-CTRSs (i.e., Var(l) ⊇
Var(r) for l→ r ⇐ c). A normal CTRS R is called weakly left-linear [9] if every conditional
rewrite rule having at least one condition is left-linear, and for every unconditional rule, any
non-linear variable in the left-hand side does not occur in the right-hand side.

Let R be a CTRS over a signature F . The sets of defined symbols and constructors of
R are denoted by DR and CR, respectively: DR = {root(l) | l → r ⇐ c ∈ R} and CR =
F \ DR. Terms in T (CR,V) are constructor terms of R. R is called a constructor system if
all proper subterms of the left-hand sides in R are constructor terms of R.

3 Transformations from Normal CTRSs into TRSs

In this section, we recall the notion of soundness, the simultaneous unraveling [19], the SR
transformation [21] for normal CTRSs.

We first show a general notion of soundness of completeness between two (C)TRSs
(see [8, 17]). Let R1 and R2 be (C)TRSs over signature F1 and F2, respectively, φ be
an initialization (total) mapping from T (F1,V) to T (F2,V), and ψ be a partial inverse of φ,
a backtranslation mapping from T (F2,V) to T (F1,V) such that ψ(φ(t1)) = t1 for any term
t1 ∈ T (F1,V). We say that
R2 is sound for (reduction of ) R1 w.r.t. (φ, ψ) if, for any term t1 ∈ T (F1,V) and for any
term t2 ∈ T (F2,V), φ(t1) →∗R2

t2 implies t1 →∗R1
ψ(t2) whenever ψ(t2) is defined, and

R2 is complete for (reduction of ) R1 w.r.t. (φ, ψ) if, for all terms t1, t′1 ∈ T (F1,V),
t1 →∗R1

t′1 implies φ(t1) →∗R2
φ(t1).

For the sake of readability, we restrict our interest to CTRSs, any rule of which has at
most one condition. Note that this is not a restriction on the results in this paper (see [21]).
We often denote a sequence ti, ti+1, . . . , tj of terms by ti..j . Moreover, for the application
of a mapping f to ti..j , we denote f(ti), . . . , f(tj) by f(ti..j), e.g., for a substitution θ, we
denote tiθ, . . . , tjθ by θ(ti..j).

3.1 Simultaneous Unraveling
The simultaneous unraveling for normal CTRSs, which is reformulated by Ohlebusch, is
defined as follows.

I Definition 1 (U [19]). Let R be a normal CTRS over a signature F . Then,

U(ρ : l→ r ⇐ s� t) = { l→ Uρ(s,x1..n), Uρ(t,x1..n)→ r }

where {x1, . . . , xn} = Var(l) and Uρ is a fresh n+ 1-ary function symbol, called a U symbol.
Note that for every unconditional rule l→ r ∈ R, U(l→ r) = {l→ r}. U is straightforwardly
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extended to normal CTRSs: U(R) =
⋃
ρ∈R U(ρ). We abuse U to represent the extended

signature of F : UR(F) = F ∪ {Uρ | ρ : l → r ⇐ s � t ∈ R}. We omit R from UR(F).
Note that U(R) is a TRS over U(F). We say that U (and also U(R)) is sound (complete)
for R if U(R) is sound (complete) for R w.r.t. (id, id), where id is the identity mapping
for T (F ,V).

Note that U is complete for all normal CTRSs [15, 18].

I Example 2. Consider the following normal CTRS, a simplified variant of the one in [21]:

R1 = { e(0)→ true, e(s(x))→ true⇐ e(x)� false, e(s(x))→ false⇐ e(x)� true }

R1 is unraveled to the following TRS:

U(R1) =
{

e(0)→ true, e(s(x))→ u1(e(x), x), u1(false, x)→ true,
e(s(x))→ u2(e(x), x), u2(true, x)→ false

}
U(R1) is not confluent, while R1 is confluent. This means that U does not always preserve
confluence of CTRSs. The reason why U loses confluence is that once we start evaluating
a condition, the expected goal for the condition is fixed and then we cannot cancel the
evaluation. This is illustrated in the derivation e(s(0))→U(R1) u1(e(0), 0)→U(R1) u1(true, 0).
To reduce e(s(0)) to false, we should have applied e(s(x))→ u2(e(x), x) ∈ U(R1) to the initial
term. However, we applied another wrong rule, u1 expects e(0) to be reduced to true (the
expected goal for u1 at this point), and we cannot redo applying the desired rule.

To simplify the discussion, we do not consider any optimization of unravelings (see e.g. [11]).
As shown in [15], U is not sound for every normal CTRS (see also [19, Example 7.2.14]).

For some classes of normal CTRSs, U is sound (cf. [9, 17]).

I Theorem 3 ([9]). U is sound for a normal CTRS satisfying at least one of the following:
weak left-linearity, confluence, non-erasingness, or ground conditional.

3.2 The SR Transformation
Next, we introduce the SR transformation and its properties. In the following, the word
“conditional rule” is used for representing rules having exactly one condition.

Before transforming a CTRS R, we first extend the signature of R as follows:
we leave constructors of R without any change,
the arity n of defined symbol f is extended to n+m where f has m conditional rules in
R, and we replace f by f with the arity n+m, and
a fresh constant ⊥ and a fresh unary symbol 〈·〉 are introduced.

We denote the extended signature by F : F = {c | c ∈ CR} ∪ {f | f ∈ DR} ∪ {⊥, 〈·〉}.
We introduce a mapping ext(·) to extend the arguments of defined symbols in a term as
follows: ext(x) = x for x ∈ V; ext(c(t1..n)) = c(ext(t1..n)) for c/n ∈ CR; ext(f(t1..n)) =
f(ext(t1..n), z1..m) for f/n ∈ DR, where f has m conditional rules in R, arityF (f) = n+m,
and z1, . . . , zm are fresh variables. The extended arguments of f are used for evaluating the
corresponding conditions, and the fresh constant ⊥ is introduced to the extended arguments
of defined symbols, which does not store any evaluation. To put ⊥ into the extended
arguments, we define a mapping (·)⊥ which puts ⊥ to all the extended arguments of defined
symbols, as follows: (x)⊥ = x for x ∈ V; (c(t1..n))⊥ = c((t1..n)⊥) for c ∈ CR; (f(t1..n,u1..m))⊥
= f((t1..n)⊥,⊥, . . . ,⊥) for f ∈ DR; (〈t〉)⊥ = 〈(t)⊥〉; (⊥)⊥ = ⊥. Note that in applying (·)⊥ to
reachable terms defined later, the case of applying (·)⊥ to ⊥ never happens. Now we define
a mapping · from T (F ,V) to T (F ,V) as t = (ext(t))⊥.

The SR transformation [21] is defined as follows.

WPTE’14
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I Definition 4 (SR). Let f/n ∈ DR that has m conditional rules in R (i.e., f/(n+m) ∈ F).
Then, SR(f(w1..n)→r)={ f(ext(w1..n), z1..m)→〈r〉 } and, for the i-th conditional rule of f,

SR(f(w1..n)→ ri ⇐ si � ti) ={
f(w′

1..n, z1..i−1, ⊥, zi+1..m)→ f(w′
1..n, z1..i−1, 〈si〉, zi+1..m),

f(w′
1..n, z1..i−1, 〈ti〉, zi+1..m)→ 〈ri〉

}
where w′

1..n = ext(w1..n) and z1, . . . , zm are fresh variables. The set of auxiliary rules is
defined as follows:

Raux = { 〈〈x〉〉 → 〈x〉 } ∪ { c(x1..i−1, 〈xi〉,xi+1..n)→ 〈c(x1..n)〉 | c/n ∈ CR, 1 ≤ i ≤ n }
∪{ f(x1..i−1, 〈xi〉,xi+1..n, z1..m)→ 〈f(x1..n,⊥, . . . ,⊥)〉 | f/n ∈ DR, 1 ≤ i ≤ n }

where z1, . . . , zm are fresh variables. The transformation SR is defined as follows: SR(R) =⋃
ρ∈R SR(ρ) ∪Raux . Note that SR(R) is a TRS over F . Note also that Raux is linear. The

backtranslation mapping ·̂ for · is defined as follows: x̂ = x for x ∈ V; ĉ(t1..n) = c(t̂1..n)
for c/n ∈ CR; ̂f(t1..n,u1..m) = f(t̂1..n) for f/n ∈ DR; 〈̂t〉 = t̂; ⊥̂ = ⊥. Note that ·̂ is a total
function. A term t in T (F ,V) is called reachable if there exists a term s ∈ T (F ,V) such
that 〈s〉 →∗SR(R) t. We say that SR (and also SR(R)) is sound (complete) for R if SR(R) is
sound (complete) for R w.r.t. ( ·, ·̂ ).

Note that SR is complete for all CTRSs [21]. Note also that SR is not sound for all normal
CTRSs since for any normal CTRS R, SR(R) can simulate any reduction of U(R) [17] —
roughly speaking, any undesired derivation on U(R) holds on SR(R). It is clear that for
any reachable term t ∈ T (F ,V), any term t′ ∈ T (F ,V) with t →∗SR(R) t

′ is reachable.
To evaluate the condition of the i-th conditional rule f(w1..n) → ri ⇐ si � ti, the

i-th conditional rule is transformed into the two unconditional rules: the first one starts
to evaluate the condition (an instance of si), and the second examines whether the con-
dition holds. The first rule 〈〈x〉〉 → 〈x〉 in Raux removes the nest of 〈·〉, the second
rule c(x1..i−1, 〈xi〉,xi+1..n) → 〈c(x1..n)〉 is used for shifting 〈·〉 upward, and the third rule
f(x1..i−1, 〈xi〉,xi+1..n, z1..m)→ 〈f(x1..n,⊥, . . . ,⊥)〉 is used for both shifting 〈·〉 upward and
resetting the evaluation of conditions at the extended arguments of f. The unary symbol 〈·〉
and its rules in Raux are introduced to preserve confluence of normal CTRSs on reachable
terms (see [21] for the detail of the role of 〈·〉 and its rules).

I Example 5. Consider R1 in Example 2 again. R1 is transformed by SR as follows:

SR(R1) =


e(0, z1, z2)→ 〈true〉,

e(s(x),⊥, z2)→ e(s(x), 〈e(x,⊥,⊥)〉, z2), e(s(x), 〈false〉, z2)→ 〈true〉,
e(s(x), z1,⊥)→ e(s(x), z1, 〈e(x,⊥,⊥)〉), e(s(x), z1, 〈true〉)→ 〈false〉,

〈〈x〉〉 → 〈x〉, s(〈x〉)→ 〈s(x)〉, e(〈x〉, z1, z2)→ 〈e(x,⊥,⊥)〉


In contrast to U, SR preserves confluence of CTRSs as confluence on reachable terms, e.g.,
SR(R1) is confluent on reachable terms, while U(R1) is not. Note that SR(R1) is not
confluent. Let us consider the derivation starting from e(s(0)) in Example 2 again. The
corresponding derivation on SR(R1) is illustrated as follows:

e(s(0),⊥,⊥) →SR(R1) e(s(0), 〈e(0,⊥,⊥)〉,⊥) →∗SR(R1) e(s(0), 〈true〉,⊥)

Unlike the case of U(R1), we can apply the desired rule to the last term above:

· · · →SR(R1) e(s(0), 〈true〉, 〈e(0,⊥,⊥)〉) →∗SR(R1) e(s(0), 〈true〉, 〈true〉) →SR(R1) 〈false〉
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In the case of U, to reach false, we need to backtrack from the undesired normal form
u1(true, 0) (see Example 2), but in the case of SR, we do not have to backtrack — choosing
an arbitrary redex from reducible terms is sufficient to reach a desired normal form since
SR(R1) is confluent on reachable terms.

Finally, we recall some important properties of SR.

I Theorem 6 ([21]). SR is sound for left-linear or confluent 1 normal CTRSs.

I Theorem 7 ([17]). If SR is sound for a normal CTRS, then so is U.

4 Soundness of the SR Transformation for Weakly Left-linear CTRSs

In this section, by using U, we show that SR is sound for a weakly left-linear normal CTRS.
Before the discussion, we consider the role of (·)⊥ again. The mapping (·)⊥ puts ⊥ into

the extended arguments of defined symbols. We straightforwardly extend (·)⊥ to substitu-
tions: (θ)⊥ = {x 7→ (xθ)⊥ | x ∈ Dom(θ)} for a substitution θ such that Ran(θ) ⊆ T (F ,V).
The mapping (·)⊥ has the following properties which are trivial by definition.

I Proposition 8. Let R be a normal CTRS. Then, all of the following hold:
For any term s ∈ T (F ,V), s = (s)⊥.
For any term t ∈ T (F ,V), (tθ)⊥ = (t)⊥(θ)⊥ for any substitution θ ∈ Sub(F ,V) such
that tθ is reachable.

We may use Proposition 8 without notice.
To prove key claims (e.g., Lemma 13 shown later) related to the derivation 〈s〉 →∗SR(R) t,

the mappings · and ·̂ often prevent us from using induction because ·̂ removes all occurrences
of 〈·〉 from terms. For this reason, using the mapping (·)⊥ instead of 〈·〉 is a breakthrough
to prove our main theorem.

Next, we observe reduction sequences 〈s〉 →∗SR(R) t with s ∈ T (F ,V) and t ∈ T (F ,V).
The main feature of SR is to evaluate two or more conditions in parallel. However, to get
t̂, it suffices to evaluate successfully at most one condition in each parallel evaluation of
conditions. This means that every term appearing in 〈s〉 →∗SR(R) t, which is rooted by a
defined symbol f, is of the form f(t1..n,u1..m) where arityF (f) = n and at most one of
u1, . . . , um is rooted by 〈·〉 (i.e., others are ⊥). Such a term is the key idea of this paper, and
we say that the term has no parallel evaluation of conditions. For a term having no parallel
evaluation of conditions, we can uniquely determine the corresponding term over U(F): for
a term f(t1..n,u1..m), if all u1, . . . , um are ⊥, then the root is f, and otherwise, assuming
that ui is not ⊥ and the others are ⊥, then the root is Uf,i which is introduced for the i-th
conditional rule of f. This correspondence is illustrated in Figure 1. We first show how to
convert a reachable term in T (F ,V) to a term in T (U(F),V).

I Definition 9. Let R be a normal CTRS. Then, we define a mapping Φ from reachable
terms in T (F ,V) to T (U(F),V) as follows:

Φ(x) = x for x ∈ V,
Φ(c(t1..n)) = c(Φ(t1..n)) for c/n ∈ CR,
Φ(f(t1..n,⊥, . . . ,⊥)) = f(Φ(t1..n)) for f/n ∈ DR,

1 In [21], “ground confluence” is used instead of “confluence” since reduction sequences on ground terms
are considered. From the proofs in [21], we can consider “confluence” for the case that arbitrary
reduction sequences are considered.
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〈e(s(0), ⊥, ⊥)〉
��

〈e(s(0), ⊥, ⊥)〉
��

e(s(0))
��

〈e(s(0), ⊥, 〈e(0, ⊥, ⊥)〉)〉
��

〈e(s(0), ⊥, 〈e(0, ⊥, ⊥)〉)〉

2

��

u2(e(0), s(0))

��

〈e(s(0), 〈e(0, ⊥, ⊥)〉, 〈e(0, ⊥, ⊥)〉)〉
4��

〈e(s(0), 〈true〉, 〈true〉)〉
2��

〈e(s(0), ⊥, 〈true〉)〉
2��

u2(true, s(0))
��

〈false〉 〈false〉 false

(a) on SR(R1) (b) on SR(R1) with single evaluation (c) on U(R1)

Figure 1 The correspondence of derivations between SR(R1) and U(R1).

Φ(f(θ(ext(w1..n)),
i−1︷ ︸︸ ︷

⊥, . . . ,⊥, 〈ui〉,⊥, . . . ,⊥)) = Uf,i(Φ(ui),Φ(θ(x1..j))) for f/n ∈ DR,
where the i-th conditional rule of f is ρ : f(w1..n)→ ri ⇐ si � ti ∈ R, Uf,i(ti,x1..j)→ ri
∈ U(ρ) with Var(w1..n) = {x1..j}, Φ(θ(ext(wj))) is defined for all 1 ≤ j ≤ n, Φ(xθ) is
defined for any variable x ∈ Dom(θ), and Φ((〈si〉θ)⊥) →∗U(R) Φ((〈ui〉)⊥), and
Φ(〈t〉) = Φ(t).

We say that Φ(θ) is defined if Φ(xθ) is defined for any variable x ∈ Dom(θ), and we denote
by Φ(θ) the substitution {x 7→ Φ(xθ) | x ∈ Dom(θ)}.

Note that Φ is a partial mapping, and linearity is not important for Φ while w1, . . . , wn in
the proof of Lemma 13 are linear without any shared variable. By definition, it is clear that
Φ((t)⊥) = t̂ for a reachable term t ∈ T (F ,V). We will use this property without notice.

I Example 10. Consider U(R1) and SR(R1) in Examples 2 and 5, respectively, again.
We have that Φ(〈e(s(0),⊥,⊥)〉) = e(s(0)), Φ(〈e(s(0),⊥, 〈e(0,⊥,⊥)〉)〉) = u2(e(0), s(0)), and
Φ(〈e(s(0),⊥, 〈false〉)〉) = u2(false, s(0)). On the other hand, Φ is not defined for the term
〈e(s(0), 〈e(0,⊥,⊥)〉, 〈e(0,⊥,⊥)〉)〉 which contains two parallel evaluations of conditions.

Unfortunately, the above idea for the proof does not hold for all normal CTRSs.

I Example 11. Consider the following normal CTRS:

R2 =
{

f(x)→ x⇐ x� c, g(x, x)→ h(x, x), h(f(d), x)→ x,

a→ c, a→ d, b→ c, b→ d

}
R2 is transformed by U and SR, respectively, as follows:

U(R2) = { f(x)→ u3(x, x), u3(c, x)→ x, g(x, x)→ h(x, x), h(f(d), x)→ x, . . . }

SR(R2)=


f(x,⊥)→ f(x, 〈x〉), f(x, 〈c〉)→〈x〉, a→〈c〉, a→〈d〉,
g(x, x)→〈h(x, x)〉, h(f(d, z1), x)→〈x〉, b→〈c〉, b→〈d〉,
〈〈x〉〉→ 〈x〉, g(〈x〉, y)→〈g(x, y)〉, h(〈x〉, y)→〈h(x, y)〉,

f(〈x〉, z1)→〈f(x,⊥)〉, g(x, 〈y〉)→〈g(x, y)〉, h(x, 〈y〉)→〈h(x, y)〉


We have the following derivations:

〈g(f(a,⊥), f(b,⊥))〉 g(f(a), f(b))
→∗SR(R2) 〈g(f(〈d〉, 〈c〉), f(〈d〉, 〈c〉))〉 →∗U(R2) g(u3(c, d), u3(c, d))
→∗SR(R2) 〈f(〈d〉, 〈c〉)〉 →∗SR(R2) 〈d〉 6→U(R2) u3(c, d) →U(R2) d

Neither U(R2) nor R2 can simulate the derivation 〈g(f(a,⊥), f(b,⊥))〉 →∗SR(R2) 〈d〉, and
thus, SR is not sound for R2.
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As shown below, we only succeed in proving that the idea works for weakly left-linear
normal CTRSs. Weakly left-linear normal CTRSs have the following syntactic properties
with respect to SR, which are trivial by definition.

I Proposition 12. If R is weakly left-linear, then SR(R) is weakly left-linear, especially, for
transformed rewrite rules f(w′

1..n, z1..i−1,⊥, zi+1..m) → f(w′
1..n, z1..i−1, 〈si〉, zi+1..m) and

f(w′
1..n, z1..i−1, 〈ti〉, zi+1..m)→ 〈ri〉 in SR(f(w1..n)→ ri ⇐ si � ti),
w′1, . . . , w

′
n are linear without any shared variable, and

f(w′
1..n, z1..i−1, 〈ti〉, zi+1..m)→ 〈ri〉 is left-linear.

The following claim is an auxiliary lemma to show that U(R) can simulate every reduction
sequence of the form 〈s〉 →∗SR(R) t with s ∈ T (F ,V) and t ∈ T (F ,V).

I Lemma 13. Let R be a weakly left-linear normal CTRS, s be a term in T (F ,V), t be a
term in T (CR ∪ {〈·〉},V), and θ ∈ Sub(F ,V) with Dom(θ) ⊆ Var((t)⊥). If s ⇒k

SR(R) tθ (k
≥ 0) and Φ(s) is defined, then there exists a substitution θ′ ∈ Sub(F ,V) such that
Dom(θ′) = Dom(θ),
Φ(θ′) is defined,
for any variable x ∈ Dom(θ′), if t is linear w.r.t. x, then xθ′ ⇒≤kSR(R) xθ and Φ((xθ′)⊥)
→∗U(R) Φ((xθ)⊥), and otherwise, xθ′ = (xθ)⊥, and
Φ((s)⊥) →∗U(R) Φ((tθ′)⊥).

Proof. This lemma can be proved by induction on the lexicographic product (k, |s|) where
|s| denotes the size of s (see the appendix in a full version of this paper 2). J

Weak left-linearity is used skillfully in the proof of Lemma 13.
Next, we show that 〈s〉 →∗SR(R) t can be simulated by U(R).

I Theorem 14. Let R be a weakly left-linear normal CTRS, s be a term in T (F ,V), and t
be a term in T (F ,V). If 〈s〉 →∗SR(R) t, then s →∗U(R) t̂.

Proof. By definition, Φ((〈s〉)⊥) (= s) is defined, and thus, it follows from Lemma 13 that
Φ((〈s〉)⊥) →∗U(R) Φ((t)⊥). By definition, Φ((t)⊥) = t̂. Therefore, s →∗U(R) t̂. J

Theorem 14 does not hold for all normal CTRSs.

I Example 15. Consider the following normal CTRS which is not weakly left-linear:

R3 =
{

f(x)→ c⇐ x� c, f(x)→ d⇐ x� d, g(x, x)→ h(x, x),
a→ c, a→ d, b→ c, b→ d

}
R3 is transformed by U and SR, respectively, as follows:

U(R3) =
{

f(x)→ u5(x, x), f(x)→ u6(x, x), g(x, x) → h(x, x),
u5(c, x)→ c, u6(d, x)→ d, . . .

}

SR(R3)=


f(x,⊥, z2)→ f(x, 〈x〉, z2), f(x, z1,⊥)→ f(x, z1, 〈x〉), g(x, x)→ 〈h(x, x)〉,

f(x, 〈c〉, z2)→ 〈c〉, f(x, z1, 〈d〉)→ 〈d〉, a→ 〈c〉,
a→ 〈d〉, b→ 〈c〉, b→ 〈d〉,

〈〈x〉〉 → 〈x〉, h(〈x〉, y)→ 〈h(x, y)〉, h(x, 〈y〉)→ 〈h(x, y)〉,
f(〈x〉, z1, z2)→ 〈f(x,⊥,⊥)〉, g(〈x〉, y)→ 〈g(x, y)〉, g(x, 〈y〉)→ 〈g(x, y)〉


2 Available from http://www.trs.cm.is.nagoya-u.ac.jp/~nishida/wpte14/.
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We have the following derivations:

〈g(f(a,⊥,⊥), f(b,⊥,⊥))〉 g(f(a), f(b))
→∗SR(R3) 〈h(f(〈d〉, 〈c〉, 〈d〉), f(〈d〉, 〈c〉, 〈d〉))〉 →∗U(R3) h(u5(c, d), u5(c, d))
→SR(R3) 〈h(〈c〉, 〈d〉)〉 →∗SR(R3) 〈h(c, d)〉 6→U(R3) h(c, d)

The other normal forms of g(f(a), f(b)) on U(R3) are h(u5(c, c), u5(c, c)), h(u5(d, c), u5(d, c)),
and h(u5(d, d), u5(d, d)), but none of them corresponds to h(c, d). For this reason, the deriv-
ation on SR(R3) cannot be simulated by U(R3). The derivation g(f(a), f(b))→∗ h(c, d) does
not hold on R3, either, and thus, SR is not sound for R3. In addition, being a constructor
system is not sufficient for soundness of SR since R3 is a constructor system.

We show the main result obtained by Theorem 14.

I Theorem 16. SR is sound for weakly left-linear normal CTRS.

Proof. Let R be a weakly left-linear CTRS, s ∈ T (F ,V) and t ∈ T (F ,V). Suppose that
〈s〉 →∗SR(R) t. Then, it follows from Theorem 14 that s →∗U(R) t̂. Since t̂ ∈ T (F ,V) and U
is sound for R, we have that s →∗R t̂. Therefore, SR is sound for R. J

Theorem 16 does not hold for all normal CTRSs (see Examples 11 and 15).
Finally, we discuss the remaining soundness conditions of U: non-erasingness and ground-

ness of conditions. Non-erasingness of normal CTRSs is not sufficient for soundness since
R2 is non-erasing but SR is not sound for R2. Groundness of conditions is not sufficient for
soundness, either.

I Example 17. Consider the following ground-conditional normal CTRS, a variant of R3:

R4 =
{

f(a)→ c⇐ a� c, f(b)→ d⇐ b� d, g(x, x)→ h(x, x),
a→ c, a→ d, b→ c, b→ d

}
We have that g(f(a,⊥,⊥), f(b,⊥,⊥))→∗SR(R4) 〈h(c, d)〉, but g(f(a), f(b)) 6→∗R4

h(c, d). There-
fore, SR is not sound for R4.

5 Conclusion

In this paper, by using the soundness of U for weakly left-linear normal CTRSs, we showed
that the SR transformation is sound for weakly left-linear normal CTRSs. As far as we
know, this paper is the second work on comparing soundness of unravelings and the SR
transformation. The first one is a previous work [17] of the first author, in which the
converse of Theorem 7 was left as a conjecture. As a negative result, we showed that the
converse of Theorem 7 does not hold in general.

One may think that as the first step, we should have started with the transformation
proposed by Antoy et al [1], which is a variant of Viry’s transformation. As described
in [21], for constructor systems, the unary symbol introduced in the SR transformation
to wrap terms evaluating conditions is not necessary and then the SR transformation is
the same as the one in [1]. The transformation in [1] is sound for left-linear constructor
normal CTRSs, and is extended to the SR transformation in order to adapt it to arbitrary
normal CTRSs. This means that any result for the SR transformation can be adapted to the
transformation in [1]. Moreover, the SR transformation has been extended to syntactically
or strongly deterministic CTRSs [22], which we would like to deal with at the next step of
this research. For these reasons, we started with the SR transformation.
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Schernhammer and Gramlich showed in [20] that a particular context-sensitive condi-
tion [13] is sufficient for soundness of Ohlebusch’s unraveling [18], which is an improved
variant of Marchiori’s one. However, the context-sensitive condition is not sufficient for
preserving confluence of CTRSs. For this reason, not all the unraveled TRSs with the
context-sensitive condition are computationally equivalent to the original CTRSs, and in
this sense, the SR transformation is more useful than unravelings with the context-sensitive
condition. Moreover, the context-sensitive condition restricts the reduction to the context-
sensitive one. Due to this restriction, we did not use the context-sensitive condition in
proving the main result in this paper.

As future work, we will extend Theorem 14 to a pair of Ohlebusch’s unraveling [18]
and the SR transformation for syntactically or strongly deterministic CTRSs in order to
extend Theorem 16 to the SR transformation for the CTRSs. We did not discuss confluence
of normal CTRSs as a soundness condition since the SR transformation is known to be
sound for confluent normal CTRSs. However, for the extension to deterministic CTRSs, we
will adapt the proof technique in this paper to confluent normal CTRSs. Moreover, we will
investigate other soundness conditions of unravelings in order to make the SR transformation
applicable to more classes of CTRSs as a computationally equivalent transformation.

Acknowledgement. We are deeply grateful to the anonymous referees for their useful com-
ments to improve this paper. We would like to dedicate this paper to the memory of
Bernhard Gramlich who encouraged us to further research the soundness of unravelings.
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