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Abstract
On-line model checking is a variant of model checking that evaluates properties of a system
concurrently while deployed, which allows overcoming limitations of inaccurate system models.
In this paper we conduct a laser tracheotomy case study to evaluate the feasibility of using the
statistical model checker UPPAAL-SMC for on-line model checking in a medical application.
Development of automatic on-line model checking relies on the precision of the prediction and
real-time capabilities as real-time requirements must be met. We evaluate the case study with
regards to these qualities and our results show that using UPPAAL-SMC in an on-line model
checking context is practical: relative prediction errors were only 2% on average and guarantees
could be established within reasonable time during our experiments.
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1 Introduction

In the medical domain not only the devices must operate reliably but also the safety of
connected patients must be guaranteed. This requirement becomes more and more pressing
with the increased development of patient-in-the-loop systems that monitor and treat patients
autonomously and where a malfunction could seriously harm the patient. Model checking,
a widely known technique to show that a system fulfills certain properties, might be an
option to ensure safe operation of such systems, but is often not adequate in the medical
context. Classic model checking relies on models that accurately predict the system state
also in a distant future for all system components for reasoning about the system. When
human physiology is involved such models are unavailable most of the time. For example,
predicting the long-term behavior of the blood oxygen concentration of a human patient
currently is infeasible since the present understanding of the processes within the human
body only permit short-time predictions.
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On-line model checking relaxes the need for accurate long-term models required by classic
model checking. Instead of statically proving a property of the system on-line model checking
yields guarantees that are only valid for a limited time using bounded model checking. To
still provide a safety guarantee at all times the on-line model checking approach repeatedly
evaluates the property to extend its period of validity indefinitely. This iterative process
allows on-line model checking to dynamically adapt the underlying system model. Thus,
the on-line model checking approach can employ measures to adjust the model parameters
such that they match runtime observations if the model accuracy decreases significantly, and
thus reestablish a consistent state. Accurate long-term models are no longer required as the
dynamic adaptation of the short-term models to the current real-world situation may still
yield the desired long-term guarantees.

In this paper we carry out an on-line model checking case study using the model checker
UPPAAL and evaluate its statistical model checking module UPPAAL-SMC regarding its
suitability for on-line model checking. UPPAAL is one of few available tools that have the
potential to carry out automatic on-line model checking. Evaluating whether its performance
in practice meets the real-time requirements imposed by on-line model checking is crucial
to tapping its full potential. Therefore we encode the models of a previous on-line model
checking case study that models a laser tracheotomy surgery with hybrid models for the
model checker PHAVer using the timed automata formalization used by UPPAAL. This
relation enables us to compare our results to the previous work and lets us focus on questions
regarding UPPAAL-SMC’s performance and suitability. We then carry out the on-line model
checking process with our derived models using a prototype for automatic on-line model
checking with UPPAAL. Next, the collected data on the accuracy of parameter prediction
and the run-time performance is compared to the results of the original case study. Relative
errors of SpO2 estimations were on average about 2% which is slightly worse than the original
case study. For performance, a verification step took on average about 50ms which is a
significant improvement. As a general result it follows that it is practical to use UPPAAL in
an on-line model checking context.

The rest of the paper is organized as follows: Section 2 introduces related work. Section 3
provides a short introduction to hybrid automata and their relation to UPPAAL-SMC.
The on-line model checking approach and its implementation with UPPAAL is the topic of
Section 4. Section 5 shows the analyzed case study and its on-line models. Section 6 provides
our experiment results and an evaluation of those. At last, Section 7 summarizes the paper
and gives ideas on future research.

2 Related Work

In general on-line model checking can be put into the context of self-adaptive software. More
specifically, verification at runtime enables ways to produce self-adapting software systems [6].
Zhao et al. introduce the on-line model checking approach as a lightweight verification
technique to reduce the state space explosion problem [18]. They argue that on-line model
checking is significantly different from the runtime verification approach: in contrast to on-line
model checking runtime verification operates directly on the execution trace without involving
a system model. Thus, the approach is not capable of predicting property violations. Steering
is a control-theoretic approach trying to resolve this drawback [10]. Li et al. apply on-line
model checking to a laser tracheotomy surgery scenario to ensure the patient safety [14, 15].
They use the hybrid model checker PHAVer in combination with a custom implementation
to carry out the model checking procedure. This is the reference case study we compare
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our UPPAAL implementation to. Bartocci et al. [2] and Chen et al. [8] deal with the model
repair problem, a related approach that tries to adjust model parameters to satisfy system
properties in case they are violated. However, here the adjustment goal for on-line model
checking is not to satisfy a property but to ensure that the model does not deviate from the
observed real-world state.

Regarding the implementation of on-line model checking, Bu et al. pursue the develop-
ment of an on-line model checking tool set called BACHOL, which is based on the linear
hybrid automaton model checker BACH, to facilitate verification of complex cyber-physical
systems [4]. Furthermore, in earlier work we began implementing a framework for on-line
model checking with UPPAAL [17]. This framework automatically performs the necessary
state reconstruction for seamless model simulation and verification.

In the context of closed-loop medical systems, King et al. report on their experience with
their Medical Device Coordination Framework (MDCF) when modeling a closed-loop medical
system to control an infusion pump [13]. Their research focuses on the interoperability
between medical devices. Arney et al. also analyze a patient-in-the-loop system [1]: they
develop UPPAAL and MATLAB models to show in advance potential flaws in the control
loop that endanger the patient. The development and verification of formal models for
pacemaker systems is the topic of work by Chen at al. [7] and Jiang et al. [12].

3 Timed and Hybrid Automata

Both the models from the original case study our work is based on and our models use
variations of finite state machines to represent the system. The original case study derives
a hybrid automata model. In UPPAAL, however, modeling of hybrid automata is only
possible with the statistical model checking extension UPPAAL-SMC as UPPAAL normally
uses networks of timed automata as the underlying modeling formalism, a subset of hybrid
automata.

A hybrid automaton, according to Henzinger, is a finite state automaton extended with a
set of continuous variables [11]. Thus, a hybrid automaton may model discrete and continuous
behavior. Such a hybrid automaton consists of the following parts:

Graph. A finite directed multigraph (V, E) that models the topology of the discrete
transitions with the locations V and the edges E.
Variables. A finite set of variables X = { x1, . . . , xn } valued in the reals (R) together
with its set of derivatives Ẋ = { ẋ1, . . . , ẋn }.
Condition Predicates. Three labeling functions that assign predicates to locations l ∈ V :
init assigns initial valuations, inv assigns an invariant condition, and flow assigns a
flow condition that determines how variables evolve over time in a location. These are
generally linear differential equations.
Guards. A labeling function guard that assigns predicates to edges e ∈ E that specify
when a transition over an edge may be triggered.
Actions. A labeling function action that assigns actions a ∈ Σ to edges e ∈ E that are
performed when a transition over the edge is triggered.

In UPPAAL-SMC a hybrid automaton is defined in terms of the underlying timed
automata definition such that most of the known UPPAAL features, e.g., synchronization,
could be carried over. In UPPAAL, a timed automaton is defined as follows

I Definition 1. A timed automaton T is a tuple T = { L, l0, C, A, E, I } where L is a set
of locations, l0 ∈ L is the initial location, C is a set of real-valued clock variables, A is the
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action set, E is the set of edges of the form (l, a, g, R, l′) where l, l′ ∈ L, a ∈ A, g a predicate
over C, and R a subset of C, and I is a function that assigns invariant predicates to locations
l ∈ L.

In Definition 1 the set R on an edge is its reset set, i.e., the set of clocks that are set to
certain values when a transition involving the edge is fired. Note that in UPPAAL a reset
of a clock does not necessarily mean the clock is set to zero; any integer value is allowed.
Furthermore, UPPAAL restricts predicates over C to conjunctions of terms that bound a
clock or a difference of clocks by an integer.

Definition 1 contains nearly all the necessary components for modeling a hybrid automaton.
When taking into account the renaming of components only the flow function defining the
behavior of individual variables in a location can not be specified directly. Therefore,
UPPAAL-SMC extends the timed automaton definition with an additional component F ,
which allows modeling of hybrid automata [9]. The function F corresponds to the flow
labeling in Henzinger’s hybrid automata and is called a delay function. It allows modification
of the default delay function of UPPAAL-SMC, which advances all clocks synchronously
at the same rate, in certain locations l by defining explicit rates for clocks: x′ = e where e

only depends on the discrete part of the state. It follows that the transformation of hybrid
models to UPPAAL-SMC models may be carried out if their flow function can be expressed
by explicit rates. In this case study we determine the delay function by performing a linear
regression (see Section 5 and Section 6).

For more information on UPPAAL, Behrman et al. provide a complete introduction [3].
The statistical model checking module, UPPAAL-SMC, is covered in the publication by
Bulychev et al. [5].

4 On-line Model Checking

This section introduces the on-line model checking process in Subsection 4.1 and then provides
details on the implementation aspects of it in Subsection 4.2.

4.1 The On-line Model Checking Approach
On-line model checking is a technique to apply classic model checking to domains where
accurate modeling of a system may be infeasible. In such cases classical model checking,
if based on approximate models, may yield seemingly satisfactory results. But in reality
those properties can not be guaranteed because the model does not correctly reflect the
system. On-line model checking overcomes the model inaccuracies by periodically adjusting
the underlying model to the real-world values observed from the system.

Figure 1 and Figure 2 depict the relation of the state spaces of both approaches. Figure 1
shows the classical model checking approach where a single model of the system is constructed.
Here, the model does not correctly model all aspects of the systems. Thus, the state space of
the model is only a subset of the state space of the system and an actual trace of the system
as shown by the arrow starting with the circle may leave the model state space. As only
the state space of the model is checked for compliance with the requirements for the system
there are cases where the model checking approach assures a system property but in reality
that property may not be satisfied. Thus, when an exact model of a system is not available
classical model checking does not yield reliable results.

In contrast, Figure 2 shows the situation when applying on-line model checking. Here,
the model is adjusted periodically and a new model is generated based on the current system
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Figure 1 State Space in Classic Model
Checking.
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Figure 2 State Space in On-line Model
Checking.

trace. The first benefit is that the concrete system state is always valid in the current model.
Thus, leaving the model state space is impossible and a guarantee obtained from the model
checker is always reliable although the models do not at all times accurately reflect the
system. Consequently, the obtained guarantees only have limited periods of validity because
of the limited model scope. The limited scope though is responsible for another benefit:
the model state spaces in general are smaller and thus the model checking performance
becomes better. It follows that with the on-line model checking approach the model checking
technique can be applied to domains where models are likely to be inaccurate because model
adjustments may overcome any inaccuracies.

I Example 2. As an example assume a light bulb is supposed to be switched on and off
every five seconds. Experience shows that this kind of light bulb malfunctions after 1000
on-off-cycles. It is critical that the light cycle in the system never stops and thus we want to
ensure a 30 second grace period to exchange the bulb when approaching the end of its lifetime.
If the model is correct a simple calculation yields the time when a change is necessary. Now,
assume that the real system does not switch the light on and off every five seconds but the
switching delay varies unpredictably. Then verifying every 30 seconds that no malfunction
occurs within the next minute would achieve the same 30-second grace period only if the
model variables are updated with the current light state and the number of on-off-cycles that
actually occurred.

4.2 Implementing On-line Model Checking
The implementation of on-line model checking of a real system can be divided into three
phases, one before deployment of the system, and two during deployment:

Modeling. During the modeling phase first the requirements for a system are specified.
Then a model of the system is developed that allows reasoning about those requirements.
Also, the initial state of the model is defined, i.e., the values with which the real system
starts operation.
Verification. In the verification phase a current system model is passed to the model
checking engine together with the requirement properties and checked for compliance. In
case the verification fails an emergency handling routine may be triggered to resolve the
issue. Otherwise a guarantee is obtained that the requirements are fulfilled for a limited
time bound T .
Adjustment. In the adjustment phase the real system is observed and the previous
model is adjusted accordingly to accurately represent the current and near-future states.
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Figure 3 Model Checking Example System.

currentloc == 1

switches >= 1000

currentloc == 3

currentloc == 2

t <= 5

Off

switches <= 1000
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Figure 4 On-line Model Checking Example System.

The adjustment must be performed before the period of validity T runs out to ensure
continuity of the guarantees. The newly created model is then forwarded to the next
verification phase.

When implementing on-line model checking it is thus necessary that the model provides
means for adjusting the model. In this paper we manually modify the basic system models
to allow the necessary modifications because automatically providing these means induces
a reconstruction problem of the previous system state [17] and solving the reconstruction
problem introduces additional machinery, which would dilute the focus on UPPAAL’s
performance of this case study.

I Example 3. Recall Example 2. Figure 3 shows the basic UPPAAL model for the example
system. The adaptation of the model is rendered possible by introducing two parameters, the
performed number of switches and the current state of the lamp. They are passed during the
adaptation phase from the real system to the model as the constant values realswitches
and currentloc. The resulting on-line model is depicted in Figure 4.

5 A Medical Case Study

In this section we present an on-line model checking case study on a medical laser tracheotomy
scenario and demonstrate the applicability of UPPAAL in such scenarios. In Subsection 5.1
we introduce laser tracheotomy in general and related safety requirements. The concrete
UPPAAL system models derived from the case study by Li et al. [14] are the focus of
Subsection 5.2.
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Figure 5 Laser Tracheotomy System [14].

5.1 Laser Tracheotomy
Tracheotomy is a surgery performed on patients that have problems breathing through their
nose or mouth, e.g., when the tongue muscle falls back and blocks the air flow while sleeping.
During the surgery a direct access to the windpipe of the patient is created, usually from the
front side of the neck. Laser tracheotomy refers to the kind of tracheotomy where the access
to the windpipe is created using a laser scalpel, a medical device capable of cutting tissue
with focused light. Using laser for the cut has several benefits such as a greater precision and
a reduction of blood loss due to blood vessels being closed immediately. However, during
tracheotomy the laser also poses the threat of tissue burns in case the oxygen concentration
in the windpipe of the patient is too high.

In this case study we want to ensure that the laser may only be triggered when an
operation is safe. Additionally, as the patient is ventilated during the surgery, we want
to ensure that the blood oxygen of the patient does not drop to dangerous levels, because
ventilation needs to be suspended during cutting. Lastly, for convenience of the surgeon, an
additional requirement is that once the use of the laser is approved the laser should emit for a
minimum time such that the cut is not interrupted unnecessarily. The verification properties
for the statistical model checking are given in WMTL≤ (Weighted Metric Temporal Logic) [5]:

O2 above threshold while laser emits
Pr[<=100](<> O2 > Th_02 && LaserScalpel.LaserEmitting)

SpO2 below threshold while laser emits
Pr[<=100](<> SpO2 < Th_SpO2 && LaserScalpel.LaserEmitting)

Laser stops emitting early
Pr[<=100](<> (O2 > Th_O2 || SpO2 < Th_SpO2) &&

t_appr < Th_appr && LaserAppr == true)
These properties characterize unreachable states and thus the probabilities should be zero
with the configured confidence.

5.2 System Modeling
The laser tracheotomy scenario described by Li et al. consists of four different components [14]:

Patient. The patient under surgery characterized by current windpipe oxygen level (O2)
and blood oxygen level (SpO2).
Ventilator. The medical ventilator device regulating the patient’s breathing rate during
the surgery. The ventilator is characterized by the current height of the pressure cylinder.
Laser Scalpel. The laser scalpel is used to cut the opening to the windpipe. The laser
scalpel is characterized by whether or not the surgeon currently wants to operate the
laser and if operation is allowed.
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Figure 6 Patient UPPAAL Model.

Supervisor. The supervisor is responsible for ensuring the safety requirements of the
system as given in Subsection 5.1. The supervisor approves usage of the laser scalpel and
operates the ventilator.

Figure 5 shows the connections of the system components with respective communication
data. The ventilator regulates the respiration rate of the patient. The physiological signals
of the patient are measured by sensors and forwarded to the supervisor. The supervisor
analyzes the values and either approves usage of the laser scalpel requested previously and
consequently stops the ventilator, or usage is prohibited and the ventilator continues normal
operation. Additionally, when an approved cut is finished the ventilator starts operating again
by instruction of the supervisor. We now discuss our UPPAAL models of the components for
on-line model checking in more detail. All of the models were derived from the original hybrid
models using the encoding from Section 4. The main difficulty in the transformation of the
models is representing the continuous variables O2 and SpO2 in the hybrid models using
clock variables in UPPAAL-SMC and ensuring correct system behavior using synchronization.
The remaining parts are straight-forward because the graph components and transition
constraints carry over directly due to the same finite state machine formalism.

5.2.1 Patient

The patient model consists of three locations plus the initialization location. The locations
correspond to the patient inhaling and exhaling assisted by the ventilator and the patient
exhaling without assistance when the ventilator is switched off. In the three locations the
O2 and SpO2 values are predicted using a linear regression approach taking into account a
history of 30 seconds (see Section 6).

5.2.2 Ventilator

The ventilator model also has three main locations, an initialization location and two
intermediate locations for communication reasons. The main locations correspond to the
ventilator pumping air into the patient, out of the patient, and not pumping at all. Here the
current height of the ventilation cylinder, H_vent, is modified accordingly. Communication
with the patient model is implemented such that the patient always inhales and exhales
as enforced by the ventilator. Furthermore input from the supervisor model is accepted to
enable and disable the ventilator.
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Figure 7 Ventilator UPPAAL Model.

SupervisorStop?

SupervisorAppr?

SupervisorStop? SurgeonCancel!

Start?

Start?

Start?

Laser_State == 0

LaserRequesting

LaserEmitting

LaserIdle

SurgeonStop!

SurgeonReq!
LaserCancelling

Start?

Initial

LaserReq = false, t_emit = 0

LaserReq = false, t_emit = 0

LaserReq = true

t_emit = 0

LaserReq = false, 
t_emit = 0

LaserReq = false, 
t_emit = 0

t_emit >= Temit_max

Laser_State == 2

t_emit' == 100 &&
t_emit <= Temit_max

Laser_State == 1

Laser_State == 3

Figure 8 Laser Scalpel UPPAAL Model.

5.2.3 Laser Scalpel

The laser scalpel model represents the interaction between the surgeon and the laser scalpel.
It uses four locations. The surgeon may send a request to the supervisor model to trigger the
laser, which eventually gets approved. When the laser emits the surgeon can either switch
the laser off or revoke the approval if conditions necessitate action. Communication thus
takes part between the laser scalpel and the supervisor model. The surgeon inputs are left
open meaning that any external input may be executed at any time during verification.

5.2.4 Supervisor

The supervisor model checks if the physiological parameters of the patient are within safe
boundaries and approves the laser usage for a maximum duration. If any of the safety
requirements gets violated the supervisor revokes its approval. The interesting part here is
that the initialization part also checks if a safety requirement was violated. This behavior is
necessary because when the model is adapted the O2 and SpO2 values may change, which
might invalidate a previous approval. Also, when the supervisor approves usage of the laser
the ventilator is put on hold.
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Figure 9 Supervisor UPPAAL Model.
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Figure 10 Initialization UPPAAL Model.

5.2.5 Initialization
Lastly, the initialization model has the purpose of initializing all constants that may have
been adapted to real-world values during model adaptation. Using broadcast synchronization,
a starting transition guarantees a common starting point for the whole model.

6 Experiments and Evaluation

To evaluate the on-line model checking approach with UPPAAL we carried out several
experiments with our models. Real-world patient data necessary for the adaptation steps was
extracted from the PhysioNet database, an open medical database offering a large collection
of recordings of medical signals of various kind (http://www.physionet.org). Six different
patient traces were assembled and used as a basis. Every patient trace was executed ten
times yielding 60 experiments in total. Table 1 shows the PhysioNet data bases and the
patient IDs of the data used. More information on the data can be found in the original
thesis on this topic [16]. All experiments ran the system for 600 seconds where every three
seconds a model adaptation and verification was performed. Thus, the workflow of every
three-second cycle is as follows: first we adjust the O2 and SpO2 values in the model to the
observed values. Then we try to verify the system properties for the next six seconds. And
lastly, we evaluate the verification results such that if a property was not verified we derive
that in three seconds an unsafe state occurs and thus emergency measures should be taken

Table 1 PhysioNet Databases and Patient IDs.

Database #1 #2 #3 #4 #5 #6
O2 (CO2) MGF/MF mgh077 mgh077 mgh089 mgh057 mgh019 mgh110

SpO2 MIMIC v2 a45463 a45436n 439n n10301n a45611n 477n
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Table 2 Relative Errors of O2 and SpO2 Estimation.

[%] #1 #2 #3 #4 #5 #6
Min SpO2 0 1.43 0.52 2.28 0.48 0.59
Max SpO2 6.01 1.62 0.63 2.99 0.59 4.18
Avg SpO2 1.59 1.54 0.60 2.82 0.54 2.27
Min O2 0.6 18.0 12.3 16.8 11.3 8.3
Max O2 66.0 23.2 14.0 20.5 15.3 10.5
Avg O2 21.7 20.8 13.4 18.9 12.3 9.2

Table 3 Model Checking Execution Times.

[s] Minimum Maximum Average
UPPAAL-SMC 0.033 0.32 0.047

PHAVer 0.571 1.445 0.727

before the unsafe state is reached. Note that if the models correctly predict the short-term
behavior of O2 and SpO2 and the supervisor strategy is effective such an emergency can
not arise. The history window for the linear regression was 30 seconds in all cases. The
confidence level for the statistical model checker was set to 99%. We evaluated three aspects
of the approach: first we checked whether the safety requirements given in Subsection 5.1
are violated for any patient trace. Then we compared the relative errors of our O2 and SpO2
predictions to the values in the reference paper [14]. Lastly, we evaluated the execution times
with a focus on the real-time requirements.

The first result is straightforward: during all experiments all three safety properties were
satisfied at all times with the confidence level of 99%. Thus, our models seem to be accurate
enough to predict the physiological parameters of the patient for a time bound of three
seconds. Moreover, the supervisor strategy implemented in the models proves to be effective
at preventing accidental tissue burns resulting from triggering the laser at inappropriate
times.

Table 2 shows the relative errors of our parameter estimation. The SpO2 estimates are
very consistent and in general show a relative error of about 2%. These results are accurate
enough to guarantee the safety of the patient with regards to the blood oxygen. In contrast,
the estimation of windpipe oxygen is not that precise with an average relative error of about
16%. However, due to the supervisor strategy the safety of the patient is still guaranteed.
Still, the laser could potentially be allowed to fire more often. Thus, a more sophisticated
prediction strategy than linear regression is likely to yield better prediction results, which
enable the supervisor to approve the use of the laser more often. Compared to the results of
the original case study our SpO2 results are slightly less accurate but still useful for safety
statements. As the original case study does not specify exactly which patient traces were
used as an experiment basis differences in the results may simply stem from the selection of
different traces. For the O2 results Li et al. provide no relative error results.

Table 3 shows the execution times of an adaptation step of the models and the following
verification of the safety properties. Our experiments were carried out on a Macbook Pro
2.66 GHz with 4GB memory using iOS 10.6.8. In the experiments our approach took at
worst 320 milliseconds for a cycle while in the original case study nearly 1.5 seconds elapsed.
Unfortunately, the original case study does not specify the used hardware. Still, the approach
using simulation of timed automata in UPPAAL-SMC for verification performs significantly
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better than the symbolic verification of hybrid automata in PHAVer. Thus, we assume the
speedup can not be attribute only to differences in hardware, especially because our hardware
is not on the top end. Looking at the absolute values with the hard real-time constraints of
three seconds for one cycle in mind, using UPPAAL-SMC provides a performance advantage
in practice. With execution times of about 10% of the real-time deadlines the implementation
in a hard real-time system seems feasible.

7 Conclusion and Future Work

This paper presented the on-line model checking approach, a variant of model checking
that allows reasoning about systems where accurate long-term models are unavailable. We
implemented a medical laser tracheotomy case study using UPPAAL-SMC and used it
to evaluate the on-line model checking approach in practice. The on-line model checking
approach periodically adjusts the underlying system model to real-world values and analyzes
the new models, e.g., for patient safety issues. The case study showed that this approach is
capable of providing reliable safety guarantees even if the patient’s physiological behavior
is modeled only roughly using a simple linear regression approach when parameters are
continuously adapted to the real-world values. Although this paper identifies on-line model
checking as a useful technique to ensure safety of complex systems, further research is
necessary to support this claim. Future research should focus on larger scale case studies and
provide a unified approach including automatic adaptation interfaces to ease the development
of systems that should be monitored using on-line model checking. Such an automatic
adaptation interface would synthesize necessary means to adapt a model from a classical
model checking model and execute the on-line model checking procedure to allow seamless
simulation and verification of the system in question.
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