An Approach to Integrate Distributed Systems of
Medical Devices in High Acuity Environments

David Gregorczyk?!, Stefan Fischer!, Timm Busshaus?,
Stefan Schlichting?, and Stephan P6hlsen®

1 University of Liibeck

Institute of Telematics

Ratzeburger Allee 160

23562 Liibeck

{gregorczyk,fischer,busshaus}@itm.uni-luebeck.de
2 Drigerwerk AG & Co. KGaA

Smart Software Solutions

Research Unit

Moislinger Allee 53-55

23558 Liibeck, Germany

textttstefan.schlichting@draeger.com
2 Drager Medical GmbH

Research & Development

Moislinger Allee 53-55

23558 Liibeck, Germany

textttstephan.poehlsen@draeger.com

—— Abstract

This paper presents a comprehensive solution to build a distributed system of medical devices
in high acuity environments. It is based on the concept of a Service Oriented Medical Device
Architecture. It uses the Devices Profile for Web Services as a transport layer protocol and en-
hances it to the Medical Devices Profile for Web Service (MDPWS) to meet medical requirements.
By applying the ISO/IEEE 11073 Domain Information Model, device data can be semantically
described and exchanged by means of a generic service interface. Data model and service in-
terface are subsumed under the Basic Integrated Clinical Environment Specification (BICEPS).
MDPWS and BICEPS are implemented as part of the publically available openSDC stack. Per-
formance measurements and a real world setup prove that openSDC is feasible to be deployed in
distributed systems of medical devices.

1998 ACM Subject Classification J.3 Life and Medical Sciences, C.2.2 Computer-Communi-
cation Networks

Keywords and phrases Integrated Clinical Environment, Devices Profile for Web Services, ISO/
IEEE 11073

Digital Object Identifier 10.4230/0ASIcs.MCPS.2014.15

1 Introduction

Modern operating rooms (ORs) and intensive care units (ICUs) are equipped with numerous
medical devices delivered by different manufacturers. While the amount of devices contin-
uously increased over time, interoperability has not been adapted in the same way [14].
However, interconnecting interoperable medical devices can improve patient safety and op-
timize clinical workflows by providing the right information at the right time, in the right
? David Gregorczyk,. Stefan Fischer,. Timm Busshaus, Stefan Schlichting, and Stephan Pohlsen;

5v icensed under Creative Commons License CC-BY

Medical Cyber Physical Systems — Medical Device Interoperability, Safety, and Security Assurance (MCPS’14).
Editors: Volker Turau, Marta Kwiatkowska, Rahul Mangharam, and Christoph Weyer; pp. 15-27

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.MCPS.2014.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

16

An Approach to Integrate Medical Devices in High Acuity Environments

amount, at the right location and in the necessary quality [21]. As a result it makes the
clinical work much easier and saves money.

Typical use cases are characterized by medical device safety-interlocks, remote control or
data exchange with clinical information systems (CISs). Safety-interlocked devices perform
a reciprocal monitoring to increase patient safety. For example, stopping an infusion at a
predetermined blood pressure value or to prevent intra-abdominal CO2 insufflation if the
heart rate and blood pressure are unmonitored [7]. Remote control means that designated
device parameters can be controlled by remote devices. For example, muting a monitoring
device’s alert system or regulating the power of an ultrasound cutting device from a central
OR cockpit. CIS communication comprises on the one hand a medical device providing data
for, and on the other hand a medical device consuming data from a CIS or any electronic
medical record system. Here, the most prominent example is the aquisition of patient
demographics and other patient related data to be used during surgery.

The IEEE refers to interoperability as the ability of two or more IT systems to exchange
information and to utilize the information that has been exchanged [9]. As a consequence,
to achieve interoperability it is both important to assure error resistent data transmission
and correct data interpretation. Assurance of data interpretation is twofold. Syntactic inter-
pretation offers consistent data exchange according to an underlying specification, whereby
semantic interoperability is the ability to interpret information exchanged with other sys-
tems, and to make effective use of it [8].

Unfortunately, in current distributed systems of medical devices interoperability is com-
monly achieved by using proprietary, vendor-dependent communication protocols and mid-
dleware. Products like Storz OR1 [12] or Olympus ENDOALPHA [17] provide fully inte-
grated ORs. However, these systems are restricted to specific vendors and product mod-
els. Furthermore, integration after deployment at the Point-of-care (PoC) is a cumbersome
task since in medical applications there is typically no system integrator with expert-level
technical knowledge available [13]. In summary, realizing the aforementioned use cases is
cost-intensive and will lead to isolated applications.

To enable heterogeneous interoperability, we introduce a future-proof, open and efficient
architecture, protocol stack and middleware which is designed to satisfy functional and
non-functional requirements on distributed systems of medical devices. The remainder of
this paper is structered as follows. The second section illustrates related technologies and
research projects. Section 3 describes the underlying conceptual model, requirements and a
brief protocol overview. The overall conceptual model is described in Section 4. Sections 5
and 6 introduce the implementation and evaluation of the system. Our work is concluded
in Section 7 which also gives an outlook on future work.

2 Related Work

In the past substantial standardization effort and several research projects have been car-
ried out on medical device interoperability. The most popular standard is the ISO/IEEE
11073 (x73) [10]. It is separated into series 11073-1xxxx to 11073-7xxxx, of which the first
three are the most important ones. The first part defines fundamentals for all subsequent
parts, containing language elements, a nomenclature and an object-oriented Domain In-
formation Model (DIM). The second part describes message exchange patterns between
medical devices referring to the upper application layers of the ISO/OSI model. Physical
interfaces are described as part of the third serie. However, most often only the DIM and
nomenclature part are referenced due to the fact that underlying transport protocols do not

D. Gregorczyk, S. Fischer, T. Busshaus, S. Schlichting, and S. Pohisen

Table 1 Functional requirements (left) and non-functional requirements (right).

Plug & Play Risk Management

Discovery & binding Safe communication

Device capability description at runtime Access control

Standardized protocols and open data access Trust establishment between participants
Communication (1-1, 1-n, n-m) Privacy of patient-related data

Event notification Latency in milliseconds

Data reporting
Remote control

support the needs of current distributed systems of medical devices. As of today, x73 is
rarely implemented by medical device manufacturers.

Another important work was done by Goldman et al. from the United States as part
of the Medical Device “Plug-and-Play” Interoperability Program (MDPnP). They have
published the ASTM F2761-1:200 Integrated Clinical Environment (ICE) standard [3]. It
defines functional elements for PoC related IT systems, especially focusing on communication
of patient data and on equipment command and control. Though the ICE standard gives
sophisticated information on conceptual system design, no concrete technical specifications
and implementations have been created yet.

There is also much research done in Germany. All roads run together in the OR.NET
project [19] that began in September 2012. It combines and consolidates the concepts of
predecessor projects to develop a proposal for a new standard called Open Surgical Com-
munication Protocol (OSCP). Foundational predecessor projects are SOMIT FUSION [23],
SOMIT OrthoMIT [24], Smart.OR [22], TiCoLi [26], TeKoMed [25] and DOOP [5]. All
of these projects propose an architecture based on the idea of a Service-oriented Medical
Device Architecture which is described in Section 3. The OASIS standard Devices Profile
for Web Services serves as the fundamental transport protocol providing TCP/IP and UDP
transport bindings, decentralized service discovery and eventing capabilities.

3 SOA for Medical Devices

The middleware presented in this paper follows the principles of the well-known Service-
oriented Architecture (SOA) paradigm [15]. Service providers offer their capabilities by
means of machine-readable service descriptions and publish them to a service directory.
Service consumers can discover these services by using the service directory. Afterwards,
they dynamically bind to suitable service providers and invoke their operations.

If SOA principles are applicated on device communication, it is called a Service-oriented
Device Architecture (SODA) [4]. In a SODA, services encapsulate both a device’s func-
tionality and physical user interface. They are then called device services. In addition to
the regular SOA request-response model, publish-subscribe systems are used to transmit
information between service providers and consumers. In publish-subscribe systems the
communication direction is reversed such that service providers start communicating with
service consumers.

If a SODA is applied to a distributed system of medical devices, it is defined as a Service-
oriented Medical Device Architecture (SOMDA). Device services are then called medical
device services. Middleware systems which implement a SOMDA have certain functional
and non-functional requirements to satisfy. Requirements have been acquired by Dréger and
are listed in Table 1. Since SOMDA is an abstract concept, implementation directives are

17

MCPS’14

18

An Approach to Integrate Medical Devices in High Acuity Environments

Application protocols
ICE Prot. X ICE Prot. Y BICEPS
MDPWS
Streaming WS-Safetylnformation Compression
DPWS
WS-Discovery WS-Eventing WS-MetadataExchange
WS-Addressing WS-Security
HTTP SOAP-over-UDP
IP/UDP/TCP

Figure 1 The openSDC protocol stack.

required to get a corresponding middleware up and running. The middleware introduced in
this paper is based on Web Services and is called openSDC [18]. Figure 1 shows the protocol
stack that is implemented in openSDC.

The most general protocol is the Devices Profile for Web Services (DPWS) [6]. A Web
Services profile contains a certain set of specifications and defines appropriate constraints
to eliminate protocol ambiguities. DPWS was first invented by Microsoft to interconnect
network devices and PCs in a plug-and-play-like fashion. In particular, it was proposed to
automatically detect network printers and download suitable drivers. DPWS comes with
decentralized service discovery, eventing capabilities and is based on open standards. Hence,
it meets the features of a SODA and commonly fulfills the requirements Plug & Play and
Communiction (1-1,1-n,n-m) listed in Table 1.

DPWS is not sufficient to meet the complete set of requirements for a SOMDA. There-
fore, openSDC implements a special DPWS dedicated to medical software: the Medical De-
vices Profile for Web Services (MDPWS). It provides streaming capabilities, error-resistent
data transmission and compression options. Besides MDPWS, the Basic Integrated Clinical
Environment Protocol Specification (BICEPS) provides a domain-specific protocol to offer
generic and extensible device access and modeling. MDPWS and BICEPS are described in
detail in the next section.

4 Conceptual Design

A central aspect of the work presented in this paper is the capability to be extensible for
future communication needs. For this purpose a layered protocol stack has been developed.
As shown in Figure 1, it is separated into three different layers. In conjunction with DPWS,
MDPWS builds the transport layer to securely transmit messages. BICEPS introduces an
extensible message information model (MIM) and access services to facilitate medical device
interoperability. With changing network conditions, MDPWS can be replaced by upcoming,
improved or redundant transport protocols, without altering the domain and message model.

D. Gregorczyk, S. Fischer, T. Busshaus, S. Schlichting, and S. Pohisen

41 MDPWS

MDPWS is based on DPWS version 1.1 [6]. DPWS became an OASIS standard in June
2009 is used by openSDC to provide Web Services-based features like:

Service-oriented interaction

Service discovery using WS-Discovery [16]

Service description using WSDL [2]

Publish-Subscribe using WS-Eventing [1]

One major requirement of openSDC is to be extensible for future communication needs.
DPWS (and the underlying Web Services technology) is designed for extensibility. But it is
an enabling technology rather than a comprehensive communication specification. Hence,
DPWS only provides basic features which are constrained and enhanced by MDPWS to
enable safe communication in distributed systems of medical devices in high acuity environ-
ments. The extended features of MDPWS are explained in the following subsections. In
some cases, fundamental knowledge of DPWS may be beneficial.

4.1.1 Liveliness

To assure that a medical device is still active, MDPWS defines to send a directed Probe
message as specified in DPWS.

4.1.2 Streaming

A typical use-case in PoC scenarios is the transmission of vital parameters by using wave-
forms. To enable efficient waveform transmission using Web Services, MDPWS includes
SOAP-over-UDP and WS-Streaming. WS-Streaming is part of the MDPWS specification
and has not been published yet. It defines a policy to embed descriptive information on
streams provided by a Web Service. WS-Streaming does not explicitly define stream man-
agement and transport, but provides the capability to announce the existence and type of
a stream.

4.1.3 Safety and Security

Any communication protocol dealing with distributed systems of medical devices has to
avoid impairment of patient safety. Therefore, remote control mechanisms have to be at
least single fault safe. Moreover, another risk control measure is the exchange of a remote
invocation context.

Single fault safety can typically be met by providing dual channel transmission. To
remotely modify device parameters, invocation information is sent redundantly over two
independent channels. The second channel might be separated in time or representation.
In time means that the second channel is established temporally after the first channel has
been transmitted. The drawback of separation in time is that it requires stateful services
and double transmission costs. Separation in representation is achieved by providing both
channels in a single message. The service provider detects failures, for example, by means
of an invalid checksum. Figure 2 illustrates the dual channel transmission in accordance
to separation in representation. Data is given to the middleware of the service consumer
by means of two input objects. The middleware serializes and deserializes one input object
and compares the result to the second object. This implicates that parser end serializer
are working correctly. The serialized object is transmitted to the service provider. On the

19

MCPS’14

20

An Approach to Integrate Medical Devices in High Acuity Environments

service consumer service provider

application middleware middleware application

checksum
calculator

——

data (C struct, data (C struct,
network Java object) 4P| Java object)
~
copy H
data (C struct, serialized serialized data serialized data i
Java object) data . + checksum p| + checksum data (C struct, data (C struct,
Java object) 4| Java object)

N

serializer

data (C struct,
Java object)
—

parser serializer
checksum
calculator

Legend comparator
code (diagnostic)

Figure 2 Dual channel transmission using separation in presentation.

serialized
data

data (C struct,
Java object)
>
>
comparator
(diagnostic)

provider side, the parsing process and the data duplication generating the second channel
are controlled. In summary, this guarantees that data is not compromised when being
transmitted from one process to another. More information on dual channel transmission is
given in [20].

A remote invocation context is also called a safety context. The service consumer needs to
know which information is required by the service provider to transmit a remote invocation
context. If this knowledge is available to the service consumer, it can append context
information to the service invocation message. An example for a safety context is the
value of a setting an operation is applied to. To enable dual channel transmission and
safety contexts, WS-SafetyInformation has been specified as part of MDPWS. It is not
standardized yet.

4.1.4 Security

Besides patient safety, access control, integrity and confidentiality are major security goals.
Only authorized service consumers should have remote access to devices. Patient data should
be secured by using encryption. MDPWS provides capabilities to meet the aforementioned
requirements. It includes a Public Key Infrastructure (PKI) to gain authorization capabilites
using X.509 certificates. If access control is needed, it is handled on the level of individual
security principles using the PKI. MDPWS specifies that a service provider may control
access to a service by HTTPS with mutual authentication. This also applies to WS-Eventing
services.

MDPWS specifies that a X.509 certificate is issued to a service provider’s Universally
Unique Identifier (UUID) [11]. The same is prescribed to service consumers. Authorization
is enabled by using a Device Access Control List (DACL) which contains subject identities
of security principals and associated granted access rights. In order to be able to handle
groups of security principals, DACL provides group subject identities which are used to grant
access to, for example, device types or devices of certain manufacturers. In order to ensure
decentralization, devices have to maintain root certificates of the manufacturers for every

D. Gregorczyk, S. Fischer, T. Busshaus, S. Schlichting, and S. Pohisen

device they are communicating with. Another solution is to get a separated DACL which is
signed by the clinical operators to verify digital signatures of communication partners. So
far, devices of a dedicated manufacturer trust every other decvice of the same manufacturer.

To ensure confidentiality and integrity of messages, MDPWS states that HT'TPS should
be applied. SOAP-over-HTTPS may also be used. Since SOAP-over-UDP is used to trans-
mit anonymous streaming data, no security mechanism has been defined by MDPWS.

4.2 BICEPS

BICEPS specifies a MIM and access services for the domain of distributed medical devices.
It is based in large parts on the x73 DIM as described in Section 2 and forms a minimal
set of generic functionality and messages to facilitate interoperability and extensibility. A
core component of x73 and even BICEPS is the Medical Device Information Base (MDIB).
It represents an object-oriented model to encapsulate managed medical objects. Managed
medical objects are best known as physiological patient data, device configuration data, or
remote invocation operations.

421 MIM

Communication messages exchanged in distributed systems of medical devices contain state
data about clinical measurements of a patient or the device associated with a patient. More-
over, remote invocation commands might also be transmitted. To enable interoperability,
medical devices have to exchange meta-information about state data as well as contextual
information that describes in which context state data has been acquired. Such information
is described in the BICEPS MIM. It provides two parts: communication message defini-
tions and the MDIB component. For the sake of brevity the communiction messages are
not described in this paper. Basically, for every service request and response, and even for
every notification, BICEPS-MIM defines a dedicated message payload.

The MDIB in turn is divided into a descriptive part and a state part. The descriptive
part holds information on a device’s structure, services and metrics, and provides coded
values. Coded values allow to characterize object types by referencing a coding system
with a version and code identifier. By means of coded values communication partners are
able to interpret transmitted data, for example, the unit of a measurement value. Since
every managed medical object is equipped with a coded value, they can be semantically
interpreted. On the other side, the state part holds the content data that a medical device
can deliver. It should be noted that both parts of the MDIB can change during runtime.

A top level overview of the BICEPS-MIM MDIB descriptive part is given in Figure 3.
A Medical Device System (MDS) is an abstract representation of a physical device that
exposes its capabilities as a medical device service. In accordance to x73 it is depicted as
an HydraMDS and may contain multiple Virtual Medical Devices (VMDs). A VMD is a
representation of a sub-system of a MDS. It may in turn contain multiple channels. Channels
refer to a group of metrics, whereby metrics are abstract representations of measurement
values, settings or status items. BICEPS-MIM specifies by default numeric values, textual
values and sample arrays of numeric values. Nevertheless, it can be extended to any type of
value. MDSs, VMDs and channels can be assigned with an optional alert system. It detects
alert conditions and may signal them by means of alert signals. Alert signals are in most
cased displayed visually or acousticly.

Another part of the model in Figure 3 is the Service Control Object (SCO). It comprises
remote invocation capabilities. This includes affected objects and Quality of Service (QoS)

21

MCPS’'14

22 An Approach to Integrate Medical Devices in High Acuity Environments

LocationContext PatientContext
0..1 0..1
0.*
Context SCO Operation
1 0..1
HydraMDS AlertCondition

~ AlertSystem

w‘ 0.~
0.*
5.1,

VMD 0..x
0.* AlertSignal
Channel
0.x
Metric

Figure 3 Top level overview of the BICEPS-MIM MDIB descriptive part.

parameters. There are different operation types to offer several set methods, non-generic
method calls or remote control calls. The Context element represents the context the un-
derlying MDS is currently working in. This context is designated by patient or location
information.

4.2.2 Service interface

To get remote access to managed medical objects, x73 specifies a generic service interface
called CMDISE. In a slightly different way this interface is also provided by BICEPS. It
contains a generic get service to request data, a generic set service to manipulate data, a
dedicated waveform service to transmit, for example, vital signs, a protected health infor-
mation (PHI) service to request or set patient related information in a secured manner, and
an event report service to enable publish-subscribe data retrieval. Figure 4 depicts the dif-
ferences between CMDISE and BICEPS services. While x73 separates SET and ACTION,
BICEPS merges them to a single service. BICEPS omits CREATE and DELETE since they
provide extended functionality in terms of allowing to manipulate device memory. If CRE-
ATE and DELETE are required in sophisticated scenarios, they can later be implemented
by BICEPS’ extensibility mechanism. Waveform and PHI are extra services provided by
BICEPS. Finally, EVENT REPORT is mapped from x73.

Figure 4 illustrates a coarse-grained service interface. BICEPS uses numerous operations
grouped together to build GET, SET, Waveform, PHI and EVENT REPORT. GET is
separated into:

GetMDIB: retrieval of the full MDIB including descriptive and state part

GetMDDescription: retrieval of the MDIB descriptive part

GetMDState: retrieval of the MDIB state part

D. Gregorczyk, S. Fischer, T. Busshaus, S. Schlichting, and S. Pohisen

GET > GET @

SET > SET/ACTION §
/

ACTION e

CREATE Waveform e

DELETE PHI S

(01]

EVENT REPORT —EVENT REPORT

Figure 4 Coarse-grained mapping of Common Medical Device Information Service Element
(CMDISE) and BICEPS service interfaces.

SET is characterized by:

SetValue: sets a numeric metric

SetString: sets a string metric

SetRange: sets the range of a numeric metric

Activate: executes remote control

EVENT REPORT is the capability to retrieve notifications about either changes of the
descriptive part or the state part. The EVENT REPORT service is divided into

MetricReports: notification of metric changes

AlertReports: provides alert events

ContextReport: notifies when context changes

OperationinvokedReport: since operation calls are queued, this notification provides

operation progress information

MDSCreatedReport: notifies if a MDS appears to be available for access

MDSDeletedReport: notifies if a MDS disappears and is no longer active

ObjectCreatedReport: notifies on any object creation events

ObjectDeletedReport: notifies on any object deletion events

There is no definition on how to subscribe to notifications. BICEPS states that the
underlying transport protocol has to support subscription management.

Waveform is an optional service that defines an interface to retrieve a stream for real-
time sample array metrics. There is only a waveform stream manifested in BICEPS even
without specifying means to subscribe to it. BICEPS states that the underlying transport
protocol has to support subscription management.

Like Waveform, PHI is also an optional service. It allows retrieval and modification of
patient data. Due to privacy reasons this service is separated from other BICEPS services.
Hence, it can separately be protected.

Besides the generic service interface medical devices might offer remotely invokable oper-
ations that are not defined as part of the BICEPS-MIM / BICEPS services. For this purpose
a non-generic operation descriptor can be defined in the descriptive part of the MDIB. It
facilitates non-generic, proprietary service calls to be represented by a coded value. By using
the non-generic operation descriptor, service calls are made accessible through the MDIB.

Finally, BICEPS does not define any QoS requirements, but provides extensibility points
to embed QoS requirements for a transport protocol.

23

MCPS’'14

24

An Approach to Integrate Medical Devices in High Acuity Environments

RTT (ms)
150
1001
501
0,
Java Java Opt.
OAlert 103 35
O Metric 96 27

Figure 5 Maximum round trip time performance measurements for openSDC using JREG6’s
default (Java) and optimized (Java Opt.) environment.

5 Implementation

BICEPS and MDPWS have been released as part of openSDC [18] and can be downloaded
and used for free. OpenSDC serves as a reference implementation for vendors of medical
devices, but is not intended to be used in clinical trials, clinical studies or in clinical routine.

The openSDC project uses a modified version of the WS4D JMEDS stack [27] to gain
DPWS functionality. The modified JMEDS stack is called JDPWS. The remaining com-
ponents of the openSDC stack implement the BICEPS and MDPWS protocols. It allows
either a contract-first approrach by defining the MDIB in a XML file and load it into the
framework, or a code-first approach by building the MDIB in Java code.

6 Evaluation

To get an impression on how stable and powerful openSDC is, performance measurements
have been made using a Java JRE6. A client (2x2 GHz) requests metric values and alerts
twice a second. The device (1x1.1 GHz) responds with 276 metric values and 80 alerts.
Additionally, 10 waveform frames containing at least 20 values are sent out at 200 ms
intervals.

The first measurement is the maximum round trip time (RTT) to deliver an alert and
a numeric metric. It is depicted in Figure 5. When using Java with its default settings,
openSDC causes a maximum RTT of 103 ms to post an alert and 96 ms to post a metric. By
optimizing the JRE using Java’s environment properties, open SDC is on average 69 percent
faster. Figure 6 shows the average and maximum framerate when transmitting a waveform.
In this scenario, only optimized Java has been tested. With an average framerate of 199
frames per second, openSDC’s Web Service Streaming is fast enough to build continuous
1-dimensional signals.

In addition to the previously mentioned simple performance measurements, openSDC has
been tested with real world medical devices as part of a public project workshop in December
2013. Figure 7 gives an idea of the demonstration setup. Participating devices were a Moller-
Wedel operating microscope, a Localite navigation system, a Drédger monitoring device, a
Soring ultra sound surgery device and an Olympus documentation system.

D. Gregorczyk, S. Fischer, T. Busshaus, S. Schlichting, and S. Pohisen

Time between Frames (ms)

250 1

2001

1501

100+

501

04
Avg StdDev Min Max

OJavaOpt.| 199 4 190 210 |

Figure 6 Maximum waveform framerate for openSDC using JRE6’s optimized (Java Opt.) en-
vironment.

Different use cases have been introduced to prove the practical effect of openSDC. First,
patient data arrived at the documentation system by fetching HL7 ADT messages. After-
wards, this data was automatically stored at the microscope and navigation system side
using DPWS. Next, BICEPS was used to transmit vital signs from the patient monitor
to the operating microscope to display health information. Moreover, it was applied to re-
motely control the ultrasound surgery device. By sending activation requests, the operating
microscope was able to control cutting. The navigation system retrieved zoom and focus
information from the operating microscope. Thereby, the navigation system was able to
select proper views of the area currently navigated in.

In all scenarios openSDC provides immediate network responses confirming the mea-
surements in Figure 5. Especially, there was no remarkable delay when remotely controlling
the ultra sound activation. Therefore, the system is fast enough to remotely control devices
where controlling actions have to be initiated and recognized by a human.

7 Conclusion and Future Work

In this paper, we have presented openSDC, a protocol stack which enables heterogeneous
interoperability of medical devices. Based on a set of standards, most prominently including
the Device Profile for Web Services (DPWS), we presented in detail the MDPWS protocols
for message transport in medical environments and BICEPS which is used as an application
protocol for service access. An openly available implementation of openSDC exists, and first
evaluations show promising results.

We see future work mostly in three directions: First, BICEPS will be enhanced by
extending its functionality through providing more plugins. Second, more clinical use cases
will be described and show-cased. Finally, we are working on a seamless integration of
openSDC with clinical IT systems. Especially authentication and authorization will be a
major issue the solution of which will make the system much easier and more secure to use.

—— References

1 Don Box, Luis Felipe Cabrera, Craig Critchley, Francisco Curbera, Donald Ferguson, Steve
Graham, David Hull, Gopal Kakivaya, Amelia Lewis, Brad Lovering, Peter Niblett, David
Orchard, Shivajee Samdarshi, Jeffrey Schlimmer, Igor Sedukhin, John Shewchuk, Sanjiva

25

MCPS’'14

26

An Approach to Integrate Medical Devices in High Acuity Environments

Figure 7 Image of an openSDC powered distributed system of medical devices at a project
workshop in December 2013. F.lLt.r.: operating microscope, navigation system, patient monitor,
ultrasound surgery device and documentation system.

Weerawarana, and David Wortendyke, editors. W3C Member Submission: Web Services
Eventing (WS-Eventing). World Wide Web Consortium (W3C), July 2006.

2 Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana, editors.
Note: Web Services Description Language (WSDL) 1.1. World Wide Web Consortium
(W3C), March 2001.

3 Committee F29.21 on Devices in the Integrated Clinical Environment. ASTM F2761 —
09 Medical Devices and Medical Systems — Essential safety requirements for equipment
comprising the patient-centric integrated clinical environment (ICE) — Part 1: General
requirements and conceptual model. ASTM International, 2009.

4 Scott de Deugd, Randy Carroll, Kevin Kelly, Bill Millett, and Jeffrey Ricker. SODA:
Service Oriented Device Architecture. IEEE Pervasive Computing, 5(3):94-96, c3, 2006.

5 DOOP project. http://www.doop-projekt.de/.

6 Dan Driscoll and Antoine Mensch, editors. OASIS Standard: Devices Profile for Web
Services Version 1.1. OASIS, July 2009.

7 Julian M. Goldman. Medical Devices and Medical Systems — Essential safety requirements
for equipment comprising the patient-centric integrated clinical environment (ICE) — Part
1: General requirements and conceptual model. ASTM International, http://www.mdpnp.
org/uploads/F2761_completed_committee_draft.pdf, 2008.

8 Healthcare Information and Management Systems Society — HIMSS. What is Interoperabil-
ity? http://www.himss.org/library/interoperability-standards/what-is, April
2013.

http://www.doop-projekt.de/
http://www.mdpnp.org/uploads/F2761_completed_committee_draft.pdf
http://www.mdpnp.org/uploads/F2761_completed_committee_draft.pdf
http://www.himss.org/library/interoperability-standards/what-is

D. Gregorczyk, S. Fischer, T. Busshaus, S. Schlichting, and S. Pohisen

10

11

12

13

14

15

16
17

18
19
20

21

22
23
24

25
26
27

IEEE Standard Computer Dictionary. A Compilation of IEEE Standard Computer Glos-
saries, January 1991.

ISO/IEEE. ISO/IEEE 11073: Health informatics — Point-of-care medical device commu-
nication, June 2004.

ITU International Telecommunication Union. Information technology — Open Systems
Interconnection — Procedures for the operation of OSI Registration Authorities: Generation
and registration of Universally Unique Identifiers (UUIDs) and their use as ASN.1 object
identifier components, September 2004.

Karl Storz. OR1. https://www.karlstorz.com/cps/rde/xchg/SID-949FE9DO-512F111A/
karlstorz-en/hs.xs1/522.htm.

B. Larson, J. Hatcliff, S. Procter, and P. Chalin. Requirements specification for apps in
medical application platforms. In Software Engineering in Health Care (SEHC), 2012 4th
International Workshop on, pages 26-32, June 2012.

Kathy Lesh, Sandy Weininger, Julian M. Goldman, Bob Wilson, and Glenn Himes. Med-
ical Device Interoperability-Assessing the Environment. In Proceedings of the 2007 Joint
Workshop on High Confidence Medical Devices, Software, and Systems and Medical Device
Plug-and-Play Interoperability (HCMDSSMDPnP), pages 3-12, Cambridge, Massachusetts,
USA, June 2007. IEEE Computer Society.

C. Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter F Brown, and Rebekah Metz,
editors. OASIS Standard: Reference Model for Service Oriented Architecture 1.0. OASIS,
October 2006.

OASIS. Web Services Dynamic Discovery (WS-Discovery) Version 1.1, 2009.

Olympus. ENDOALPHA. http://www.olympus-europa.com/medical/en/medical_
systems/products_services/systems_integration/productselector_service_
solutions_8. jsp.

openSDC Website. https://sourceforge.net/projects/opensdc/.

OR.NET. OR.NET | Projektwebsite. http://www.ornet.org.

Stephan Poéhlsen, Winfried Schéch, and Stefan Schlichting. A Protocol for Dual Channel
Transmission in Service-Oriented Medical Device Architectures based on Web Services. In
3rd Joint Workshop on High Confidence Medical Devices, Software, and Systems & Medical
Device Plug-and-Play Interoperability, 2011.

Andreas Schweiger, Ali Sunyaev, Jan Marco Leimeister, and Helmut Krcmar. Toward
Seamless Healthcare with Software Agents. Communications of the Association for Infor-
mation Systems (CAIS), pages 692-709, 2007.

smartOR project. http://www.smartor.de/.

SOMIT FUSION project. http://www.somit-fusion.de/SF/.

SOMIT orthoMIT. https://www.vde.com/de/fg/DGBMT/Arbeitsgebiete/Projekte/
Seiten/SOMIT-orthoMIT.aspx.

TeKoMed project. http://kosse-sh.de/projekte/tekomed/.

TiCoLi. http://www.iccas.de/ticoli/.

Web Services for Devices (WS4D). JMEDS (Java Multi Edition DPWS Stack). https:
//sourceforge.net/projects/ws4d-javame/.

27

MCPS’'14

https://www.karlstorz.com/cps/rde/xchg/SID-949FE9D0-512F111A/karlstorz-en/hs.xsl/522.htm
https://www.karlstorz.com/cps/rde/xchg/SID-949FE9D0-512F111A/karlstorz-en/hs.xsl/522.htm
http://www.olympus-europa.com/medical/en/medical_systems/products_services/systems_integration/productselector_service_solutions_8.jsp
http://www.olympus-europa.com/medical/en/medical_systems/products_services/systems_integration/productselector_service_solutions_8.jsp
http://www.olympus-europa.com/medical/en/medical_systems/products_services/systems_integration/productselector_service_solutions_8.jsp
https://sourceforge.net/projects/opensdc/
http://www.ornet.org
http://www.smartor.de/
http://www.somit-fusion.de/SF/
https://www.vde.com/de/fg/DGBMT/Arbeitsgebiete/Projekte/Seiten/SOMIT-orthoMIT.aspx
https://www.vde.com/de/fg/DGBMT/Arbeitsgebiete/Projekte/Seiten/SOMIT-orthoMIT.aspx
http://kosse-sh.de/projekte/tekomed/
http://www.iccas.de/ticoli/
https://sourceforge.net/projects/ws4d-javame/
https://sourceforge.net/projects/ws4d-javame/

	Introduction
	Related Work
	SOA for Medical Devices
	Conceptual Design
	MDPWS
	Liveliness
	Streaming
	Safety and Security
	Security

	BICEPS
	MIM
	Service interface

	Implementation
	Evaluation
	Conclusion and Future Work

