
Palindrome Recognition In The Streaming Model
Petra Berenbrink1, Funda Ergün1,2, Frederik Mallmann-Trenn1,
and Erfan Sadeqi Azer1

1 Simon Fraser University, Burnaby, Canada
2 Indiana University, Bloomington, US

Abstract
A palindrome is defined as a string which reads forwards the same as backwards, like, for example,
the string “racecar”. In the Palindrome Problem, one tries to find all palindromes in a given
string. In contrast, in the case of the Longest Palindromic Substring Problem, the goal is to find
an arbitrary one of the longest palindromes in the string.

In this paper we present three algorithms in the streaming model for the the above problems,
where at any point in time we are only allowed to use sublinear space. We first present a one-
pass randomized algorithm that solves the Palindrome Problem. It has an additive error and uses
O(
√
n) space. We also give two variants of the algorithm which solve related and practical prob-

lems. The second algorithm determines the exact locations of all longest palindromes using two
passes and O(

√
n) space. The third algorithm is a one-pass randomized algorithm, which solves

the Longest Palindromic Substring Problem. It has a multiplicative error using only O(log(n))
space.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Palindromes, Streaming Model, Complementary Palindrome

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.149

1 Introduction

A palindrome is defined as a string which reads forwards the same as backwards, e.g., the
string “racecar”. In the Palindrome Problem one tries to find all palindromes (palindromic
substrings) in an input string. A related problem is the Longest Palindromic Substring
Problem in which one tries to find any one of the longest palindromes in the input.

In this paper we regard the streaming version of both problems, where the input arrives
over time (or, alternatively, is read as a stream) and the algorithms are allowed space sub
linear in the size of the input. Our first contribution is a one-pass randomized algorithm that
solves the Palindrome Problem. It has an additive error and uses O(

√
n) space. The second

contribution is a two-pass algorithm which determines the exact locations of all longest
palindromes. It uses the first algorithm as the first pass and uses O(

√
n) space. The third is

a one-pass randomized algorithm for the Longest Palindromic Substring Problem. It has a
multiplicative error using O(log(n)) space. We also give two variants of the first algorithm
which solve other related practical problems.1

Palindrome recognition is important in computational biology. Palindromic structures
can frequently be found in proteins and identifying them gives researchers hints about the
structure of nucleic acids. For example, in nucleic acid secondary structure prediction, one is
interested in complementary palindromes which are considered in the full version.

1 The full version of this paper can be accessed at arXiv:1308.3466.

© Petra Berenbrink, Funda Ergün, Frederik Mallmann-Trenn, and
Erfan Sadeqi Azer;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 149–161

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62918749?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.149
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


150 Palindrome Recognition In The Streaming Model

Related work. While palindromes are well-studied, to the best of our knowledge there are
no results for the streaming model. Manacher [5] presents a linear time online algorithm
that reports at any time whether all symbols seen so far form a palindrome. The authors of
[1] show how to modify this algorithm in order to find all palindromic substrings in linear
time (using a parallel algorithm).

Some of the techniques used in this paper have their origin in the streaming pattern
matching literature. In the Pattern Matching Problem, one tries to find all occurrences of
a given pattern P in a text T . The first algorithm for pattern matching in the streaming
model was shown in [6] and requires O(log(m)) space. The authors of [3] give a simpler
pattern matching algorithm with no preprocessing, as well as a related streaming algorithm
for estimating a stream’s Hamming distance to p-periodicity. Breslauer and Galil [2] provide
an algorithm which does not report false negatives and can also be run in real-time. All of
the above algorithms in the string model take advantage of Karp-Rabin fingerprints [4].

Our results. In this paper we present three algorithms, ApproxSqrt, Exact, and ApproxLog
for finding palindromes and estimating their length in a given stream S of length n.

We assume that the workspace is bounded while the output space is unlimited.
Given an index m in stream S, P [m] denotes the palindrome of maximal length cantered
at index m of S. Our algorithms identify a palindrome P [m] by its midpoint m and by
its length `(m). Our first algorithm outputs all palindromes in S and therefore solves the
Palindrome Problem.

I Theorem 1 (ApproxSqrt). For any ε ∈ [1/√n, 1] Algorithm ApproxSqrt(S, ε) reports for
every palindrome P [m] in S its midpoint m as well as an estimate ˜̀(m) (of `(m)) such that
w.h.p.2 `(m)− ε

√
n < ˜̀(m) ≤ `(m). The algorithm makes one pass over S, uses O(n/ε) time,

and O(√n/ε) space.

The algorithm can easily be modified to report all palindromes P [m] in S with `(m) ≥ t
and no P [m] with `(m) < t− ε

√
n for some threshold t ∈ N. For t ≤

√
n one can modify the

algorithm to report a palindrome P [m] if and only if `(m) ≥ t. Note, the algorithm is also
(1 + ε)-approximative.

Our next algorithm, Exact, uses two-passes to solve the Longest Palindromic Substring
Problem. It uses ApproxSqrt as the first pass. In the second pass the algorithm finds the
midpoints of all palindromes of length exactly `max where `max is the (initially unknown)
length of the longest palindrome in S.

I Theorem 2 (Exact). Algorithm Exact reports w.h.p. `max and m for all palindromes P [m]
with a length of `max. The algorithm makes two passes over S, uses O(n) time, and O(

√
n)

space.

Arguably the most significant contribution of this paper is an algorithm which requires only
logarithmic space. In contrast to ApproxSqrt (Theorem 1) this algorithm has a multiplicative
error and it reports only one of the longest palindromes (see Longest Palindromic Substring
Problem) instead of all of them due to the limited space.

I Theorem 3 (ApproxLog). For any ε in (0, 1], Algorithm ApproxLog reports w.h.p. an
arbitrary palindrome P [m] of length at least `max/(1 + ε). The algorithm makes one pass
over S, uses O( n log(n)

ε log(1+ε) ) time, and O( log(n)
ε log(1+ε) ) space.

2 We say an event happens with high probability (w.h.p.) if its probability is at least 1− 1/nc for c ∈ N.



P. Berenbrink, F. Ergün, F. Mallmann-Trenn, and E. Sadeqi Azer 151

We also show two practical generalisations of our algorithms which can be run simultaneously.
These results are presented in the next observation and the next lemma.

I Observation 4. For `max ≥
√
n, there is an algorithm which reports w.h.p. the midpoints

of all palindromes P [m] with `(m) > `max − ε
√
n. The algorithm makes one pass over S,

uses O(n/ε) time, and O(√n/ε) space.

I Lemma 5. For `max <
√
n, there is an algorithm which reports w.h.p. `max and a P [m]

s.t. `(m) = `max. The algorithm makes one pass over S, uses O(n) time, and O(
√
n) space.

In the full version of the paper we will show an almost matching bound for the additive
error of Algorithm ApproxSqrt. In more detail, we will show that any randomized one-pass
algorithm that approximates the length of the longest palindrome up to an additive error of
ε
√
n must use Ω(√n/ε) space.

2 Model and Definitions

Let S ∈ Σn denote the input stream of length n over an alphabet Σ3. For simplicity we
assume symbols to be positive integers, i.e., Σ ⊂ N. We define S[i] as the symbol at index i
and S[i, j] = S[i], S[i+ 1], . . . S[j]. In this paper we use the streaming model: In one pass
the algorithm goes over the whole input stream S, reading S[i] in iteration i of the pass. In
this paper we assume that the algorithm has a memory of size o(n), but the output space is
unlimited. We use the so-called word model where the space equals the number of O(log(n))
registers (See [2]).

S contains an odd palindrome of length ` with midpoint m ∈ {`, . . . , n− `} if S[m− i] =
S[m + i] for all i ∈ {1, . . . , `}. Similarly, S contains an even palindrome of length ` if
S[m − i + 1] = S[m + i] for all i ∈ {1, . . . , `}. In other words, a palindrome is odd if and
only if its length is odd. For simplicity, our algorithms assume palindromes to be even
– it is easy to adjust our results for finding odd palindromes by apply the algorithm to
S[1]S[1]S[2]S[2] · · ·S[n]S[n] instead of S[1, n].

The maximal palindrome (the palindrome of maximal length) in S[1, i] with midpoint m
is called P [m, i] and the maximal palindrome in S with midpoint m is called P [m] which
equals P [m,n]. We define `(m, i) as the maximum length of the palindrome with midpoint
m in the substring S[1, i]. The maximal length of the palindrome in S with midpoint m
is denoted by `(m). Moreover, for z ∈ Z \ {1, . . . , n} we define `(z) = 0. Furthermore, for
`∗ ∈ N we define P [m] to be an `∗-palindrome if `(m) ≥ `∗. Throughout this paper, ˜̀() refers
to an estimate of `().

We use the KR-Fingerprint, which was first defined by Karp and Rabin [4] to compress
strings and was later used in the streaming pattern matching problem (see [6], [3], and
[2]). For a string S′ we define the forward fingerprint (similar to [2]) and its reverse as
follows. φFr,p(S′) =

(∑|S′|
i=1 S

′[i] · ri
)

mod p φRr,p(S′) =
(∑|S′|

i=1 S
′[i] · rl−i+1

)
mod p,<

where p is an arbitrary prime number in [n4, n5] and r is randomly chosen from {1, . . . , p}.
We write φF (φR respectively) as opposed to φFr,p(φRr,p respectively) whenever r and p are
fixed. We define for 1 ≤ i ≤ j ≤ n the fingerprint FF (i, j) as the fingerprint of S[i, j], i.e.,
FF (i, j) = φF (S[i, j]) = r−(i−1)(φF (S[1, j])− φF (S[1, i− 1])) mod p. Similarly, FR(i, j) =
φR(S[i, j]) = φR(S[1, j]) − rj−i+1 · φR(S[1, i − 1]) mod p. For every 1 ≤ i ≤ n −

√
n the

3 All soundness, space, and time complexity analyses assumes |Σ| to be polynomial. One can use a proper
random hash function for bigger alphabets.

STACS’14



152 Palindrome Recognition In The Streaming Model

ic1 c2 c3

FR(c0 + 1, m1)

FF (m2 + 1, i)

FF (m1 + 1, i)

FR(c1 + 1, m2)

m1 m2
c0

Figure 1 At iteration i two midpoints m1 and
m2 are checked. Corresponding substrings are
denoted by brackets. Note, the distance from c0

to m1 equals the distance from m1 to i. Similarly,
the distance from c1 to m2 equals the distance
from m2 to i.

m Legend:
sliding fingerprint partition

sliding window

i

Figure 2 Illustration of the F ingerprint

P airs after iteration i of algorithm with
√

n = 6,
ε = 1/3, and m = i−

√
n.

fingerprints FF (1, i− 1−
√
n) and FR(1, i− 1−

√
n) are called Master Fingerprints. Note

that it is easy to obtain FF (i, j + 1) by adding the term S[j + 1]rj+1 to FF (i, j). Similarly,
we obtain FF (i + 1, j) by subtracting S[i] from r−1 · FF (i, j). The authors of [2] observe
useful properties which we state in the full version.

3 Algorithm Simple ApproxSqrt

In this section, we introduce a simple one-pass algorithm which reports all midpoints and
length estimates of palindromes in S. Throughout this paper we use i to denote the current
index which the algorithm reads. Simple ApproxSqrt keeps the last 2

√
n symbols of S[1, i] in

the memory.
It is easy to determine the exact length palindromes of length less than

√
n since any

such palindrome is fully contained in memory at some point. However, in order to achieve
a better time bound the algorithm only approximates the length of short palindromes. It
is more complicated to estimate the length of a palindrome with a length of at least

√
n.

However, Simple ApproxSqrt detects that its length is at least
√
n and stores it as an RS-

entry (introduced later) in a list Li. The RS-entry contains the midpoint as well as a length
estimate of the palindrome, which is updated as i increases.
In order to estimate the lengths of the long palindromes the algorithm designates certain
indices of S as checkpoints. For every checkpoint c the algorithm stores a fingerprint FR(1, c)
enabling the algorithm to do the following. For every midpoint m of a long palindrome:
Whenever the distance from a checkpoint c to m (c occurs before m) equals the distance from
m to i, the algorithm compares the substring from c to m to the reverse of the substring from
m to i by using fingerprints. We refer to this operation as checking P [m] against checkpoint
c. If S[c+ 1,m]R = S[m+ 1, i], then we say that P [m] was sucessfully checked with c and
the algorithm updates the length estimate for P [m], ˜̀(m). The next time the algorithm
possibly updates ˜̀(m) is after d iterations where d equals the distance between checkpoints.
This distance d gives the additive approximation. See Figure 1 for an illustration.

We need the following definitions before we state the algorithm: For k ∈ N with 0 ≤ k ≤
b
√
n
ε c checkpoint ck is the index at position k · bε

√
nc thus checkpoints are bε

√
nc indices

apart. Whenever we say that an algorithm stores a checkpoint, this means storing the
data belonging to this checkpoint. Additionally, the algorithm stores Fingerprint Pairs,
fingerprints of size bε

√
nc, 2bε

√
nc, . . . starting or ending in the middle of the sliding window.

In the following, we first describe the data that the algorithm has in its memory after reading
S[1, i− 1], then we describe the algorithm itself. Let RS(m, i) denote the representation of
P [m] which is stored at time i. As opposed to storing P [m] directly, the algorithm stores m,
˜̀(m, i), FF (1,m), and FR(1,m).



P. Berenbrink, F. Ergün, F. Mallmann-Trenn, and E. Sadeqi Azer 153

Memory invariants. Just before algorithm Simple ApproxSqrt reads S[i] it has stored the
following information. Note that, for ease of referencing, during an iteration i data structures
are indexed with the iteration number i.
That is, for instance, Li−1 is called Li after S[i] is read.

1. The contents of the sliding window S[i− 2
√
n− 1, i− 1].

2. The two Master Fingerprints FF (1, i− 1) and FR(1, i− 1).
3. A list of Fingerprint Pairs: Let r be the maximum integer s.t. r · bε

√
nc <

√
n.

For j ∈ {bε
√
nc, 2 · bε

√
nc, . . . , r · bε

√
nc,
√
n} the algorithm stores the pair

FR((i−
√
n)− j, (i−

√
n)− 1), and FF (i−

√
n, (i−

√
n) + j − 1). See Figure 2 for an

illustration.
4. A list CLi−1 which consists of all fingerprints of prefixes of S ending at already seen

checkpoints, i.e., CLi−1 =
[
FR(1, c1), FR(1, c2), . . . , FR

(
1, cb(i − 1)/bε

√
ncc
)]

5. A list Li−1 containing representation of all
√
n-palindromes with a midpoint located in

S[1, (i− 1)−
√
n]. The jth entry of Li−1 has the form

RS(mj , i− 1) = (mj , ˜̀(mj , i− 1), FF (1,mj), FR(1,mj)) where

(a mj is the midpoint of the jth palindrome in S[1, (i− 1)−
√
n] with a length of at least√

n. Therefore, mj < mj+1 for 1 ≤ j ≤ |Li−1| − 1.
(b ˜̀(mj , i− 1) is the current estimate of `(mj , i− 1).

In the following, we explain how the algorithm maintains the above invariants.

Maintenance. At iteration i the algorithm performs the following steps. It is implicit that
Li−1 and CLi− 1 become Li and CLi respectively.

1. Read S[i], set m = i−
√
n. Update the sliding window to S[m−

√
n, i] = S[i− 2

√
n, i]

2. Update the Master Fingerprints to be FF (1, i) and FR(1, i).
3. If i is a checkpoint (i.e., a multiple of bε

√
nc), then add FR(1, i) to CLi.

4. Update all Fingerprint Pairs: For j ∈ {bε
√
nc, 2 · bε

√
nc, , . . . , r · bε

√
nc,
√
n}

Update FR(m−j,m−1) to FR(m−j+1,m) and FF (m,m+j−1) to FF (m+1,m+j).
If FR(m− j + 1,m) = FF (m+ 1,m+ j), then set ˜̀(m, i) = j.
If ˜̀(m, i) <

√
n, output m and ˜̀(m, i).

5. If ˜̀(m, i) ≥
√
n, add add RS(m, i) to Li:

Li = Li ◦ (m, ˜̀(m, i), FF (1,m), FR(1,m)).
6. For all ck with 1 ≤ k ≤ b i

bε
√
ncc and RS(mj , i) ∈ Li with i −mj = mj − ck, check if

˜̀(mj , i) can be updated:

If the left side of mj is the reverse of the right side of mj (i.e., FR(ck + 1,mj) =
FF (mj + 1, i)) then update RS(mj , i) by updating ˜̀(mj , i) to i−mj .

7. If i = n, then report Ln.

In all proofs in this paper which hold w.h.p. we assume that fingerprints do not fail as
we take less than n2 fingerprints and by using the following Lemma, the probability that a
fingerprint fails is at most 1/nc+2.

I Lemma 6. (Theorem 1 of [2]) For two arbitrary strings s and s′ with s 6= s′ the probability
that φF (s) = φF (s′) is smaller than 1/nc+2 for some c ∈ N.

STACS’14



154 Palindrome Recognition In The Streaming Model

Thus, by applying the union bound the probability that no fingerprint fails is at least 1−n−c.
The following lemma shows that the Simple ApproxSqrt finds all palindromes along with the
estimates as stated in Theorem 1. Simple ApproxSqrt does not fulfill the time and space
bounds of Theorem 1; we will later show how to improve its efficiency. The proof can be
found in the full version.

I Lemma 7. For any ε in [1/√n, 1] ApproxSqrt(S, ε) reports for every palindrome P [m] in
S its midpoint m as well as an estimate ˜̀(m) such that w.h.p. `(m)− ε

√
n < ˜̀(m) ≤ `(m).

4 A space-efficient version

In this section, we show how to modify Simple ApproxSqrt so that it matches the time and
space requirements of Theorem 1. The main idea of the space improvement is to store the
lists Li in a compressed form.

Compression. It is possible in the simple algorithm for Li to have linear length. In such
cases S contains many overlapping palindromes which show a certain periodic pattern as
shown in Corollary 12, which our algorithm exploits to compress the entries of Li. This idea
was first introduced in [6], and is used in [3], and [2]. More specifically, our technique is a
modification of the compression in [2]. In the following, we give some definitions in order to
show how to compress the list. First we define a run which is a sequence of midpoints of
overlapping palindromes.

I Definition 8 (`∗−Run). Let `∗ be an arbitrary integer and h ≥ 3. Let m1,m2,m3, . . . ,mh

be consecutive midpoints of `∗-palindromes in S. m1, . . . ,mh form an `∗-run if mj+1−mj ≤
`∗/2 for all j ∈ {1, . . . , h− 1}.

In Corollary 12 we show that m2 −m1 = m3 −m2 = · · · = mh −mh−1. We say that a run
is maximal if the run cannot be extended by other palindromes. More formally:

I Definition 9 (Maximal `∗−Run). An `∗-run over m1, . . . ,mh is maximal it satisfies both
of the following: i) `(m1 − (m2 −m1)) < `∗, ii) `(mh + (m2 −m1)) < `∗.

Simple ApproxSqrt stores palindromes explicitly in Li, i.e., Li = [RS(m1, i); . . . ;RS(m|Li|, i)]
where RS(mj , i) = (mj , ˜̀(mj , i), FF (1,mj), FR(1,mj)), for all j ∈ {1, 2, . . . , h}. The im-
proved Algorithm ApproxSqrt stores these midpoints in a compressed way in list L̂i. Approx-
Sqrt distinguishes among three cases: Those palindromes which

1. are not part of a
√
n-run are stored explicitly as before. We call them RS-entries. Let

P [m, i] be such a palindrome. After iteration i the algorithm stores RS(m, i).
2. form a maximal

√
n-run are stored in a data structure called RF -entry. Letm1, . . . ,mh be

the midpoints of a maximal
√
n-run. The data structure stores the following information.

m1, m2 −m1, h, ˜̀(m1, i), ˜̀(mb 1+h
2 c, i),

˜̀(md 1+h
2 e, i),

˜̀(mh, i),
FF (1,m1), FR(1,m1), FF (m1 + 1,m2), FR(m1 + 1,m2)

3. form a
√
n-run which is not maximal (i.e., it can possibly be extended) in a data structure

called RNF -entry. The information stored in an RNF -entry is the same as in an RF -entry,
but it does not contain the entries: ˜̀(mb 1+h

2 c, i),
˜̀(md 1+h

2 e, i), and
˜̀(mh, i).

The algorithm stores only the estimate (of the length) and the midpoint of the following
palindromes explicitly.



P. Berenbrink, F. Ergün, F. Mallmann-Trenn, and E. Sadeqi Azer 155

P [m] for an RS-entry (Therefore all palindromes which are not part of a
√
n-run)

P [m1], P [mb(h + 1)/2c], P [md(h + 1)/2e], and P [mh] for an RF -entry
P [m1] for an RNF -entry.

In what follows we refer to the above listed palindromes as explicitly stored palindromes.
We argue in Observation 15 that in any interval of length

√
n the number of explicitly stored

palindromes is bounded by a constant.

4.1 Algorithm ApproxSqrt

In this subsection, we describe some modifications of Simple ApproxSqrt in order to obtain a
space complexity of O(

√
n
ε ) and a total running time of O(nε ). ApproxSqrt is the same as

Simple ApproxSqrt, but it compresses the stored palindromes. ApproxSqrt uses the same
memory invariants as Simple ApproxSqrt, but it uses L̂i as opposed to Li.

ApproxSqrt uses the first four steps of Simple ApproxSqrt. Step 5, Step 6, and Step 7 are
replaced. The modified Step 5 ensures that there are at most two RS-entries per interval of
length

√
n. Moreover, Step 6 is adjusted since ApproxSqrt stores only the length estimate of

explicitly stored palindromes.

5. If ˜̀(m, i) ≥
√
n, obtain L̂i by adding the palindrome with midpoint m(= i−

√
n) to L̂i−1

as follows:

a. The last element in L̂i is the following RNF -entry(
m1,m2 −m1, h, ˜̀(m1, i), FF (1,m1), FR(1,m1), FF (m1 + 1,m2), FR(m1 + 1,m2)

)
.

i. If the palindrome can be added to this run, i.e., m = m1 + h(m2 −m1), then we
increment the h in the RNF -entry by 1.

ii. If the palindrome cannot be added: Store P [m, i] as an RS-entry: L̂i = L̂i ◦
(m, ˜̀(m, i), FF (1,m), FR(1,m)). Moreover, convert the RNF -entry into the RF -
entry by adding ˜̀(mb 1+h

2 c, i),
˜̀(md 1+h

2 e, i) and
˜̀(mh, i): First we calculatemb 1+h

2 c
=

m1 +
(
b 1+h

2 − 1c
)

(m2 − m1). One can calculate md 1+h
2 e

similarly. For m′ ∈
{mb 1+h

2 c,md 1+h
2 e,mh} calculate ˜̀(m′, i) =

max
i−2
√
n≤j≤i

{j−m′ | ∃ck with j−m′ = m′−ck and FR(ck+1,m′) = FF (m′+1, j)}.

b. The last two entries in L̂i are stored as RS-entries and together with P [m, i] form a√
n-run. Then remove the entries of the two palindromes out of L̂i−1 and add a new

RNF -entry with all three palindromes to L̂i−1:
m1, ˜̀(m1, i), FF (1,m1), FF (1,m2), FR(1,m1), FR(1,m2),m2 − m1, h = 3. Retrieve
FF (m1 + 1,m2) and FR(m1 + 1,m2).

c. Otherwise, store P [m, i] as an RS-entry: L̂i = L̂i ◦ (m, ˜̀(m, i), FF (1,m), FR(1,m))

6. This step is similar to step 6 of Simple ApproxSqrt the only difference is that we check
only for explicitly stored palindromes if they can be extended outwards. 4

7. If i = n. If the last element in L̂i is an RNF -entry, then convert it into an RF -entry as
in 5(a)ii. Report Ln.

4 This step is only important for the running time.

STACS’14



156 Palindrome Recognition In The Streaming Model

4.2 Structural Properties
In this subsection, we prove structural properties of palindromes. These properties allow us
to compress (by using RS-entries and RF -entries) overlapping palindromes P [m1], . . . , P [mh]
in such a way that at any iteration i all the information stored RS(m1, i), . . . , RS(mh, i) is
available. The structural properties imply, informally speaking, that the palindromes are
either far from each other, leading to a small number of them, or they are overlapping and it
is possible to compress them. Lemma 11 shows this structure for short intervals containing
at least three palindromes. Corollary 12 shows a similar structure for palindromes of a run
which is used by ApproxSqrt. We first give the common definition of periodicity.

I Definition 10 (period). A string S′ is said to have period p if it consists of repetitions of a
block of p symbols. Formally, S′ has period p if S′[j] = S[j + p] for all j = 1, . . . , |S′| − p. 5

I Lemma 11. Let m1 < m2 < m3 < · · · < mh be indices in S that are consecutive midpoints
of `∗-palindromes for an arbitrary natural number `∗. If mh −m1 ≤ `∗, then
(a) m1,m2,m3, . . . ,mh are equally spaced in S, i.e., |m2 − m1| = |mk+1 − mk| ∀k ∈
{1, . . . , h− 1}

(b) S[m1 + 1,mh] =
{

(wwR)h−1
2 h is odd

(wwR)h−2
2 w h is even

, where w = S[m1 + 1,m2].

Proof. Given m1,m2, . . . ,mh and `∗ we prove the following stronger claim by induction over
the midpoints {m1, . . . ,mj}. (a’) m1,m2, . . . ,mj are equally spaced. (b’) S[m1 + 1,mj + `∗]
is a prefix of wwRwwR... .
Base case j = 2: Since we assumem1 is the midpoint of an `∗-palindrome and `∗ ≥ mh−m1 ≥
m2 −m1 = |w|, we have that S[m1 − |w|+ 1,m1] = wR. Recall that `(m2) ≥ `∗ ≥ |w| and
thus, S[m1 + 1,m2 + |w|] = wwR.
We can continue this argument and derive that S[m1 + 1,m2 + `∗] is a prefix of wwR . . . wwR.
(a’) for j = 2 holds trivially.
Inductive step j − 1 → j: Assume (a’) and (b’) hold up to mj−1. We first argue that
|mj −m1| is a multiple of |m2 −m1| = |w|. Suppose mj = m1 + |w| · q + r for some integers
q ≥ 0 and r ∈ {1, . . . , |w| − 1}. Since mj ≤ mj−1 + `∗, the interval [m1 + 1,mj−1 + `∗]
contains mj . Therefore, by inductive hypothesis, mj − r is an index where either w or wR
starts. This implies that the prefix of wwR(or wRw) of size 2r is a palindrome and the string
wwR(or wRw) has period 2r. On the other hand, by consecutiveness assumption, there is no
midpoint of an `∗-palindrome in the interval [m1 + 1,m2 − 1]. does not have a period of 2p,
a contradiction. We derive that mj −m1 is multiple of |w|.
Hence, we assume mj = mj−1 + q · |w| for some q. The assumption that mj is a midpoint
of an `∗-palindrome beside the inductive hypothesis implies (b’) for j. The structure of
S[mj−1 +|w|−`∗+1,mj−1 +|w|+`∗] shows thatmj−1 +|w| is a midpoint of an `∗-palindrome.
This means that mj = mj−1 + |w|. This gives (a’) and yields the induction step. J

Corollary 12 shows the structure of overlapping palindromes and is essential for the
compression. The main difference between Corollary 12 and Lemma 11 is the required
distance between the midpoints of a run. Lemma 11 assumes that every palindrome in
the run overlaps with all other palindromes. In contrast, Corollary 12 assumes that every
palindrome P [mj ] overlaps with P [mj−2], P [mj−1], P [mj+1], and P [mj+2]. It can be proven
by an induction over the midpoints and using Lemma 11. The proof is in the full version.

5 Here, p is called a period for S′ even if p > |S′|/2.



P. Berenbrink, F. Ergün, F. Mallmann-Trenn, and E. Sadeqi Azer 157

I Corollary 12. If m1,m2, . . . ,mh form an `∗-run for an arbitrary natural number `∗ then
(a) m1,m2,m3, . . . ,mh are equally spaced in S, i.e., |m2 − m1| = |mk+1 − mk| ∀k ∈
{1, . . . , h− 1}

(b) S[m1 + 1,mh] =
{

(wwR)h−1
2 h is odd

(wwR)h−2
2 w h is even

, where w = S[m1 + 1,m2].

Lemma 13 shows the pattern for the lengths of the palindromes in each half of the run.
This allows us to only store a constant number of length estimates per run. The proof can
be found in the full version.

I Lemma 13. At iteration i, let m1,m2,m3, ...,mh be midpoints of a maximal `∗-run in
S[1, i] for an arbitrary natural number `∗. For any midpoint mj, we have:

`(mj , i) =
{
`(m1, i) + (j − 1) · (m2 −m1) j < h+1

2

`(mh, i) + (h− j) · (m2 −m1) j > h+1
2

4.3 Analysis of the Algorithm
We show that one can convert RS-entries into a run and vice versa and ApproxSqrt’s
maintenance of RF -entries and RNF -entries does not impair the length estimates. The
following lemma shows that one can retrieve the length estimate of a palindrome as well as
its fingerprint from an RF -entry.

I Lemma 14. At iteration i, the RF -entry over m1,m2, . . . ,mh is a lossless compression of
[RS(m1, i); . . . ;RS(mh, i)]

Let Compressed Run be the general term for RF -entry and RNF -entry. We argue that
in any interval of length

√
n we only need to store at most two single palindromes and two

Compressed Runs. Suppose there were three RS-entries, then, by Corollary 12, they form a√
n-run since they overlap each other. Therefore, the three RS-entries would be stored in a

Compressed Run. For a similar reason there cannot be more than two Compressed Runs in
one interval of length

√
n. We derive the following observation.

I Observation 15. For any interval of length
√
n there can be at most two RS-entries and

two Compressed Runs in L∗.
We now have what we need in order to prove Theorem 1; the proof is given in the full version.

5 Algorithm Exact

This section describes Algorithm Exact which determines the exact length of the longest
palindrome in S using O(

√
n) space and two passes over S.

For the first pass this algorithm runs ApproxSqrt (S, 1
2 ) (meaning that ε = 1/2) and the

variant of ApproxSqrt described in Lemma 5 simultaneously. The first pass returns `max
(Lemma 5) if `max <

√
n. Otherwise, the first pass (Theorem 1) returns for every palindrome

P [m], with `(m) ≥
√
n, an estimate satisfying `(m)− √n/2 < ˜̀(m) ≤ `(m) w.h.p..

The algorithm for the second pass is determined by the outcome of the first pass. For the
case `max <

√
n, it uses the sliding window to find all P [m] with `(m) = `max. If `max ≥

√
n,

then the first pass only returns an additive √n/2-approximation of the palindrome lengths.
We define the uncertain intervals of P [m] to be: I1(m) = S[m− ˜̀(m)− √n/2 + 1,m− ˜̀(m)]
and I2(m) = S[m+ ˜̀(m) + 1,m+ ˜̀(m) + √n/2].

The algorithm uses the length estimate calculated in the first pass to delete all RS-entries
(Step 3) which cannot be the longest palindromes. Similarly, the algorithm (Step 2) only

STACS’14



158 Palindrome Recognition In The Streaming Model

keeps the middle entries of RF -entries since these are the longest palindromes of their run
(A proof can be found in the full version). In the second pass, Algorithm Exact stores I1(m)
for a palindrome P [m] if it was not deleted. Algorithm Exact compares the symbols of I1(m)
symbol by symbol to I2(m) until the first mismatch is found. Then the algorithm knows the
exact length `(m) and discards I1(m). The analysis will show, at any time the number of
stored uncertain intervals is bounded by a constant.

First Pass. Run the following two algorithms simultaneously:
1. ApproxSqrt (S, 1/2). Let L be the returned list.
2. Variant of ApproxSqrt (See Lemma 5) which reports `max if `max <

√
n.

Second Pass

`max <
√
n: Use a sliding window of size 2

√
n and maintain two fingerprints FR[i −√

n− `max + 1, i−
√
n], and FF [i−

√
n+ 1, i−

√
n+ `max]. Whenever these fingerprints

match, report P [i−
√
n].

`max ≥
√
n: In this case, the algorithm uses a preprocessing phase first.

Preprocessing
1. Set ˜̀

max = max{˜̀(m) | P [m] is stored in L as an RF or an RS entry}.
2. For every RF -entry RF in L with midpoints m1, . . . ,mh remove RF from L and add
Rs(m, i) = (m, ˜̀(m), FF (1,m), FR(1,m)) to L, for m ∈ {mb(h+1)/2c,md(h+1)/2e}. To
do this, calculate mb 1+h

2 c
= m1 + (b 1+h

2 c− 1)(m2−m1) and md 1+h
2 e

= m1 + (d 1+h
2 e−

1)(m2 −m1). Retrieve FF (1,m) and FR(1,m) for m ∈ {mb(h+1)/2c,md(h+1)/2e}.
3. Delete all RS-entries (mk, ˜̀(mk), FF (1,mk), FR(1,mk)) with ˜̀(mk) ≤ ˜̀

max −
√
n/2

from L.
4. For every palindrome P [m] ∈ L set I1(m) := (m− ˜̀(m)− 1/2

√
n,m− ˜̀(m)] and set

finished(m) := false.

The resulting list is called L∗.

String processing. At iteration i the algorithm performs the following steps.

1. Read S[i]. If there is a palindrome P [m] such that i ∈ I1(m), then store S[i].
2. If there is a midpoint m such that m+ ˜̀(m) < i < m+ ˜̀(m) +

√
n

2 , finished(m) = false,
and S[m− (i−m) + 1] 6= S[i], then set finished(m) := true and `(m) = i−m− 1.

3. If there is a palindrome P [m] such that i ≥ ˜̀(m) +m+
√
n

2 , then discard I1(m).
4. If i = n, then output `(m) and m of all P [m] in L∗ with `(m) = `max.

We analyse Exact in the full version.

6 Algorithm ApproxLog

In this section, we present an algorithm which reports one of the longest palindromes and
uses only logarithmic space. ApproxLog has a multiplicative error instead of an additive
error term. Similar to ApproxSqrt we have special indices of S designated as checkpoints
that we keep along with some constant size data in memory. The checkpoints are used to
estimate the length of palindromes. However, this time checkpoints (and their data) are only
stored for a limited time. Since we move from additive to multiplicative error we do not
need checkpoints to be spread evenly in S. At iteration i, the number of checkpoints in any



P. Berenbrink, F. Ergün, F. Mallmann-Trenn, and E. Sadeqi Azer 159

interval of fixed length decreases exponentially with distance to i. The algorithm stores a
palindrome P [m] (as an RS-entry or RNF -entry) until there is a checkpoint c such that P [m]
was checked unsuccessfully against c. A palindrome is stored in the lists belonging to the last
checkpoint with which is was checked successfully. In what follows we set δ ,

√
1 + ε − 1

for the ease of notation. Every checkpoint c has an attribute called level(c). It is used to
determine the number of iterations the checkpoint data remains in the memory.

Memory invariants. After algorithm ApproxLog has processed S[1, i−1] and before reading
S[i] it contains the following information:

1. Two Master Fingerprints up to index i− 1, i.e., FF (1, i− 1) and FR(1, i− 1).
2. A list of checkpoints CLi−1. For every c ∈ CLi−1 we have

level(c) such that c is in CLi−1 iff c ≥ (i− 1)− 2(1 + δ)level(c).
fingerprint(c) = FR(1, c)
a list Lc. It contains all palindromes which were successfully checked with c, but with
no other checkpoint c′ < c. The palindromes in Lc are either RS-entries or RNF -entries
(See Algorithm ApproxSqrt).

3. The midpoint m∗i−1 and the length estimate ˜̀(m∗i−1, i − 1) of the longest palindrome
found so far.

The algorithm maintains the following property. If P [m, i] was successfully checked with
checkpoint c but with no other checkpoint c′ < c, then the palindrome is stored in Lc. The
elements in Lc are ordered in increasing order of their midpoint. The algorithm stores
palindromes as RS-entries and RNF -entries. This time however, the length estimates are not
maintained. Adding a palindrome to a current run works exactly (the length estimate is not
calculated) as described in Algorithm ApproxSqrt.

Maintenance. At iteration i the algorithm performs the following steps.

1. Read S[i]. Update the Master Fingerprints to be FF (1, i) and FR(1, i).
2. For all k ≥ k0 = log(1/δ)/log(1 + δ)(The algorithm does not maintain intervals of size 0.)

a. If i is a multiple of bδ(1 + δ)k−2c, then add the checkpoint c = i (along with the
checkpoint data) to CLi. Set level(c) = k, fingerprint(c) = FR(1, i) and Lc = ∅.

b. If there exists a checkpoint c with level(c) = k and c < i− 2(1 + δ)k, then prepend
Lc to Lc′ where c′ = max{c′′ | c′′ ∈ CLi and c′′ > c}. Merge and create runs in Lc if
necessary (Similar to step 5 of ApproxSqrt). Delete c and its data from CLi.

3. For every checkpoint c ∈ CLi
a. Letmc be the midpoint of the first entry in Lc and c′ = max{c′′ | c′′ ∈ CLi and c′′ < c}.

If i−mc = mc − c′, then we check P [m] against c′ by doing the following:
i. If the left side of mc is the reverse of the right side of mc (i.e., FR(c′,mc) =
FF (mc, i)) then move P [mc] from Lc to Lc′ by adding P [mc] to Lc′ :
A. If |Lc′ | ≤ 1, store P [mc] as a RS-entry.
B. If |Lc′ | = 2, create a run out of the RS-entries stored in Lc′ and P [mc].
C. Otherwise, add P [mc] to the RNF -entry in Lc′ .

ii. If the left side of mc is not the reverse of the right side of mc, then remove mc from
Lc.

iii. If i−mc > ˜̀(m∗i ), then set m∗i = mc and set ˜̀(m∗i ) = i−mc.
4. If i = n, then report m∗i and ˜̀(m∗i ).

STACS’14



160 Palindrome Recognition In The Streaming Model

6.1 Analysis
ApproxLog relies heavily on the interaction of the following two ideas. The pattern of the
checkpointing and the compression which is possible due to the properties of overlapping
palindromes (Lemma 11). On the one hand the checkpoints are close enough so that the
length estimates are accurate (Lemma 19). The closeness of the checkpoints ensures that
palindromes which are stored at a checkpoint form a run (Lemma 18) and therefore can be
stored in constant space. On the other hand the checkpoints are far enough apart so that
the number of checkpoints and therefore the required space is logarithmic in n.

We start off with an observation to characterise the checkpointing. Step 2 of the algorithm
creates a checkpoint pattern: Recall that the level of a checkpoint is determined when the
checkpoint and its data are added to the memory. The checkpoints of every level have the
same distance. A checkpoint (along with its data) is removed if its distance to i exceeds a
threshold which depends on the level of the checkpoint. Note that one index of S can belong
to different levels and might therefore be stored several times. The following observation
follows from Step 2 of the algorithm.

I Observation 16. At iteration i, ∀k ≥ k0 =
⌈
log( (1+δ)2

δ )
log(1+δ)

⌉
. Let Ci,k = {c ∈ CLi | level(c) = k}.

1. Ci,k ⊆ [i− 2(1 + δ)k, i].
2. The distance between two consecutive checkpoints of Ci,k is bδ(1 + δ)k−2c.
3. |Ci,k| =

⌈
2(1+δ)k

bδ(1+δ)k−2c

⌉
.

This observation can be used to calculate the size of the checkpoint data which the algorithm
stores at any time. The proof can also be found in the full version.

I Lemma 17. At Iteration i of the algorithm the number of checkpoints is in O
(

log(n)
ε log(1+ε)

)
.

The space bounds of Theorem 3 hold due to the following property of the checkpointing:
If there are more than three palindromes stored in a list Lc for checkpoint c, then the
palindromes form a run and can be stored in constant space as the following lemma shows.

I Lemma 18. At iteration i, let c ∈ CLi be an arbitrary checkpoint. The list Lc can be
stored in constant space.

Proof. We fix an arbitrary c ∈ CLi. For the case that there are less than three palindromes
belonging to Lc, they can be stored as RS-entries in constant space. Therefore, we assume
the case where there are at least three palindromes belonging to Lc and we show that they
form a run. Let c′ be the highest (index) checkpoint less than c, i.e., c′ = max{c′′ | c′′ ∈
CLi and c′′ < c}. We disregard the case that the index of c is 1. Let k be the minimum value
such that (1 + δ)k−1 < i− c ≤ (1 + δ)k. Recall that Lc is the list of palindromes which the
algorithm has successfully checked against c and not against c′ yet. Let P [m] be a palindrome
in Lc. Since it was successfully checked against c we know that i−m ≥ m−c. Similarly, since
P [m] was not checked against c′ we have i−m < m− c′. Thus, for every P [m] in Lc we have
i+c′

2 < m ≤ i+c
2 . Therefore, all palindromes stored in Lc are in an interval of length less than

i+c
2 −

i+c′
2 = c−c′

2 . If we show that `(m) ≥ c−c′
2 for all P [m] in Lc, then applying Lemma 11

with `∗ = c−c′
2 on the palindromes in Lc implies that they are forming a run. The run can be

stored in constant space in an RNF -entry. Therefore, it remains to show that `(m) ≥ c−c′
2 .

We first argue the following: c − c′ ≤
Obs. 16

δ(1 + δ)k−2 ≤
δ≤1

(1+δ)k−1

2 <
Def. of k

i−c
2 . Since

P [m] was successfully checked against c and since m > i+c′
2 we derive that `(m) > i+c′

2 − c.
Therefore, `(m) > i+c′

2 − c = i−c
2 + c′−c

2 >
(6.1)

c− c′ + c′−c
2 = c−c′

2 . J



P. Berenbrink, F. Ergün, F. Mallmann-Trenn, and E. Sadeqi Azer 161

The following lemma shows that the checkpoints are sufficiently close in order to satisfy
the multiplicative approximation. The proof is in the full version.

I Lemma 19. ApproxLog reports a midpoint m∗ such that w.h.p. `max
(1+ε) ≤ ˜̀(m∗) ≤ `max.

We are ready to prove Theorem 3. The correctness follows from Lemma 19. Lemma 17
and Lemma 18 yield the claimed space. In every iteration the algorithm processes every
checkpoint in CLi in constant time. The number of checkpoints is bounded by Lemma 17. A
full proof can be found in the full version.

References
1 Alberto Apostolico, Dany Breslauer, and Zvi Galil. Parallel detection of all palindromes in

a string. Theoretical Computer Science, 141(1–2):163–173, 1995.
2 Dany Breslauer and Zvi Galil. Real-time streaming string-matching. In Raffaele Giancarlo

and Giovanni Manzini, editors, Combinatorial Pattern Matching, volume 6661 of LNCS,
pages 162–172. Springer Berlin Heidelberg, 2011.

3 Funda Ergün, Hossein Jowhari, and Mert Saǧlam. Periodicity in streams. In Proceedings of
the 13th International Workshop on Approximation Algorithms for Combinatorial Optim-
ization Problems, and 14th International Workshop on Randomization and Computation
(APPROX/RANDOM’10), volume 6302 of LNCS, pages 545–559, Berlin, Heidelberg, 2010.
Springer-Verlag.

4 Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.
IBM J. Res. Dev., 31(2):249–260, March 1987.

5 Glenn Manacher. A new linear-time “on-line” algorithm for finding the smallest initial
palindrome of a string. J. ACM, 22(3):346–351, July 1975.

6 Benny Porat and Ely Porat. Exact and approximate pattern matching in the streaming
model. In Proceedings of the 2009 50th Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS’09, pages 315–323, Washington, DC, USA, 2009. IEEE Computer
Society.

STACS’14


	Introduction
	Model and Definitions
	Algorithm Simple ApproxSqrt
	A space-efficient version
	Algorithm ApproxSqrt
	Structural Properties
	Analysis of the Algorithm

	Algorithm Exact
	Algorithm ApproxLog
	Analysis


