
Throughput Maximization in the Speed-Scaling
Setting∗

Eric Angel1, Evripidis Bampis2, and Vincent Chau1

1 IBISC, Université d’Evry Val d’Essonne, Evry, France
{Eric.Angel,Vincent.Chau}@ibisc.univ-evry.fr

2 Sorbonne Universités, UPMC Univ Paris 06, LIP6, Paris, France
Evripidis.Bampis@lip6.fr

Abstract
We are given a set of n jobs and a single processor that can vary its speed dynamically. Each job
Jj is characterized by its processing requirement (work) pj , its release date rj and its deadline dj .
We are also given a budget of energy E and we study the scheduling problem of maximizing the
throughput (i.e. the number of jobs that are completed on time). While the preemptive energy
minimization problem has been solved in polynomial time [Yao et al., FOCS’95], the complexity
of the problem of maximizing the throughput remained open until now. We answer partially
this question by providing a dynamic programming algorithm that solves the problem in pseudo-
polynomial time. While our result shows that the problem is not strongly NP-hard, the question
of whether the problem can be solved in polynomial time remains a challenging open question.
Our algorithm can also be adapted for solving the weighted version of the problem where every
job is associated with a weight wj and the objective is the maximization of the sum of the weights
of the jobs that are completed on time.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problem

Keywords and phrases energy efficiency, dynamic speed scaling, offline algorithm, throughput,
dynamic programming

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.53

1 Introduction

The problem of scheduling n jobs with release dates and deadlines on a single processor that
can vary its speed dynamically with the objective of minimizing the energy consumption
has been first studied in the seminal paper by Yao et al. [12]. In this paper, we consider
the problem of maximizing the throughput for a given budget of energy. Throughput is
one of the most popular objectives in scheduling literature [5, 10]. Its maximization in the
context of energy-related scheduling is very natural since mobile devices, such as mobile
phones or computers, have a limited energy capacity depending on the quality of their
battery. The maximization of the number of jobs or of the total weight of the jobs executed
on time for a given budget of energy is of great importance. Different variants of the
throughput maximization problem in the online setting have been studied in the literature,
but surprisingly the status of the offline problem remained open.

Formally, we are given a set of n jobs J = {J1, J2, . . . , Jn}, where each job Jj is char-
acterized by its processing requirement (work) pj , its release date rj and its deadline dj .

∗ Supported by the French Agency for Research under the DEFIS program TODO (ANR-09-EMER-010)
and by the project PHC CAI YUANPEI (27927VE)

© Eric Angel, Evripidis Bampis, and Vincent Chau;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 53–62

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62918764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.53
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

54 Throughput Maximization in the Speed-Scaling Setting

We consider integer release dates, deadlines and processing requirements. (For simplicity,
we suppose that the earliest released job is released at t = 0.) We assume that the jobs
have to be executed by a single speed-scalable processor, i.e. a processor which can vary
its speed over time (at a given time, the processor’s speed can be any non-negative value).
The processor can execute at most one job at each time. We measure the processor’s speed
in units of executed work per unit of time. If s(t) denotes the speed of the processor at
time t, then the total amount of work executed by the processor during an interval of time
[t, t′) is equal to

∫ t′
t
s(u)du. Moreover, we assume that the processor’s power consumption

is a convex function of its speed. Specifically, at any time t, the power consumption of the
processor is P (t) = s(t)α, where α > 1 is a constant. Since the power is defined as the rate
of change of the energy consumption, the total energy consumption of the processor during
an interval [t, t′) is

∫ t′
t
s(u)αdu. Note that if the processor runs at a constant speed s during

an interval of time [t, t′), then it executes (t′− t) · s units of work and it consumes (t′− t) · sα
units of energy.

Each job Jj can start being executed after or at its release date rj . Moreover, the
execution of a job may be suspended and continued later from the point of suspension. Given
a budget of energy E, our objective is to find a schedule of maximum throughput whose
energy does not exceed the budget E, where the throughput of a schedule is defined as the
number of jobs which are completed on time, i.e. before their deadline. Observe that a job is
completed on time if it is entirely executed during the interval [rj , dj). By extending the
well-known 3-field notation, this problem can be denoted as 1|pmtn, rj , E|

∑
Uj . We also

consider the weighted version of the problem where every job Jj is also associated with a
weight wj and the objective is no more the maximization of the cardinality of the jobs that
are completed on time, but the maximization of the sum of their weights. We denote this
problem as 1|pmtn, rj , E|

∑
wjUj . In what follows, we consider the problem in the case

where all jobs have arbitrary integer release dates, deadlines and processing requirement.

1.1 Related Works and our Contribution
A series of papers appeared for some online variants of throughput maximization: the first
work that considered throughput maximization and speed scaling in the online setting has
been presented by Chan et al. [6]. They considered the single processor case with release
dates and deadlines and they assumed that there is an upper bound on the processor’s speed.
They are interested in maximizing the throughput, and minimizing the energy among all the
schedules of maximum throughput. They presented an algorithm which is O(1)-competitive
with respect to both objectives. Li [11] has also considered the maximum throughput when
there is an upper bound in the processor’s speed and he proposed a 3-approximation greedy
algorithm for the throughput and a constant approximation ratio for the energy consumption.
In [3], Bansal et al. improved the results of [6], while in [9], Lam et al. studied the 2-processors
environment. In [8], Chan et al. defined the energy efficiency of a schedule to be the total
amount of work completed in time divided by the total energy usage. Given an efficiency
threshold, they considered the problem of finding a schedule of maximum throughput. They
showed that no deterministic algorithm can have competitive ratio less than ∆, the ratio
of the maximum to the minimum jobs’ processing requirement. However, by decreasing
the energy efficiency of the online algorithm the competitive ratio of the problem becomes
constant. Finally, in [7], Chan et al. studied the problem of minimizing the energy plus a
rejection penalty. The rejection penalty is a cost incurred for each job which is not completed
on time and each job is associated with a value which is its importance. The authors proposed
an O(1)-competitive algorithm for the case where the speed is unbounded and they showed

E. Angel, E. Bampis, and V. Chau 55

that no O(1)-competitive algorithm exists for the case where the speed is bounded. In what
follows, we focus on the complexity status of the offline case for general instances. Angel
et al. [1] were the first to consider the throughput maximization problem in the energy
setting for the offline case. They studied the problem for a particular family of instances
where the jobs have agreeable deadlines, i.e. for every pair of jobs Ji and Jj , ri ≤ rj if
and only if di ≤ dj . They provided a polynomial time algorithm to solve the problem for
agreeable instances. However, to the best of our knowledge, the complexity of the unweighted
preemptive problem for arbitrary instances remained unknown until now. In this paper, we
prove that there is a pseudo-polynomial time algorithm for solving the problem optimally.
For the weighted version, the problem is NP-hard even for instances in which all the jobs
have common release dates and deadlines. Angel et al. [1] showed that the problem admits a
pseudo-polynomial time algorithm for agreeable instances. Our algorithm for the unweighted
case can be adapted for the weighted throughput problem with arbitrary release dates and
deadlines solving the problem in pseudo-polynomial time. More recently, Antoniadis et al.
[2] considered a generalization of the classical knapsack problem where the objective is to
maximize the total profit of the chosen items minus the cost incurred by their total weight.
The case where the cost functions are convex can be translated in terms of a weighted
throughput problem where the objective is to select the most profitable set of jobs taking into
account the energy costs. Antoniadis et al. presented a FPTAS and a fast 2-approximation
algorithm for the non-preemptive problem where the jobs have no release dates or deadlines.

We present in this paper an optimal algorithm for throughput maximization when the
preemption of jobs is allowed.

2 Preliminaries

Among the schedules of maximum throughput, we try to find the one of minimum energy
consumption. Therefore, if we knew by an oracle the set of jobs J∗, J∗ ⊆ J , which are
completed on time in an optimal solution, we would simply have to apply an optimal
algorithm for 1|pmtn, rj , dj |E for the jobs in J∗ in order to determine a minimum energy
schedule of maximum throughput for our problem. Such an algorithm has been proposed in
[12]. Based on this observation, we can use in our analysis some properties of an optimal
schedule for 1|pmtn, rj , dj |E.

Let t1, t2, . . . , tK be the time points which correspond to release dates and deadlines of
the jobs so that for each release date and deadline there is a ti value that corresponds to it.
We number the ti values in increasing order, i.e. t1 < t2 < . . . < tK . The following theorem
is a consequence of the algorithm of Yao et al. [12] and was proved in [4].

I Theorem 1. A feasible schedule for 1|pmtn, rj , dj |E is optimal if and only if all the
following hold:
1. Each job Jj is executed at a constant speed sj.
2. The processor is not idle at any time t such that t ∈ (rj , dj], for all Jj ∈ J .
3. The processor runs at a constant speed during any interval (ti, ti+1], for 1 ≤ i ≤ K − 1.
4. If others jobs are scheduled in the span [rj , dj] of Jj , then their speed is necessarily greater

or equal to the speed of Jj.

Theorem 1 is also satisfied by the optimal schedule of 1|pmtn, rj , E|
∑
Uj for the jobs in

J∗. In the following, we suppose that the jobs are sorted in non-decreasing order of their
deadlines (edf order), i.e. d1 ≤ d2 ≤ . . . ≤ dn. Moreover, we suppose that the release dates,
the deadlines and the processing requirements are integer.

STACS’14

56 Throughput Maximization in the Speed-Scaling Setting

I Definition 2. Let J(k, s, t) = {Jj | j ≤ k and s ≤ rj < t} be the set of jobs, among the k
first ones w.r.t. the edf order, whose release dates are within s and t.

I Lemma 3. The total period in which the processor runs at a same speed in an optimal
solution for 1|pmtn, rj , dj |E has an integer length.

Proof. The total period is defined by a set of intervals (ti, ti+1] for 1 ≤ i ≤ K − 1 thanks to
the property 3) in Theorem 1. Since each ti corresponds to some release date or some deadline,
then ti ∈ N, 1 ≤ i ≤ K. Thus every such period has necessarily an integer length. J

I Definition 4. Let L = dmax − rmin be the span of the whole schedule. To simplify the
notation, we assume that rmin = 0.

I Definition 5. Let P =
∑
j pj be the total processing requirement of all the jobs.

I Definition 6. We call an edf schedule, a schedule in which at any time, the processor
schedules the job that has the smallest deadline among the set of available jobs at this time.

In the sequel, all the considered schedules are edf schedules.

3 The Dynamic Program and its Correctness

In this part, we propose an optimal algorithm which is based on dynamic programming
depending on the span length L and the total processing requirement P . As mentioned
previously, among the schedules of maximum throughput, our algorithm constructs a schedule
with the minimum energy consumption.

For a subset of jobs S ⊆ J , a schedule which involves only the jobs in S will be called a
S-schedule.

I Definition 7. Let Gk(s, t, u) be the minimum energy consumption of a S-schedule with
S ⊆ J(k, s, t) such that |S| = u and such that the jobs in S are entirely scheduled in [s, t].

Given a budget of energy E that we cannot exceed, the objective function is
max{u | Gn(0, dmax, u) ≤ E; 0 ≤ u ≤ n}.

I Definition 8. Let Fk−1(x, y, u, `, i, a, h) be the minimum energy consumption of a S-
schedule with S ⊆ J(k − 1, x, y) such that |S| = u and such that the jobs in S are entirely
scheduled in [x, y] during at most a + h × `

i unit times. Moreover, we assume that each
maximal block of consecutive jobs of S starts at a release date and has a length equal to
a′ + h′ × `

i with a′, h′ ∈ N.

Next, we define the set of all important dates of an optimal schedule in which every job
can start and end, and we show that the size of this set is pseudo-polynomial.

I Definition 9. Let Ω = {rj | j = 1, . . . , n} ∪ {dj | j = 1, . . . , n}.

I Definition 10. Let Φ = {s + h × `
i ≤ L | i = 1, . . . , P ; h = 0, . . . , i; s = 0, . . . , L; ` =

1, . . . , L}

I Proposition 11. There exists an optimal schedule O in which for each job, its starting
times and finish times belong to the set Φ, and such that each job is entirely executed with a
speed i

` for some i = 1, . . . , P and ` = 1, . . . , L.

E. Angel, E. Bampis, and V. Chau 57

x y

a1 + h1 × `
i aq + hq × `

iaz + hz × `
i

release date
release date

release date

Figure 1 Illustration of Fk−1(x, y, u, `, i, a, h) in Definition 8 with respect to
∑q

z=1 az + hz × `
i

=
a + h × `

i
.

Proof. W.l.o.g. we can consider that each job has a unit processing requirement. If it is not
the case, we can split a job Jj into pj jobs, each one with a unit processing requirement.

We briefly explain the algorithm proposed in [12] which gives an optimal schedule. At
each step, it selects the (critical) interval I = [s, t] with s and t > s in Ω = {rj | j =
1, . . . , n} ∪ {dj | j = 1, . . . , n}, such that sI = |{Jj | s≤rj≤dj≤t}|

t−s is maximum. All the jobs
inside this interval are executed at the speed sI , which is of the form i

` for some i = 1, . . . , P
and ` = 1, . . . , L, and according to the edf order. This interval cannot be used any more,
and we recompute a new critical interval without considering the jobs and the previous
critical intervals, until all the jobs have been scheduled.

We can remark that the length of each critical interval (at each step) I = [s, t] is an
integer. This follows from the fact that s = rz ∈ N for some job Jz, and t = dj ∈ N for
some job Jj , moreover we remove integer lengths at each step (the length of previous critical
intervals which intersect the current one), so the new considered critical interval has always
an integer length.

Then we can define every potential starting time or completion time of each job in this
interval. We first prove that the completion time of a job in a continuous critical interval, i.e.
a critical interval which has an empty intersection with all other critical intervals, belongs
to Φ. Let Jk be any job in a continuous critical interval and let x and y be respectively its
starting and completion times. Then there is no idle time between s = rf (for some Jf) and
y since it is a critical interval. Let v = i

` be the processor speed in this interval and p = `
i

be the processing time of a job (Recall that each job has the same processing requirement).
The jobs that are executed (even partially) between x and y are not executed neither before
x nor after y since we consider an edf schedule. Thus y − x is a multiple of p. Two cases
may occur:

Either Jk causes a preemption and hence x = rk,
or Jk does not cause any preemption and hence the jobs that are executed between s and
x, are fully scheduled in this interval. Consequently, x− s is a multiple of p.

In both cases, there is a release date rg (either rk or rf) such that between rg and y, the
processor is never idle and such that y is equal to rg modulo p. On top of that, the distance
between rg and t is not greater than n× p. Hence, y ∈ Φ. Now consider the starting time of
any job. This time point is either the release date of the job or is equal to the completion
time of the "previous" one. Thus, starting times also belong to Φ.

Now we consider the starting and the completion times of a job in a critical interval
I in which there is at least another critical interval (with greater speeds) included in I or

STACS’14

58 Throughput Maximization in the Speed-Scaling Setting

intersecting I. Let A be the union of those critical intervals. Since the jobs of I cannot be
scheduled during the intervals A, the starting time and completion time of these jobs have
to be (right)-shifted by an integer value (since each previously critical interval has an integer
length). Thus the starting time and completion time of all the jobs still belong to Φ. J

I Proposition 12. One has

Gk(s, t, u) = min



Gk−1(s, t, u)

min
x∈Φ

0≤u1≤u
0≤u2≤u

0≤u1+u2≤u−1
0≤a≤L; 1≤`≤L
1≤i≤P ; 0≤h≤P
y−x=a+(pk+h) `

i
rk≤x≤y≤dk

 Gk−1(s, x, u1) + Fk−1(x, y, u2, `, i, a, h)

+
(i
`

)α−1
pk +Gk−1(y, t, u− u1 − u2 − 1)



G0(s, t, 0) = 0 ∀s, t ∈ Φ
G0(s, t, u) = +∞ ∀s, t ∈ Φ and u > 0

s x ty

Fk−1(x, y, u2, ℓ, i, a, h) Gk−1(y, t, u− u1 − u2 − 1)Gk−1(s, x, u1)

Jk

Figure 2 Illustration of Proposition 12 where x is the first starting time of Jk and y is the last
completion time of Jk.

Proof. Let G′ be the right hand side of the formula, G′1 be the first line of G′ and G′2 be
the second line of G′.
We first prove that Gk(s, t, u) ≤ G′.

Since J(k − 1, s, t) ⊆ J(k, s, t), then Gk(s, t, u) ≤ Gk−1(s, t, u) = G′1.
Now consider a schedule S1 that realizes Gk−1(s, x, u1), a schedule S2 that realizes

Fk−1(x, y, u2, `, i, a, h) such that y − x = a + (pk + h) × `
i and a schedule S3 that realizes

Gk−1(y, t, u− u1 − u2 − 1). We build a schedule with S1 from s to x, with S2 from x to y
and with S3 from y to t.

Since Fk−1(x, y, u2, `, i, a, h) is a schedule where the processor executes the jobs during
at most a+ h× l

i unit times and we have y − x = a+ (pk + h)× `
i , then there is at least

pk × `
i units time for Jk. Thus Jk can be scheduled with speed i

` during [x, y].
Obviously, the subsets J(k − 1, s, x), J(k − 1, x, y) and J(k − 1, y, t) do not intersect, so

this is a feasible schedule, and its cost is G′2. Hence Gk(s, t, u) ≤ G′2.

We now prove that G′ ≤ Gk(s, t, u).

If Jk /∈ O such that O realizes Gk(s, t, u), then G′1 = Gk(s, t, u).
Now, let us consider the case Jk ∈ O.

E. Angel, E. Bampis, and V. Chau 59

We denote by X the schedule that realizes Gk(s, t, u) in which the first starting time x of
Jk is maximal, and in which y is the last completion time of Jk is also maximal. According
to Proposition 11, we assume that x, y ∈ Φ. We split X (which is an edf schedule) into
three sub-schedules S1 ⊆ J(k − 1, s, x), S2 ⊆ J(k − 1, x, y) ∪ {Jk} and S3 ⊆ J(k − 1, y, t).

We claim that we have the following properties:

P1) all the jobs of S1 are released in [s, x] and are completed before x,
P2) all the jobs of S2 are released in [x, y] and are completed before y,
P3) all the jobs of S3 are released in [y, t] and are completed before t.

We prove P1

Suppose that there is a job Jj ∈ S1 which is not completed before x. Then we can swap
some part of Jj of length ε which is scheduled after x with some part of Jk of length ε at
time x. This can be done since we have dj ≤ dk. Thus we have a contradiction with the fact
that x was maximal.

We prove P2

Similarly, suppose that there is a job Jj ∈ S2 which is not completed before y. Then we can
swap some part of Jj of length ` which is scheduled after y with some part of Jk of length `
in [x, y]. This can be done since we have dj ≤ dk. Thus we have a contradiction with the
fact that y was maximal.

We prove P3

If there exists a job in S3 which is not entirely executed at time t, then the removal of this
job would lead to a lower energy consumption schedule for S3 with the same throughput
value. This contradicts the definition of Gk−1(y, t, |S3|).

Let us now consider the schedule S ′2 = S2 \ Jk in [x, y]. Since [x, y] ⊆ [rk, dk], thanks
to property 4) of Theorem 1, the speeds of jobs in S ′2 are necessarily greater than or equal
to the speed of Jk. Let us consider any maximal block b of consecutive jobs in S ′2. This
block can be partitioned into two sub-blocks b1 and b2 such that b1 (resp. b2) contains all
the jobs of b which are scheduled with a speed equal to (resp. strictly greater than) the
speed of Jk. All the jobs scheduled in block b are also totally completed in b (this comes
from the edf property and because Jk has the biggest deadline). Notice that the speed
of Jk is equal to i

` for some value i = 1, . . . , P and ` = 1, . . . , L thanks to Proposition 11.
Thus the total processing time of b1 is necessarily h′ × `

i . Moreover since from property 3 of
Theorem 1, all the speed changes occur at time ti ∈ N, the block b2 has an integer length.
Therefore, every block b has a length equal to a′ + h′ × `

i and the total processing time of S ′2
is a+ h× `

i . Furthermore, every block b in S ′2 starts at a release date (this comes from the
edf property). On top of that, we have y − x = a+ (h+ pk)× `

i with a = 0, 1, . . . , L and
h = 0, . . . , i. Moreover, every block b in S ′2 starts at a release date (this comes from the edf
property). Hence the cost of the schedule S ′2 is greater than Fk−1(x, y, |S ′2|, `, i, a, h). The
energy consumption of Jk is exactly pk × (i`)

α−1.
Similarly, the cost of the schedule S1 is greater than Gk−1(s, x, |S1|) and the cost of S3 is

greater than Gk−1(y, t, |S3|).
Therefore, Gk(s, t, u) ≥ Gk−1(s, x, |S1|) + Fk−1(x, y, |S2|, `, i, a, h) + Gk−1(y, t, |S3|) +

pk

(i
`

)α−1
= G′2 and Gk(s, t, u) ≥ G′. J

STACS’14

60 Throughput Maximization in the Speed-Scaling Setting

I Proposition 13. One has

Fk−1(x, y, u, `, i, a, h) = min
0≤a′≤a; 0≤h′≤h
x≤x′=rj≤y; j≤k

1≤β≤u
y′=x′+a′+h′× `

i≤y

{Gk−1(x′, y′, β)+Fk−1(y′, y, u−β, `, i, a−a′, h−h′)}

Fk−1(x, y, 0, `, i, a, h) = 0
Fk−1(x, y, u, `, i, 0, 0) = +∞

x yx′ y′

Gk−1(x
′, y′, β)

Fk−1(y
′, y, u− β, `, i, a− a′, h− h′)

a′ + h′ × `
i

β jobs

Figure 3 Illustration of Proposition 13.

Proof. Let F ′ be the right hand side of the equation.
We first prove that Fk−1(x, y, u, `, i, a, h) ≤ F ′.

Let us consider a schedule S1 that realizes Gk−1(x′, y′, β) and a schedule S2 that realizes
Fk−1(y′, y, u− β, `, i, a′, h′). We suppose that the processor is idle during [x, x′]. We build a
schedule with an empty set from x to x′, with S1 from x′ to y′ and with S2 from y′ to y.

Obviously, the subsets J(k−1, x, z) and J(k−1, z, y) do not intersect, so this is a feasible
schedule, and its cost is F ′, thus Fk−1(x, y, u, f, `, i) ≤ F ′.

We now prove that F ′ ≤ Fk−1(x, y, u, `, i, a, h).

Let O be an optimal schedule that realizes Fk−1(x, y, u, `, i, a, h) such that x′ is the first
starting time of the schedule and y′ is the completion time of the first block of jobs in O.
We split it into two sub-schedules S1 ⊆ J(k − 1, x′, y′) and S2 ⊆ J(k − 1, y′, y) such that the
value of x′ is maximal and the value of y′ is also maximal.

Then y′−x′ = a′+h′× `
i for some value a′ = 0, . . . , a and h′ = 0, . . . , h by definition. Thus

we can assume that the jobs in S2 have to be scheduled during at most (a− a′) + (h−h′)× `
i

units of time in [y′, y]. We claim that x′ is a release date by definition.
Moreover, we claim that all the jobs of S2 are released in [y′, y] and are completed before

y. If there exists a job in S2 which is not completed at time t, then the removal of this job
would lead to a lower energy consumption schedule for S2 which contradicts the definition of
Fk−1(y′, y, |S2|, `, i, a− a′, h− h′).

Then the restriction S1 of O in [x′, y′] is a schedule that meets all constraints related to
Gk−1(x′, y′, |S1|). Hence its cost is greater than Gk−1(x′, y′, |S1|). Similarly, the restriction
S2 of O to [y′, y] is a schedule that meets all constraints related to Fk−1(y′, y, |S2|, `, i, a−
a′, h− h′).

Thus F ′ ≤ Fk−1(x, y, u, `, i, a, h). J

E. Angel, E. Bampis, and V. Chau 61

I Theorem 14. The preemptive throughput maximization problem can be solved in O(n6L9P 9)
time and in O(nL6P 6) space.

Proof. The values of Gk(s, t, u) are stored in a multi-dimensional array of size O(|Φ|2n2).
Each value need O(|Φ|n2L2P 2r(F)) time to be computed where r(F) is the running time
for computing Fk−1(x, y, u, `, i, a, h). Since we fix every value of x, y, u, `, i, a, h in the
minimization step, the table F does not need to be pre-computed. Then the running
time is O(n2LP) for each value of F . Therefore, the total running time of the dynamic
programming is O(n6L9P 9). Moreover, the values of Fk−1(x, y, u, `, i, a, h) are stored in a
multi-dimensional array (since we don’t need to remember the Fi values for i < k − 1) of
size O(n|Φ|2L2P 2) = O(nL6P 6). J

The dynamic program can be adapted for the weighted version of the problem and has a
running time of O(n2W 4L9P 9) where W is the sum of the weight of all jobs. This can be
done by considering the total weight of completed jobs of a schedule instead of considering
the number of completed jobs. More formally, this can be done by modifying the definitions
of Gk and Fk−1 in the following way:

Gk(s, t, w) is the minimum energy consumption of a S-schedule with S ⊆ J(k, s, t) such
that

∑
Jj∈S wj ≥ w and such that the jobs in S are entirely scheduled in [s, t], and

Fk−1(x, y, w, `, i, a, h) is the minimum energy consumption of a S-schedule with S ⊆
J(k− 1, x, y) such that

∑
Jj∈S wj ≥ w and such that the jobs in S are entirely scheduled

in [x, y] during at most a+ h× `
i unit times. As for the cardinality case, we assume that

each maximal block of consecutive jobs of S starts at a release date and has a length
equal to a′ + h′ × `

i with a′, h′ ∈ N.

4 Conclusion

In this paper, we proved that there is a pseudo-polynomial time algorithm for solving the
problem optimally. This result is a first (partial) answer to the complexity status of the
throughput maximization problem in the offline setting. Our result shows that the problem
is not strongly NP-hard, but the question of whether there is a polynomial time algorithm
for it remains a challenging open question.

References
1 Eric Angel, Evripidis Bampis, Vincent Chau, and Dimitrios Letsios. Throughput maximiz-

ation for speed-scaling with agreeable deadlines. In T.-H. Hubert Chan, Lap Chi Lau, and
Luca Trevisan, editors, TAMC, volume 7876 of Lecture Notes in Computer Science, pages
10–19. Springer, 2013.

2 Antonios Antoniadis, Chien-Chung Huang, Sebastian Ott, and José Verschae. How to pack
your items when you have to buy your knapsack. In Krishnendu Chatterjee and Jiri Sgall,
editors, MFCS, volume 8087 of Lecture Notes in Computer Science, pages 62–73. Springer,
2013.

3 Nikhil Bansal, Ho-Leung Chan, Tak Wah Lam, and Lap-Kei Lee. Scheduling for speed
bounded processors. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M.
Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP (1), volume 5125
of Lecture Notes in Computer Science, pages 409–420. Springer, 2008.

4 Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Speed scaling to manage energy and
temperature. J. ACM, 54(1), 2007.

STACS’14

62 Throughput Maximization in the Speed-Scaling Setting

5 Peter Brucker. Scheduling Algorithms. Springer Publishing Company, Incorporated, 5th
edition, 2010.

6 Ho-Leung Chan, Wun-Tat Chan, Tak Wah Lam, Lap-Kei Lee, Kin-Sum Mak, and Prudence
W. H. Wong. Energy efficient online deadline scheduling. In Nikhil Bansal, Kirk Pruhs,
and Clifford Stein, editors, SODA, pages 795–804. SIAM, 2007.

7 Ho-Leung Chan, Tak Wah Lam, and Rongbin Li. Tradeoff between energy and throughput
for online deadline scheduling. In Klaus Jansen and Roberto Solis-Oba, editors, WAOA,
volume 6534 of Lecture Notes in Computer Science, pages 59–70. Springer, 2010.

8 Joseph Wun-Tat Chan, Tak Wah Lam, Kin-Sum Mak, and Prudence W. H. Wong. Online
deadline scheduling with bounded energy efficiency. In Jin yi Cai, S. Barry Cooper, and
Hong Zhu, editors, TAMC, volume 4484 of Lecture Notes in Computer Science, pages 416–
427. Springer, 2007.

9 Tak Wah Lam, Lap-Kei Lee, Isaac Kar-Keung To, and Prudence W. H. Wong. Energy
efficient deadline scheduling in two processor systems. In Takeshi Tokuyama, editor, ISAAC,
volume 4835 of Lecture Notes in Computer Science, pages 476–487. Springer, 2007.

10 E. L. Lawler. A dynamic programming algorithm for preemptive scheduling of a single
machine to minimize the number of late jobs. Annals of Operations Research, 26:125–133,
1990.

11 Minming Li. Approximation algorithms for variable voltage processors: Min energy, max
throughput and online heuristics. Theor. Comput. Sci., 412(32):4074–4080, 2011.

12 F. Frances Yao, Alan J. Demers, and Scott Shenker. A scheduling model for reduced CPU
energy. In FOCS, pages 374–382. IEEE Computer Society, 1995.

	Introduction
	Related Works and our Contribution

	Preliminaries
	The Dynamic Program and its Correctness
	Conclusion

