
Efficient Computation of Optimal Energy and
Fractional Weighted Flow Trade-off Schedules
Antonios Antoniadis∗1, Neal Barcelo†2, Mario Consuegra‡3,
Peter Kling§4, Michael Nugent5, Kirk Pruhs¶6, and
Michele Scquizzato‖7

1,2,5,6,7 University of Pittsburgh, Pittsburgh, USA
3 Florida International University, Miami, USA
4 University of Paderborn, Paderborn, Germany

Abstract
We give a polynomial time algorithm to compute an optimal energy and fractional weighted flow
trade-off schedule for a speed-scalable processor with discrete speeds. Our algorithm uses a geo-
metric approach that is based on structural properties obtained from a primal-dual formulation
of the problem.
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1 Introduction

It seems to be a universal law of technology in general, and information technology in
particular, that higher performance comes at the cost of energy efficiency. Thus a common
theme of green computing research is how to manage information technologies so as to obtain
the proper balance between these conflicting goals of performance and energy efficiency. Here
the technology we consider is a speed-scalable processor, as manufactured by the likes of
Intel and AMD, that can operate in different modes, where each mode has a different speed
and power consumption, and the higher speed modes are less energy-efficient in that they
consume more energy per unit of computation. The management problem that we consider
is how to schedule jobs on such a speed-scalable processor in order to obtain an optimal
trade-off between a natural performance measure (fractional weighted flow) and the energy
used. Our main result is a polynomial time algorithm to compute such an optimal trade-off
schedule.

We want to informally elaborate on the statement of our main result. Fully formal
definitions can be found in Section 3. We need to explain how we model the processors, the
jobs, a schedule, our performance measure, and the energy-performance trade-off:
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64 Optimal Energy and Fractional Weighted Flow Trade-off Schedules

The Speed-Scalable Processor: We assume that the processor can operate in any of a
discrete set of modes, each with a specified speed and power consumption.

The Jobs: Each job has a release time when the job arrives in the system, a volume of work
(think of a unit of work as being an infinitesimally small instruction to be executed), and
a total importance or weight. The ratio of the weight to the volume of work specifies the
density of the job, which is the importance per unit of work of that job.

A Schedule: A schedule specifies, for each real time, the job that is being processed and the
mode of the processor.

Our Performance Measure of Fractional Weighted Flow: The fractional weighted flow of
a schedule is the total over all units of work (instructions) of how much time that work
had to wait from its release time until that work was executed on the processor, times
the weight (aggregate importance) of that unit of work. So work with higher weight is
considered to be more important. Presumably the weights are specified by higher-level
applications that have knowledge of the relative importance of various jobs.

Optimal Trade-off Schedule: An optimal trade-off schedule minimizes the fractional weight-
ed flow plus the energy used by the processor (energy is just power integrated over
time). To gain intuition, assume that at time zero a volume p of work of weight w is
released. Intuitively/Heuristically one might think that the processor should operate
in the mode i that minimizes w p

2si
+ Pi

p
si
, where si and Pi are the speed and power of

mode i respectively, until all the work is completed; In this schedule the time to finish
all the work is p

si
, the fractional weighted flow is w p

2si
, and the total energy usage is

Pi
p
si
. So the larger the weight w, the faster the mode that the processor will operate in.

Thus intuitively the application-provided weights inform the system scheduler as to which
mode to operate in so as to obtain the best trade-off between energy and performance.
(The true optimal trade-off schedule for the above instance is more complicated as the
speed will decrease as the work is completed.)
In Section 2 we explain the relationship of our result to related results in the literature.

Unfortunately both the design and analysis of our algorithm are complicated, so in Section 4
we give an overview of the main conceptual ideas before launching into details in the
subsequent sections. In Section 5 we present the obvious linear programming formulation
of the problem, and discuss our interpretation of information that can be gained about
optimal schedules from both the primal and dual linear programs. In Section 6 we use this
information to develop our algorithm. Finally in Section 7 we analyze the running time of
our algorithm. Due to space limitations, many of the details are left for the full version of
the paper.

2 Related Results

To the best of our knowledge there are three papers in the algorithmic literature that study
computing optimal energy trade-off schedules. All of these papers assume that the processor
can run at any non-negative real speed, and that the power used by the processor is some
nice function of the speed, most commonly the power is equal to the speed raised to some
constant α. Essentially both [2, 13] give polynomial time algorithms for the special case
of our problem where the densities of all units of work are the same. The algorithm in
[13] is a homotopic optimization algorithm that intuitively traces out all schedules that
are Pareto-optimal with respect to energy and fractional flow, one of which must obviously
be the optimal energy trade-off schedule. The algorithm in [2] is a dynamic programming
algorithm. [2] also deserves credit for introducing the notion of trade-off schedules. [7] gave
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a polynomial-time algorithm for recognizing an optimal schedule. [7] also showed that the
optimal schedule evolves continuously as a function of the importance of energy, implying
that a continuous homotopic algorithm is, at least in principle, possible. However, [7] was
not able to provide any bound, even exponential, on the time of this algorithm, nor was [7]
able to provide any way to discretize this algorithm.

To reemphasize, the prior literature [2, 13, 7] on our problem assumes that the set of
allowable speeds is continuous. Our setting of discrete speeds both more closely models the
current technology, and seems to be algorithmically more challenging. In [7] the recognition
of an optimal trade-off schedule in the continuous setting is essentially a direct consequence of
the KKT conditions of the natural convex program, as it is observed that there is essentially
only one degree of freedom for each job in any plausibly optimal schedule, and this degree
of freedom can be recovered from the candidate schedule by looking at the speed that the
job is run at any time that the job is run. In the discrete setting, we shall see that there
is again essentially only one degree of freedom for each job, but unfortunately one cannot
easily recover the value of this degree of freedom by examining the candidate schedule. Thus
we do not know of any simple way to even recognize an optimal trade-off schedule in the
discrete setting.

One might also reasonably consider the performance measure of the aggregate weighted
flow over jobs (instead of work), where the flow of a job is the amount of time between when
the job is released and when the last bit of work of that job is finished. In the context that
the jobs are flight queries to a travel site, aggregating over the delay of jobs is probably
more appropriate in the case of Orbitz, as Orbitz does not present the querier with any
information until all the possible flights are available, while aggregating over the delay of
work may be more appropriate in the case of Kayak, as Kayak presents the querier with
flight options as they are found. Also, often the aggregate flow of work is used as a surrogate
measure for the aggregate flow of jobs as it tends to be more mathematically tractable. In
particular, for the trade-off problem that we consider here, the problem is NP-hard if we
were to consider the performance measure of the aggregate weighted flow of jobs, instead of
the aggregate weighted flow of work. The hardness follows immediately from the well known
fact that minimizing the weighted flow time of jobs on a unit speed processor is NP-hard [10],
or from the fact that minimizing total weighted flow, without release times, subject to an
energy budget is NP-hard [12].

There is a fair number of papers that study approximately computing optimal trade-off
schedules, both offline and online. [12] also gives PTAS’s for minimizing total flow without
release times subject to an energy budget in both the continuous and discrete speed settings.
[2, 6, 11, 4, 3, 5, 8, 9] consider online algorithms for optimal total flow and energy, [4, 5]
consider online algorithms for fractional flow and energy. For a survey on energy-efficient
algorithms, see [1].

3 Model & Preliminaries

We consider the problem of scheduling a set J := { 1, 2, . . . , n } of n jobs on a single processor
featuring k different speeds 0 < s1 < s2 < . . . < sk. The power consumption of the processor
while running at speed si is Pi ≥ 0. We use S := { s1, . . . , sk } to denote the set of speeds
and P := {P1, . . . , Pk } to denote the set of powers. While running at speed si, the processor
performs si units of work per time unit and consumes energy at a rate of Pi.

Each job j ∈ J has a release time rj , a processing volume (or work) pj , and a weight wj .
Moreover, we denote the value dj := wj

pj
as the density of job j. All densities are distinct;
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66 Optimal Energy and Fractional Weighted Flow Trade-off Schedules

details about this assumption are left for the full version. For each time t, a schedule S must
decide which job to process at what speed. We allow preemption, that is, a job may be
suspended at any point in time and resumed later on. We model a schedule S by a speed
function V : R≥0 → S and a scheduling policy J : R≥0 → J . Here, V (t) denotes the speed
at time t, and J(t) the job that is scheduled at time t. Jobs can be processed only after they
have been released. For job j let Ij = J−1(j) ∩ [rj ,∞) be the set of times during which it
is processed. A feasible schedule must finish the work of all jobs. That is, the inequality∫
Ij
S(t) dt ≥ pj must hold for all jobs j.
We measure the quality of a given schedule S by means of its energy consumption and

its fractional flow. The speed function V induces a power function P : R≥0 → P, such
that P (t) is the power consumed at time t. The energy consumption of schedule S is
E(S) :=

∫∞
0 P (t) dt. The flow time (also called response time) of a job j is the difference

between its completion time and release time. If Fj denotes the flow time of job j, the
weighted flow of schedule S is

∑
j∈J wjFj . However, we are interested in the fractional flow,

which takes into account that different parts of a job j finish at different times. More formally,
if pj(t) denotes the work of job j that is processed at time t (i.e., pj(t) = V (t) if J(t) = j,
and pj(t) = 0 otherwise), the fractional flow time of job j is F̃ j :=

∫∞
rj

(t− rj)pj(t)
pj

dt. The
fractional weighted flow of schedule S is F̃ (S) :=

∑
j∈J wjF̃ j . The objective function is

E(S) + F̃ (S). Our goal is to find a feasible schedule that minimizes this objective.
We define s0 := 0, P0 := 0, sk+1 := sk, and Pk+1 :=∞ to simplify notation. Note that,

without loss of generality, we can assume Pi−Pi−1
si−si−1

< Pi+1−Pi

si+1−si
; Otherwise, any schedule using

si could be improved by linearly interpolating the speeds si−1 and si+1.

4 Overview

In this section we give an overview of our algorithm design and analysis. We start by
considering a natural linear programming formulation of the problem. We then consider
the dual linear program. Using complementary slackness we find necessary and sufficient
conditions for a candidate schedule to be optimal. Reminiscent of the approach used in the
case of continuous speeds in [7], we then interpret these conditions in the following geometric
manner. Each job j is associated with a linear function Dαj

j (t), which we call dual line. This
dual line has a slope of −dj and passes through point (rj , αj), for some αj > 0. Here t is
time, αj is the dual variable associated with the primal constraint that all the work from job
j must be completed, rj is the release time of job j, and dj is the density of job j. Given
such an αj for each job j, one can obtain an associated schedule as follows: At every time
t, the job j being processed is the one whose dual line is the highest at that time, and the
speed of the processor depends solely on the height of this dual line at that time.

The left picture in Figure 1 shows the dual lines for four different jobs on a processor
with three modes. The horizontal axis is time. The two horizontal dashed lines labeled by
C2 and C3 represent the heights where the speed will transition between the lowest speed
mode and the middle speed mode, and the middle speed mode and the highest speed mode,
respectively (these lines only depend on the speeds and powers of the modes and not on the
jobs). The right picture in Figure 1 shows the associated schedule.

By complementary slackness, a schedule corresponding to a collection of αj ’s is optimal
if and only if it processes exactly pj units of work for each job j. Thus we can reduce finding
an optimal schedule to finding values for these dual variables with this property.

Our algorithm is a primal-dual algorithm that raises the dual αj variables in an organized
way. We iteratively consider the jobs by decreasing density. In iteration i, we construct the
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C1

C2

C3 s3

s2

s1

Figure 1 The dual lines for a 4-job instance, and the associated schedule.

optimal schedule Si for the i most dense jobs from the optimal schedule Si−1 for the i− 1
most dense jobs. We raise the new dual variable αi from 0 until the associated schedule
processes pi units of work from job i. At some point raising the dual variable αi may cause
the dual line for i to “affect” the dual line for a previous job j in the sense that αj must
be raised as αi is raised in order to maintain the invariant that the right amount of work is
processed on job j. Intuitively one might think of “affection” as meaning that the dual lines
intersect (this is not strictly correct, but might be a useful initial geometric interpretation
to gain intuition). More generally this affection relation can be transitive in the sense that
raising the dual variable αj may in turn affect another job, etc.

The algorithm maintains an affection tree rooted at i that describes the affection relation-
ship between jobs, and maintains for each edge in the tree a variable describing the relative
rates that the two incident jobs must be raised in order to maintain the invariant that the
proper amount of work is processed for each job. Thus this tree describes the rates that the
dual variables of old jobs must be raised as the new dual variable αi is raised at a unit rate.

In order to discretize the raising of the dual lines, we define four types of events that
cause a modification to the affection tree:

a pair of jobs either begin or cease to affect each other,
a job either starts using a new mode or stops using some mode,
the rightmost point on a dual line crosses the release time of another job, or
enough work is processed on the new job i.

During an iteration, the algorithm repeatedly computes when the next such event will occur,
raises the dual lines until this event, and then computes the new affection tree. Iteration i
completes when job i has processed enough work. Its correctness follows from the facts that
(i) the affection graph is a tree, (ii) this affection tree is correctly computed, (iii) the four
aforementioned events are exactly the ones that change the affection tree, and (iv) the next
such event is correctly computed by the algorithm. We bound the running time by bounding
the number of events that can occur, the time required to calculate the next event of each
type, and the time required to recompute the affection tree after each event.

5 Structural Properties via Primal-Dual Formulation

In the following, we give an integer linear programming (ILP) description of our problem.
To this end, let us assume that time is divided into discrete time slots such that, in each
time slot, the processor runs at constant speed and processes at most one job. Note that
these time slots may be arbitrarily small, yielding an ILP with many variables and, thus,
rendering a direct solution approach less attractive. However, we are actually not interested
in solving this ILP directly. Instead, we merely strive to use it and its dual in order to obtain
some simple structural properties of an optimal schedule.

STACS’14
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min
∑
j∈J

T∑
t=rj

k∑
i=1

xjti
(
Pi + sidj(t− rj + 1/2)

)
s.t.

T∑
t=rj

k∑
i=1

xjti · si ≥ pj ∀j

∑
j∈J

k∑
i=1

xjti ≤ 1 ∀t

xjti ∈ { 0, 1 } ∀j, t, i

(a) ILP formulation of our scheduling problem.

max
∑
j∈J

pjαj −
T∑
t=1

βt

s.t. βt ≥ αjsi − Pi
−sidj(t− rj + 1/2)
∀j, t, i : t ≥ rj

αj ≥ 0 ∀j
βt ≥ 0 ∀t

(b) Dual program of the ILP’s relaxation.

Figure 2

ILP & Dual Program. Let the indicator variable xjti denote whether job j is processed in
slot t at speed si. Moreover, let T be some upper bound on the total number of time slots.
This allows us to model our scheduling problem via the ILP given in Figure 2a. The first set
of constraints ensures that all jobs are completed, while the second set of constraints ensures
that the processor runs at constant speed and processes at most one job in each time slot.

In order to use properties of duality, we consider the relaxation of the above ILP. It
can easily be shown that any optimal schedule will always use highest density first as its
scheduling policy, and therefore there is no advantage to scheduling partial jobs in any time
slot. It follows that by considering small enough time slots, the value of an optimal solution
to the LP will be no less than the value of the optimal solution to the ILP. After considering
this relaxation and taking the dual, we get the dual program shown in Figure 2b.

The complementary slackness conditions of our primal-dual program are

αj > 0 ⇒
T∑

t=rj

k∑
i=1

xjti · si = pj , (1)

βt > 0 ⇒
∑
j∈J

k∑
i=1

xjti = 1, (2)

xjti > 0 ⇒ βt = αjsi − Pi − sidj(t− rj + 1/2) . (3)

By complementary slackness, any pair of feasible primal-dual solutions that fulfills these
conditions is optimal. We will use this in the following to find a simple way to characterize
optimal schedules.

A simple but important observation is that we can write the last complementary slackness
condition as βt = si

(
αj −dj(t− rj + 1

2 )
)
−Pi. Using the complementary slackness conditions,

the function t 7→ αj − dj(t− rj) can be used to characterize optimal schedules. The following
definitions capture a parametrized version of these job-dependent functions and state how
they imply a corresponding (not necessarily feasible) schedule.

I Definition 1 (Dual Lines and Upper Envelope). For a value a ≥ 0 and a job j we denote
the linear function Da

j : [rj ,∞)→ R, t 7→ a− dj(t− rj) as the dual line of j with offset a.
Given a job set H ⊆ J and corresponding dual lines Daj

j , we define the upper envelope
of H by the upper envelope of its dual lines. That is, the upper envelope of H is a function
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UEH : R≥0 → R≥0, t 7→ maxj∈H
(
D
aj

j (t), 0
)
. We omit the job set from the index if it is clear

from the context.

For technical reasons, we will have to consider the discontinuities in the upper envelope
separately.

I Definition 2 (Left Upper Envelope and Discontinuity). Given a job set H ⊆ J and
upper envelope of H, UEH , we define the left upper envelope at a point t as the limit of
UEH as we approach t from the left. That is, the left upper envelope of H is a function
LUEH : R≥0 → R≥0, t 7→ limt′→t− UEH(t′). Note that an equivalent definition of the left
upper envelope is LUEH(t) = maxj∈H:rj<t

(
D
aj

j (t), 0
)
.

We say that a point t is a discontinuity if UE has a discontinuity at t. Note that this
implies that UE(t) 6= LUE(t).

For the following definition, let us denote Ci := Pi−Pi−1
si−si−1

for i ∈ [k + 1] as the i-th speed
threshold. We use it to define the speeds at which jobs are to be scheduled. It will also be
useful to define Ĉ(x) = mini∈[k+1] {Ci | Ci > x } and Č(x) = maxi∈[k+1] {Ci | Ci ≤ x }.

I Definition 3 (Line Schedule). Consider dual lines Daj

j for all jobs. The corresponding line
schedule schedules job j in all intervals I ⊆ [rj ,∞) of maximal length in which j’s dual line
is on the upper envelope of all jobs (i.e., ∀t ∈ I : Daj

j (t) = UE(t)). The speed of a job j

scheduled at time t is si, with i such that Ci = Č(Daj

j (t)).

See Figure 1 for an example of a line schedule. Together with the complementary slackness
conditions, we can now easily characterize optimal line schedules.

I Lemma 4. Consider dual lines Daj

j for all jobs. The corresponding line schedule is optimal
with respect to fractional weighted flow plus energy if it schedules exactly pj units of work for
each job j.

Proof. Consider the solution x to the ILP induced by the line schedule. We use the offsets
aj of the dual lines to define the dual variables αj := aj + 1

2dj . For t ∈ N, set βt := 0 if
no job is scheduled in the t-th slot and βt := siD

αj

j (t) − Pi if job j is scheduled at speed
si during slot t. It is easy to check that x, α, and β are feasible and that they satisfy the
complementary slackness conditions. Thus, the line schedule must be optimal. J

6 Computing an Optimal Schedule

In this section, we describe and analyze the algorithm for computing an optimal schedule.
We introduce the necessary notation and provide a formal definition of the algorithm in
Subsection 6.1. Then, in Subsection 6.2, we prove the correctness of the algorithm.

6.1 Preliminaries and Formal Algorithm Description
Before formally defining the algorithm, we have to introduce some more notation.

I Definition 5 (Interval Notation). Let r̂1, . . . , r̂n denote the n release times in non-decreasing
order. We define Ψj as a set of indices with q ∈ Ψj if and only if job j is run between
r̂q and r̂q+1 (or after r̂n for q = n). Further, let x`,q,j denote the time that the interval
corresponding to q begins and xr,q,j denote the time that the interval ends. Let s`,q,j denote
the speed at which j is running at the left endpoint corresponding to q and sr,q,j denote
the speed j is running at the right endpoint. Let q`,j be the smallest and qr,j be the largest
indices of Ψj , i.e., the indices of the first and last execution intervals of j.

STACS’14



70 Optimal Energy and Fractional Weighted Flow Trade-off Schedules

Let the indicator variable yr,j(q) denote whether xr,q,j occurs at a release point. Similarly,
y`,j(q) = 1 if x`,q,j occurs at rj , and 0 otherwise. Lastly, χj(q) is 1 if q is not the last interval
in which j is run, and 0 otherwise.

We define ρj(q) to be the last interval of the uninterrupted block of intervals starting at
q, i.e., for all q′ ∈ { q + 1, . . . , ρj(q) }, we have that q′ ∈ Ψj and xr,q′−1,j = x`,q′,j , and either
ρj(q) + 1 6∈ Ψj or xr,ρj(q),j 6= x`,ρj(q)+1,j .

Within iteration i of the algorithm, τ will represent how much we have raised αi. We can
think of τ as the time parameter for this iteration of the algorithm (not time as described in
the original problem description, but time with respect to raising dual-lines). To simplify
notation, we do not index variables by the current iteration of the algorithm. In fact, note
that every variable in our description of the algorithm may be different at each iteration of
the algorithm, e.g., for some job j, αj(τ) may be different at the i-th iteration than at the
(i+ 1)-st iteration. To further simplify notation, we use Dτ

j to denote the dual line of job j
with offset αj(τ). Similarly, we use UEτ to denote the upper envelope of all dual lines Dτ

j for
j ∈ [i] and Sτi to denote the corresponding line schedule. As the line schedule changes with
τ , so does the set of intervals corresponding to it, therefore we consider variables relating to
intervals to be functions of τ as well (e.g., Ψj(τ), x`,q,j(τ), etc.). Prime notation generally
refers to the rate of change of a variable with respect to τ , e.g., α′j(τ0) is the rate of change
of αj with respect to τ at τ0. To lighten notation, we drop τ from variables when its value is
clear from the context.

We start by formally defining a relation capturing the idea of jobs affecting each other
while being raised.

I Definition 6 (Affection). Consider two different jobs j and j′. We say job j affects job j′
at time τ if raising (only) the dual line Dτ

j would decrease the processing time of j′ in the
corresponding line schedule.

We write j → j′ to indicate that j affects j′ (and refer to the parameter τ separately, if not
clear from the context). Similarly, we write j 6→ j′ to state that j does not affect j′.

The affection relation naturally defines a graph on the jobs, which we define below. The
following definition assumes that we are in iteration i of the algorithm.

I Definition 7 (Affection Tree). Let Gi(τ) be the directed graph induced by the affection
relation on jobs 1, . . . , i. Then the affection tree is an undirected graph Ai(τ) = (Vi(τ), Ei(τ))
where j ∈ Vi(τ) if and and only if j is reachable from i in Gi(τ), and for j1, j2 ∈ Vi(τ) we
have (j1, j2) ∈ Ei(τ) if and only if j1 → j2 or j2 → j1.

Lemma 9 states that the affection tree is indeed a tree. We will assume that Ai(τ) is
rooted at i and use the notation (j, j′) ∈ Ai(τ) to indicate that j′ is a child of j.

Given this notation, we now define four different types of events which intuitively represent
the situations in which we must change the rate at which we are raising the dual line. We
assume that from τ until an event we raise each dual line at a constant rate. More formally,
we fix τ and for j ∈ [i] and u ≥ τ let αj(u) = αj(τ) + (u− τ)α′j(τ).

I Definition 8 (Event). For τ0 > τ , we say that an event occurs at τ0 if there exists ε > 0
such that at least one of the following holds for all u ∈ (τ, τ0) and v ∈ (τ0, τ0 + ε):

The affection tree changes, i.e., Ai(u) 6= Ai(v). This is called an affection change event.
The speed at the border of some interval of some job changes. That is, there exists j ∈ [i]
and q ∈ Ψj(τ) such that either s`,q,j(u) 6= s`,q,j(v) or sr,q,j(u) 6= sr,q,j(v). This is called
a speed change event.
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The last interval in which job i is run changes from ending before the release time of
some other job to ending at the release time of that job. That is, there exists a j ∈ [i− 1]
and a q ∈ Ψi(τ) such that xr,q,i(u) < rj and xr,q,i(v) = rj . This is called a simple rate
change event.
Job i completes enough work, i.e., pi(u) < pi < pi(v). This is called a job completion
event.

A formal description of the algorithm can be found in Algorithm 1.

1 for each job i from 1 to n:
2 while pi(τ) < pi: {job i not yet fully processed in current schedule}
3 for each job j ∈ Ai(τ):
4 calculate δj,i(τ) {see Equation (5)}
5 let ∆τ be the smallest ∆τ returned by any of the subroutines below:
6 (a) JobCompletion(S(τ), i, [α′

1, α
′
2, . . . , α

′
i]) {time to next job completion}

7 (b) AffectionChange(S(τ), Ai(τ), [α′
1, α

′
2, . . . , α

′
i]) {time to next affection change}

8 (c) SpeedChange(S(τ), [α′
1, α

′
2, . . . , α

′
i]) {time to next speed change}

9 (d) RateChange(S(τ), i, [α′
1, α

′
2, . . . , α

′
i]) {time to next rate change}

10 for each job j ∈ Ai(τ):
11 raise αj by ∆τ · δj,i

12 set τ = τ + ∆τ
13 update Ai(τ) if needed {only if Case (b) returns the smallest ∆τ}

Algorithm 1 The algorithm for computing an optimal schedule.

6.2 Correctness of the Algorithm
In this subsection we focus on proving the correctness of the algorithm. Throughout this
subsection, we assume that the iteration and value of τ are fixed. The following lemma states
that Ai is indeed a tree. This structure will allow us to easily compute how fast to raise the
different dual lines of jobs in Ai (as long as the connected component does not change).

I Lemma 9. Let Ai be the (affection) graph of Definition 7. Then Ai is a tree, and if we
root Ai at i, then for any parent and child pair (ιj , j) ∈ G there holds that dιj < dj.

Recall that we have to raise the dual lines such that the total work done for any job
j ∈ [i− 1] is preserved. To calculate the work processed for j in an interval, we must take
into account the different speeds at which j is run in that interval. Note that the intersection
of j’s dual line with the i-th speed threshold Ci occurs at t = αj−Ci

dj
+ rj . Therefore, the

work done by a job j ∈ [i] is given by

pj =
∑
q∈Ψj

s`,q,j

(
αj − Č(Dτ

j (x`,q,j))
dj

+ rj − x`,q,j

)

+
∑

k:s`,q,j>sk>sr,q,j

sk

(
αj − Ck
dj

+ rj −
(
αj − Ck+1

dj
+ rj

))

+ sr,q,j

(
xr,q,j −

(
αj − Ĉ(Dτ

j (xr,q,j))
dj

+ rj

))
.

It follows that the change in the work of job j with respect to τ is

p′j =
∑
q∈Ψj

[
s`,q,j

(
α′j
dj
− x′`,q,j

)
+ sr,q,j

(
x′r,q,j −

α′j
dj

)]
. (4)
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For some child j′ of j in Ai, let qj,j′ be the index of the interval of Ψj that begins with
the completion of j′. Recall that Dτ

i is raised at a rate of 1 with respect to τ , and for a
parent and child (ιj , j) in the affection tree, the rate of change for αj with respect to αιj
used by the algorithm is:

δj,ιj :=
(

1 + y`,j(q`,j)
dj − dιj
dj

s`,q`,j ,j − sr,ρj(q`,j),j

sr,qr,j ,j

+
∑

(j,j′)∈Ai

(
(1− δj′,j)

dj − dιj
dj′ − dj

s`,qj,j′ ,j

sr,qr,j ,j
+
dj − dιj
dj

s`,qj,j′ ,j − sr,ρ(qj,j′ ),j

sr,qr,j ,j

))−1

. (5)

Lemma 12 states that these rates are work-preserving for all jobs j ∈ [i− 1]. Note that the
algorithm actually uses δj,i which we can compute by taking the product of the δk,k′ over all
edges (k, k′) on the path from j to i. Similarly we can compute δj,j′ for all j, j′ ∈ Ai.

I Observation 10. Since, by Lemma 9, parents in the affection tree are always of lower-
density than their children, and since dual lines are monotonically decreasing, we have that
διj ,j ≤ 1. Therefore, intersection points on the upper envelope can never move towards the
right as τ gets increased.

The following lemma states how fast the borders of the various intervals change with respect
to the change in τ .

I Lemma 11. Consider any job j ∈ Ai whose dual line gets raised at a rate of δj,i.
(a) For an interval q ∈ Ψj, if y`,j(q) = 1, then x′`,q,j = 0.
(b) For an interval q ∈ Ψj, if χj(q) = 1, then x′r,q,j = 0.
(c) Let (j, j′) be an edge in the affection tree and let qj and qj′ denote the corresponding

intervals for j and j′. Then, x′`,qj ,j
= x′r,qj′ ,j

′ = −
α′j−α

′
j′

dj′−dj
. Note that this captures the

case q ∈ Ψj′ with χj′(q) = 0 and j′ 6= i.
(d) For an interval q ∈ Ψi, if χi(q) = 0, then x′r,q,i = 0 or x′r,q,i = 1/di.

Equation (4) defines a system of differential equations. In the following, we first show
how to compute a work-preserving solution for this system (in which p′j = 0 for all j ∈ [i− 1])
if α′i = 1, and then show that there is only a polynomial number of events and that the
corresponding τ values can be easily computed.

I Lemma 12. For a parent and child (ιj , j) ∈ Ai, set α′j = δj,ιjα
′
ιj , and for j′ 6∈ Ai set

αj′ = 0. Then p′j = 0 for j ∈ [i− 1].

Although it is simple to identify the next occurrence of job completion, speed change, or
simple rate change events, it is more involved to identify the next affection change event.
Therefore, we provide the following lemma to account for this case.

I Lemma 13. An affection change event occurs at time τ0 if and only if at least one of the
following occurs.
(a) An intersection point t between a parent and child (j, j′) ∈ Ai becomes equal to rj . That

is, at τ0 > τ such that Dτ0
j (rj) = Dτ0

j′ (rj) = UEτ0(rj).
(b) Two intersection points t1 and t2 on the upper envelope become equal. That is, for

(j1, j2) ∈ Ai and (j2, j3) ∈ Ai, at τ0 > τ such that there is a t with Dτ0
j1

(t) = Dτ0
j2

(t) =
Dτ0
j3

(t) = UEτ0(t).
(c) An intersection point between j and j′ meets the (left) upper envelope at the right

endpoint of an interval in which j′ was being run. Furthermore, there exists ε > 0 so
that for all τ ∈ (τ0 − ε, τ0), j′ was not in the affection tree.
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6.2.1 The Subroutines

Recall that there are four types of events that cause the algorithm to recalculate the rates at
which it is raising the dual lines. In Lemma 13 we gave necessary and sufficient conditions
for affection change events to occur. The conditions for the remaining event types to occur
follow easily from Lemma 11 and Observation 10. Given the rates at which the algorithm is
raising the dual lines, we can then easily calculate the time until each of these events will
occur next. The subroutines describing these calculations are left for the full version.

6.2.2 Completing the Correctness Proof

We are now ready to prove the correctness of the algorithm. Note that we handle termination
in Theorem 15, where we prove a polynomial running time for our algorithm.

I Theorem 14. Assuming that Algorithm 1 terminates, it computes an optimal schedule.

Proof. The algorithm outputs a line schedule S, so by Lemma 4, S is optimal if for all jobs
j the schedule does exactly pj work on j. We now show that this is indeed the case.

For a fixed iteration i, we argue that a change in the rate at which work is increasing for
j (i.e., a change in p′j) may occur only when an event occurs. This follows from Equation (4),
since the rate only changes when there is a change in the rate at which the endpoints of
intervals move, when there is a change in the speed levels employed in each interval, or when
there is an affection change (and hence a change in the intervals of a job or a change in α′j).
These are exactly the events we have defined. It can be shown that the algorithm recalculates
the rates at any event (proofs deferred to the full version), and by Lemma 12 it calculates
the correct rates such that p′j(τ) = 0 for j ∈ [i− 1] and for every τ until some τ0 such that
pi(τ0) = pi, which the algorithm calculates correctly (proof also deferred to the full version).
Thus we get the invariant that after iteration i we have a line schedule for the first i jobs
that does pj work for every job j ∈ [i]. The theorem follows. J

7 The Running Time

The purpose of this section is to prove the following theorem.

I Theorem 15. Algorithm 1 takes O
(
n4k

)
time.

We do this by upper bounding the number of events that can occur. This is relatively
straightforward for job completion, simple rate change, and speed change events, which
can occur O(n), O

(
n2), and O(n2k

)
times, respectively. However, bounding the number of

times an affection change event can occur is more involved: One can show that whenever an
edge is removed from the affection tree, there exists an edge which will never again be in
the affection tree. This implies that the total number of affection change events is upper
bounded by O

(
n2) as well. It can be shown that the next event can always be calculated in

O
(
n2) time, and that the affection tree can be updated in O(n) time after each affection

change event. By combining these results it follows that our algorithm has a running time of
O
(
n4k

)
.

Due to space constraints, the missing proofs in the statements above are left for the full
version.
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