
An optimal quantum algorithm for the oracle
identification problem
Robin Kothari

David R. Cheriton School of Computer Science and Institute for Quantum
Computing, University of Waterloo, Waterloo, Canada
rkothari@cs.uwaterloo.ca

Abstract
In the oracle identification problem, we are given oracle access to an unknown N -bit string
x promised to belong to a known set C of size M and our task is to identify x. We present
a quantum algorithm for the problem that is optimal in its dependence on N and M . Our
algorithm considerably simplifies and improves the previous best algorithm due to Ambainis
et al. Our algorithm also has applications in quantum learning theory, where it improves the
complexity of exact learning with membership queries, resolving a conjecture of Hunziker et al.

The algorithm is based on ideas from classical learning theory and a new composition the-
orem for solutions of the filtered γ2-norm semidefinite program, which characterizes quantum
query complexity. Our composition theorem is quite general and allows us to compose quantum
algorithms with input-dependent query complexities without incurring a logarithmic overhead
for error reduction. As an application of the composition theorem, we remove all log factors from
the best known quantum algorithm for Boolean matrix multiplication.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases quantum algorithms, quantum query complexity, oracle identification

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.482

1 Introduction

Query complexity is a model of computation where quantum computers are provably better
than classical computers. Some of the great breakthroughs of quantum algorithms have
been conceived in this model (e.g., Grover’s algorithm [11]). In this paper we study the
query complexity of the oracle identification problem, the very basic problem of completely
determining a string given oracle access to it.

In the oracle identification problem, we are given an oracle for an unknown N -bit string
x, promised to belong to a known set C ⊆ {0, 1}N , and our task is to identify x while
minimizing the number of oracle queries. For a set C, we denote this problem oip(C). As
usual, classical algorithms have access to an oracle that outputs xi on input i, while quantum
algorithms have access to a unitary Ox that maps |i, b〉 to |i, b ⊕ xi〉 for b ∈ {0, 1}. For a
function f : D → E, where D ⊆ {0, 1}N , let Q(f) denote the bounded-error quantum query
complexity of computing f(x). Then oip(C) corresponds to computing the identity function
f(x) = x with D = E = C.

For example, let CN := {0, 1}N . Then the classical query complexity of oip(CN) is N ,
since every bit needs to be queried to learn x, even with bounded error. A surprising result
of van Dam shows that Q(oip(CN)) = N/2 +O(

√
N) [19]. As another example, consider the

set CH1 = {x : |x| = 1}, where |x| is the Hamming weight of x. This is the search problem
with 1 marked item and thus Q(oip(CH1)) = Θ(

√
N) [6, 11].

© Robin Kothari;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 482–493

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62918571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.482
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

R. Kothari 483

Due to the generality of the problem, it has been studied in contexts such as quantum
query complexity [1, 2], quantum machine learning [18, 5, 13] and post-quantum crypto-
graphy [8]. Several well-known problems are special cases of oracle identification, e.g., the
search problem with one marked item [11], the Bernstein-Vazirani problem [7], the oracle
interrogation problem [19] and hidden shift problems [20]. For some applications, generic
oracle identification algorithms are almost as good as algorithms tailored to the specific
application [9]. Consequently, this result improves some of the upper bounds stated in [9].

Ambainis et al. [1, 2] studied the oracle identification problem in terms of N andM := |C|.
They exhibited algorithms whose query complexity is close to optimal in its dependence on
N and M . For a given N and M , we say an oracle identification algorithm is optimal in
terms of N and M if it solves all N -bit oracle identification problems with |C| = M making
at most Q queries and there exists some N -bit oracle identification problem with |C| = M

that requires Ω(Q) queries. This does not, however, mean that the algorithm is optimal for
each set C individually, since these two parameters do not completely determine the query
complexity of the problem. For example, all oracle identification problems with M = N

can be solved with O(
√
N) queries, and this is optimal since this class includes the search

problem with 1 marked item (CH1 above). However there exists a set C of size M = N with
query complexity Θ(logN), such as the set of all strings with arbitrary entries in the first
logN bits and zeroes elsewhere.

Let oip(M,N) denote the set of oracle identification problems with C ⊆ {0, 1}N and
|C| = M . Let the query complexity of oip(M,N) be the maximum query complexity of any
problem in that set. Then the classical query complexity of oip(M,N) is easy to characterize:
I Proposition 1. The classical (bounded-error) query complexity of oip(M, N) is Θ(min{M, N}).

For M ≤ N , the upper bound follows from the observation that we can always eliminate
at least one potential string in C with one query. For the lower bound, consider any subset
of CH1 of size M . For M > N , the lower bound follows from any set C ⊇ CH1 and the upper
bound is trivial since any query problem can be solved with N queries.

Now that the classical query complexity is settled, we can move to quantum query
complexity. When quantum queries are permitted, the M ≤ N case is fully understood.
For a lower bound, we consider (as before) any subset of CH1 of size M , which is as hard
as the search problem on M bits and requires Ω(

√
M) queries. For an upper bound, we

can reduce this to the case of M = N by selecting M bits such that the strings in C are
distinct when restricted to these bits. (A proof of this fact appears in [9, Theorem 11].) Thus
Q(oip(M,N)) ≤ Q(oip(M,M)), which is O(

√
M) [1, Theorem 3].

I Proposition 2. For M ≤ N , Q(oip(M,N)) = Θ(
√
M).

For the hard regime, where M > N , the best known lower and upper bounds are the
following, from [1, Theorem 2] and [2, Theorem 2] respectively.

I Theorem 1 ([1, 2]). If N < M ≤ 2Nd for some constant d < 1, then Q(oip(M,N)) =
O(
√
N logM/logN) and for all M > N , Q(oip(M,N)) = Ω(

√
N logM/logN).

When M gets closer to 2N , their algorithm no longer gives nontrivial upper bounds. For
example, if M ≥ 2N/ logN , their algorithm makes O(N) queries. While not stated explicitly,
an improved algorithm follows from the techniques of [3, Theorem 6], but the improved
algorithm also does not yield a nontrivial upper bound when M ≥ 2N/ logN . Ambainis et al.
[2] left open two problems, in increasing order of difficulty: to determine whether it is always
possible to solve the oracle identification problem for M = 2o(N) using o(N) queries and to
design a single algorithm that is optimal in the entire range of M .

STACS’14

484 An optimal quantum algorithm for the oracle identification problem

In this paper we resolve both open problems by completely characterizing the quantum
query complexity of the oracle identification problem in the full range N < M ≤ 2N .

I Theorem 2. For N < M ≤ 2N , Q(oip(M,N)) = Θ
(√

N logM
log(N/logM)+1

)
.

The lower bound follows from the ideas in [1], but needs additional calculation. We
provide a proof in the full version of this paper [15]. The lower bound also appears in an
unpublished manuscript [3, Remark 1]. The +1 term in the denominator is relevant only
when M gets close to 2N ; it ensures that the complexity is Θ(N) in that regime.

Our main result is the algorithm, which is quite different from and simpler than that of
[2]. It is also optimal in the full range of M as it makes O

(√
N logM

log(N/logM)+1

)
queries when

M ≥ N and O(
√
M) queries when M ≤ N . Our algorithm has two main ingredients:

First, we use ideas from classical learning theory, where the oracle identification problem
is studied as the problem of exact learning with membership queries [4]. In particular,
our quantum algorithm is based on Hegedűs’ implementation of the halving algorithm [12].
Hegedűs characterizes the number of queries needed to solve the classical oracle identification
problem in terms of the “extended teaching dimension” of C. While we do not use that
notion, we borrow some of the main ideas. This is further explained in Section 2.

We now present a high-level overview of the algorithm. Say we know that the string
in the black box, x, belongs to a set S. We can construct from S a string s, known as the
“majority string,” which is 1 at position i if at least half the strings in S are 1 at position i.
Importantly, for any i, the set of strings in S that disagree with s at position i is at most half
the size of S. Now we search for a disagreement between x and s using Grover’s algorithm.
If the algorithm finds no disagreement, then x = s. If it does, we have reduced the size of S
by a factor of 2. This gives a suboptimal algorithm with query complexity O(

√
N logM).

We improve the algorithm by taking advantage of two facts: first, that Grover’s algorithm
can find a disagreement faster if there are many disagreements to be found, and second, that
there exists an order in which to find disagreements that reduces the size of S as much as
possible in each iteration. The existence of such an order was shown by Hegedűs [12].

The second ingredient of our upper bound is a composition theorem for solutions of the
filtered γ2-norm semidefinite program (SDP) introduced by Lee et al. [16] that preserves
input-dependent query complexities. We need such a result to resolve the following problem:
Our algorithm consists of k bounded-error quantum algorithms that must be run sequentially
because each algorithm requires as input the output of the previous algorithm. Let the
query complexities of the algorithms be Q1(x), Q2(x), . . . , Qk(x) on input x. If these were
exact algorithms, we could merely run them one after the other, giving one algorithm’s
output to the next as input, to obtain an algorithm with worst-case query complexity
O(maxx

∑
iQi(x)). However, since these are bounded-error algorithms, we cannot guarantee

that all k algorithms will give the correct output with high probability. One option is to apply
standard error reduction, but this would yield an algorithm making O(maxx

∑
iQi(x) log k)

queries. Instead, we prove a general composition theorem for the filtered γ2-norm SDP that
gives an algorithm making O(maxx

∑
iQi(x)) queries, as if the algorithms had no error. A

similar result is known for worst-case query complexity, but that gives a suboptimal upper
bound of O(

∑
i maxxQi(x)) queries. We prove this result in Section 3.

The oracle identification problem was also studied by Atıcı and Servedio [5], who studied
algorithms that are optimal for a given set C. The query complexity of their algorithm
depends on a combinatorial parameter of C, γ̂C , which satisfies 2 ≤ 1/γ̂C ≤ N+1. They prove
Q(oip(C)) = O(

√
1/γ̂C logM log logM). Our algorithm for oracle identification, without

modification, makes fewer queries than this. Our algorithm makes O
(√

1/γ̂C

log 1/γ̂C logM
)

R. Kothari 485

queries, which resolves a conjecture of Hunziker et al. [13]. We show this in Section 4.1. Our
composition theorem can also be used to remove unneeded log factors from existing quantum
query algorithms. As an example, we show how to improve the almost optimal Boolean
matrix multiplication algorithm that makes O(n

√
l poly(logn)) queries [14], where n is the

size of the matrices and l is the output sparsity, to an algorithm with query complexity
O(n
√
l). We show this in Section 4.2. We conclude with open questions in Section 5. Proofs

omitted due to space constraints appear in the full version of this paper [15].

2 Oracle identification algorithm

In this section we explain the ideas that go into our algorithm and prove its correctness.
We also prove the query upper bound assuming we can compose bounded-error quantum
algorithms without incurring log factors, which we justify in Section 3.

Throughout this section, let x ∈ C be the string we are trying to identify. For any set
S ∈ {0, 1}N , let maj(S) be an N -bit string such that maj(S)i is 1 if |{y ∈ S : yi = 1}| ≥
|{y ∈ S : yi = 0}| and 0 otherwise. In words, maj(S)i is b if the majority of strings in S have
bit i equal to b. Note that the string maj(S) need not be a member of S. In this paper, all
logarithms are base 2 and for any positive integer k, we define [k] := {1, 2, . . . , k}.

2.1 Basic halving algorithm
We begin by describing a general learning strategy called the halving algorithm, attributed
to Littlestone [17]. Say we currently know that the oracle contains a string x ∈ S ⊆ C. The
halving algorithm tests if the oracle string x is equal to maj(S). If it is equal, we have
identified x; if not, we look for a bit at which they disagree. Having found such a bit i, we
know that xi 6= maj(S)i, and we may delete all strings in S that are inconsistent with this.
Since at most half the strings in S disagree with maj(S) at any position, we have at least
halved the number of potential strings.

To convert this into a quantum algorithm, we need a subroutine that tests if a given
string maj(S) is equal to the oracle string x and finds a disagreement otherwise. This can
be done by running Grover’s algorithm on the bitwise xor of x and maj(S).

Algorithm 1 Basic halving algorithm

1: S ← C
2: repeat
3: Search for a disagreement between x and maj(S). If we find a disagreement, delete

all inconsistent strings from S. If not, let S ← {maj(S)}.
4: until |S| = 1

This algorithm always finds the unknown string x, since S always contains x. The loop
can run at most logM times, since each iteration cuts down the size of S by a factor of 2.
Grover’s algorithm needs O(

√
N) queries, but it is a bounded-error algorithm. For this

section, let us assume that bounded-error algorithms can be treated like exact algorithms
and need no error reduction. Assuming this, Algorithm 1 makes O(

√
N logM) queries.

2.2 Improved halving algorithm
Even assuming free error reduction, Algorithm 1 is not optimal. Primarily, this is because
Grover’s algorithm can find an index i such that xi 6= maj(S)i faster if there are many such

STACS’14

486 An optimal quantum algorithm for the oracle identification problem

indices to be found, and Algorithm 1 does not exploit this fact. Given an N -bit binary string,
we can find a 1 with O(

√
N/K) queries in expectation, where K > 0 is the number of 1s in

the string. Alternately, there is a variant of Grover’s algorithm that finds the first 1 (from
left to right, say) in the string in O(√p) queries in expectation where p is the position of the
first 1. This follows from the known O(

√
N) algorithm for finding the first 1 in a string of

size N [10], by running that algorithm on the first 2k bits, for k = 1, 2, . . . , logN . We can
now modify the previous algorithm to look for the first disagreement between x and maj(S)
instead of any disagreement.

Algorithm 2 Improved halving algorithm

1: S ← C
2: repeat
3: Search for the first disagreement between x and maj(S). If we find a disagreement,

delete all inconsistent strings from S. If not, let S ← {maj(S)}.
4: until |S| = 1

As before, the algorithm always finds the unknown string. Let r be the number of times
the loop repeats and p1, p2, . . . , pr be the positions of disagreement found. After the first
run of the loop, since a disagreement is found at position p1, we have learned the first p1
bits of x; the first p1 − 1 bits agree with maj(S), while bit p1 disagrees with maj(S). Thus
we are left with a set S in which all strings agree on these p1 bits. For convenience, we can
treat S as a set of strings of length N − p1 (instead of length N). Each iteration reduces the
effective length of strings in S by pi, which gives

∑
i pi ≤ N , since there are at most N bits

to be learned. As before, the loop can run at most logM times, thus r ≤ logM . Finally,
if we assume again that these bounded-error search subroutines are exact, this algorithm
requires O(

∑
i

√
pi) queries, which is O(

√
N logM), by the Cauchy–Schwarz inequality.

2.3 Final algorithm
While Algorithm 2 is an improvement over Algorithm 1, it is still not optimal. One reason is
that sometimes a disagreement between the majority string and x may eliminate more than
half the possible strings. This observation can be exploited by finding disagreements in such
a way as to maximize the reduction in size when a disagreement is found. This idea is due
to Hegedűs [12].

To understand the basic idea, consider searching for a disagreement between x and maj(S)
classically. The most obvious strategy is to check if x1 = maj(S)1, x2 = maj(S)2, and so on
until a disagreement is found. This strategy makes more queries if the disagreement is found
at a later position. However, we could have chosen to examine the bits in any order. We
would like the order to be such that if a disagreement is found at a later position, it cuts
down the size of S by a larger factor. Such an ordering would ensure that either we spend
very few queries and achieve a factor-2 reduction right away, or we spend more queries but
the size of S goes down significantly. Hegedűs shows that there is always a reordering of the
bits that achieves this. The following lemma is similar to [12, Lemma 3.2], but we provide a
proof for completeness.

I Lemma 3. For any S ⊆ {0, 1}N , there exists a string s ∈ {0, 1}N and a permutation σ on
N , such that for any p ∈ [N], |Sp| ≤ |S|

max{2,p} , where Sp = {y ∈ S : yσ(i) = sσ(i) for 1 ≤ i ≤
p− 1 and yσ(p) 6= sσ(p)}, the set of strings in S that agree with s at σ(1), . . . , σ(p− 1) and
disagree with it at σ(p).

R. Kothari 487

Proof. We will construct the permutation σ and string s greedily, starting with the first
position, σ(1). We choose this bit to be one that intuitively contains the most information,
i.e., a bit for which the fraction of strings that agree with the majority is closest to 1/2. This
choice will make |S1| as large as possible. More precisely, we choose σ(1) to be any j that
maximizes |{y ∈ S : yj 6= maj(S)j}|. Then let sσ(1) be maj(S)σ(1).

In general, after having chosen σ(1), . . . , σ(k − 1) and having defined s on those bits, we
choose σ(k) to be the most informative bit assuming all previous bits have agreed with string
s on positions σ(1), . . . , σ(k− 1). This choice makes |Sk| as large as possible. More precisely,
define S̄p = {y ∈ S : yσ(i) = sσ(i) for all 1 ≤ i ≤ p}. We choose σ(k) to be any bit j that
maximizes |{y ∈ S̄k−1 : yj 6= maj(S̄k−1)j}|. Then let sσ(k) be maj(S̄k−1)σ(k).

This construction ensures that |S1| ≥ |S2| ≥ . . . ≥ |SN |. Since σ(k) was chosen
to maximize |{y ∈ S̄k−1 : yj 6= maj(S̄k−1)j}|, we have |Sk| = |{y ∈ S̄k−1 : yσ(k) 6=
maj(S̄k−1)σ(k)}| ≥ |{y ∈ S̄k−1 : yσ(k+1) 6= maj(S̄k−1)σ(k+1)}|. The size of this set is at least
|{y ∈ S̄k : yσ(k+1) 6= maj(S̄k−1)σ(k+1)}|, since S̄k ⊆ S̄k−1. We do not know the value of
maj(S̄k−1)σ(k+1) (e.g., it need not be equal to sσ(k+1)), but we do know that it is either 0 or 1.
So this term is at least min{|{y ∈ S̄k : yσ(k+1) 6= 0}|, |{y ∈ S̄k : yσ(k+1) 6= 1}|} = min{|{y ∈
S̄k : yσ(k+1) 6= sσ(k+1)}|, |{y ∈ S̄k : yσ(k+1) = sσ(k+1)}|} = min{|Sk+1|, |S̄k+1|} = |Sk+1|,
where the last equality uses |Sk| ≤ |S̄k| for all k. Finally, combining |S1|+ . . .+ |Sp| ≤ |S|
with |S1| ≥ |S2| ≥ . . . ≥ |Sp| gives |Sp| ≤ |S|/p. Combining this with |S1| ≤ |S|/2, which
follows from the definition of S1, yields the result. J

We can now state our final oracle identification algorithm.

Algorithm 3 Final algorithm

1: S ← C
2: repeat
3: Let σ and s be as in Lemma 3. Search for the first (according to σ) disagreement

between x and s. If we find a disagreement, delete all inconsistent strings from S. If not,
let S ← {s}.

4: until |S| = 1

As before, it is clear that this algorithm solves the problem. Let us analyze the query
complexity. To compute the query complexity, let r be the number of times the loop repeats.
Let p1, p2, . . . , pr be the positions of disagreement. We have

∑r
i=1 pi ≤ N , as in Algorithm 2.

Unlike the previous analysis, the bound r ≤ logM can be loose, since the size of S may
reduce by a larger factor due to Lemma 3. Instead, we know that each iteration reduces the set
S by a factor of max{2, pi}, which gives us

∏r
i=1 max{2, pi} ≤M . As before, we will assume

the search subroutine is exact, which gives us a query upper bound of O(
∑r
i=1
√
pi), subject

to the constraints
∑r
i=1 pi ≤ N and

∏r
i=1 max{2, pi} ≤ M . We solve this optimization

problem in the full version [15] to obtain the following lemma.

I Lemma 4. Let C(M,N) be the maximum value attained by
∑r
i=1
√
pi, subject to the

constraints
∑r
i=1 pi ≤ N,

∏r
i=1 max{2, pi} ≤M, r ∈ [N] and pi ∈ [N] for all i ∈ [r]. Then

C(M,N) = O
(√

N logM
log(N/logM)+1

)
and C(M,N) = O(

√
M).

Thus Algorithm 3 achieves the upper bound claimed in Theorem 2, under our assumption
that the search subroutine is exact. Since it is not exact, we could reduce the error with
logarithmic overhead, but it is usually unnecessary to incur this loss in quantum query
algorithms. In the next section we prove this and establish the complexity of Algorithm 3.

STACS’14

488 An optimal quantum algorithm for the oracle identification problem

3 Composition theorem for input-dependent query complexity

The primary aim of this section is to rigorously establish the query complexity of Algorithm 3.
Along the way, we will develop techniques that can be used more generally. Let us begin by
describing what we would like to prove. Algorithm 3 essentially consists of a loop repeated
r(x) times. We write r(x) to make explicit its dependence on the input x. The loop itself
consists of running a variant of Grover’s algorithm on x, based on information we have
collected thus far about x. Call these algorithms A1, A2, . . . , Ar(x). To be clear, A1 is the
algorithm that is run the first time the loop is executed, i.e., it looks for a disagreement
under the assumption that S = C. It produces an output p1(x), which is then used by A2.
A2 looks for a disagreement assuming a modified set S, which is smaller than C. Let us
say that in addition to p2(x), A2 also outputs p1(x). This ensures that the output of Ai
completely describes all the information we have collected about x. Thus algorithm Ai+1
now only needs the output of Ai to work correctly.

We can now view Algorithm 3 as a composition of r(x) algorithms, A1, A2, . . . , Ar(x). It
is a composition in the sense that the output of one is required as the input of the next
algorithm. We know that the expected query complexity of Ai is O(

√
pi(x)). If these

algorithms were exact, then running them one after the other would yield an algorithm with
expected query complexity O(

∑
i

√
pi(x)). But since they are bounded error, this does not

work. However, if we consider their worst-case complexities, we can achieve this complexity.
If we have r algorithms A1, A2, . . . , Ar with worst-case query complexities Qi, then there is
a quantum algorithm that solves the composed problem with O(

∑
iQi) queries. This is a

remarkable property of quantum algorithms, which follows from the work of Lee et al. [16].
We first discuss this simpler result before moving on to input-dependent complexities.

3.1 Composition theorem for worst-case query complexity
We now show a composition theorem for solutions of the filtered γ2-norm SDP, which implies
a similar result for worst-case quantum query complexity. This follows from the work of
Lee et al. [16], which we generalize in the next section. As discussed in the introduction, let
D ⊆ {0, 1}N , and consider functions that map D to E. For any matrix A indexed by D, we
define a quantity γ(A). (To readers familiar with the notation of [16], this is their γ2(A|∆).)

I Definition 5. Let A be a square matrix indexed by D. We define γ(A) as the following:

γ(A) := min
{|uxj〉,|vyj〉}

max
x∈D

c(x) (1)

subject to: ∀x ∈ D, c(x) = max
{∑

j

‖|uxj〉‖2,
∑
j

‖|vxj〉‖2
}

(2)

∀x, y ∈ D,
∑

j:xj 6=yj

〈uxj |vyj〉 = Axy (3)

We use γ(A) to refer to both the SDP above and its optimum value. For a function
f : D → E, let F be its Gram matrix, defined as Fxy = 1 if f(x) 6= f(y) and Fxy = 0
otherwise. Lee et al. showed that Q(f) = Θ(γ(J − F)), where J is the all-ones matrix.

More generally, they showed that this SDP also upper bounds the quantum query
complexity of state conversion. In the state conversion problem, we have to convert a given
state |sx〉 to |tx〉. An explicit description of the states |sx〉 and |tx〉 is known for all x ∈ D,
but we do not know the value of x. Since the query complexity of this task depends only
on the Gram matrices of the starting and target states, define S and T by Sxy = 〈sx|sy〉
and Txy = 〈tx|ty〉 for all x, y ∈ D. Let S 7→ T denote the problem of converting states with

R. Kothari 489

Gram matrix S to those with Gram matrix T . If F is the Gram matrix of a function f , then
J 7→ F is the function evaluation problem. Lee et al. showed that Q(S 7→ T) = O(γ(S − T)),
which generalizes Q(f) = O(γ(J − F)).

We now have the tools to prove the composition theorem for the filtered γ2-norm SDP.

I Theorem 6 ([16]). Let f0, f1, . . . , fk be functions with Gram matrices F0, F1, . . . , Fk.
Let C1, C2, . . . , Ck be the optimum value of the SDPs for the state conversion problems
F0 7→ F1, . . . , Fk−1 7→ Fk, i.e., for i ∈ [k], Ci = γ(Fi−1 − Fi). Then, γ(F0 − Fk) ≤

∑k
i=1 Ci.

This does not appear explicitly in [16], but simply follows from the triangle inequality
γ(A+B) ≤ γ(A) +γ(B) [16, Lemma A.2]. From this we can also show an analogous theorem
for quantum query complexity, which states Q(F0 7→ Fk) = O(

∑k
i=1 Q(Fi−1 7→ Fi)). We do

not prove this claim as we do not need it in this paper.
For our application, we require a composition theorem similar to Theorem 6, but for

input-dependent query complexity. However, it is not even clear what this means a priori,
since the value γ(J − F) does not contain information about input-dependent complexities.
Indeed, the value is a single number and cannot contain such information. However, the
SDP does contain this information and we modify this framework to be able to access this.

For example, let f be the find-first-one function, which outputs the smallest i such that
xi = 1 and outputs N + 1 if x = 0N . There is a quantum algorithm that solves this with
O(
√
f(x)) queries in expectation. Furthermore, there is a feasible solution for the γ(J − F)

SDP with c(x) = O(
√
f(x)), where c(x) is the function that appears in (2). This suggests

that c(x) gives us information about the x-dependent query complexity. The same situation
occurs when we consider the search problem with multiple marked items. There is a feasible
solution with c(x) = O(

√
N/K) for inputs with K ones. This function c(x) will serve as our

input-dependent cost measure.

3.2 Cost functions
I Definition 7 (Cost function). Let A be a square matrix indexed by D. We say c : D → R
is a feasible cost function for γ(A) if there is a feasible solution of γ(A) with values c(x) in
eq. (2). Let the set of all feasible cost functions for γ(A) be denoted Γ(A).

Note that if c is a feasible cost function for γ(J − F), then maxx c(x) is an upper bound
on the worst-case cost, γ(J − F), which is exactly what we expect from an input-dependent
cost. We can now prove an input-dependent analogue of Theorem 6 with c(x) playing the
role of γ(J − F).

I Theorem 8. Let f0, f1, . . . , fk be functions with Gram matrices F0, F1, . . . , Fk. Let
c1, . . . , ck be feasible cost functions for γ(F0 − F1), . . . , γ(Fk−1 − Fk), i.e., for i ∈ [k],
ci ∈ Γ(Fi−1 − Fi). Then there is a c ∈ Γ(F0 − Fk) satisfying c(x) ≤

∑
i ci(x) for all

x ∈ D.

As in the case of Theorem 6, this follows from an analogous triangle inequality.

I Lemma 9. Let A and B be square matrices indexed by D. If cA ∈ Γ(A) and cB ∈ Γ(B),
there exists a c ∈ Γ(A+B) satisfying c(x) ≤ cA(x) + cB(x) for all x ∈ D.

This is shown by constructing a feasible solution for γ(A+B) by taking the direct sum
of vectors in a solution of γ(A) and γ(B). A proof appears in the full version [15].

In our applications, we will encounter algorithms that also output their input, i.e.,
accept as input f(x) and output (f(x), g(x)). Note that the Gram matrix of the function
h(x) = (f(x), g(x)) is merely H = F ◦G, defined as Hxy = FxyGxy.

STACS’14

490 An optimal quantum algorithm for the oracle identification problem

Such an algorithm can either be thought of as a single quantum algorithm that accepts
f(x) ∈ E as input and outputs (f(x), g(x)) or as a collection of algorithms Ae for each e ∈ E,
such that algorithm Af(x) requires no input and outputs (f(x), g(x)) on oracle input x. These
are equivalent viewpoints, since in one direction you can construct the algorithms Ae from A

by hardcoding the value of e and in the other direction, we can read the input e and call the
appropriate Ae as a subroutine and output (e,Ae(x)). Additionally, if the algorithm Af(x)
makes q(x) queries on oracle input x, the algorithm A we constructed accepts f(x) as input,
outputs (f(x), g(x)), and makes q(x) queries on oracle input x. While intuitive for quantum
algorithms, we establish this rigorously for cost functions in the full version [15]:

I Theorem 10. Let f, g : D → E be functions with Gram matrices F and G. For any e ∈ E,
let f−1(e) = {x : f(x) = e}. For every e ∈ E, let ce : f−1(e)→ R be a feasible cost function
for γ(J − Ge), where Ge denotes the matrix G restricted to those x that satisfy f(x) = e.
Then there exists a c ∈ Γ(F − F ◦G), such that c(x) = cf(x)(x).

3.3 Algorithm analysis
We can now return to computing the query complexity of Algorithm 3. Using the same
notation as in the beginning of this section, for any x ∈ C, we define r(x) to be the number
of times the repeat loop is run in Algorithm 3 for oracle input x assuming all subroutines
have no error. Similarly, let p1(x), p2(x), . . . pr(x)(x) be the first positions of disagreement
found in each run of the loop. Note that p1(x), p2(x), . . . pr(x)(x) together uniquely specify x.
Let r = maxx r(x).

We now define r functions f1, . . . , fr as f1(x) = p1(x), f2(x) = (p1(x), p2(x)), . . . , fr(x) =
(p1(x), . . . , pr(x)), where pk(x) = 0 if k > r(x). Thus if Pi are the Gram matrices of the
functions pi, then F1 = P1, F2 = P1 ◦ P2, . . . , Fr = P1 ◦ P2 ◦ · · · ◦ Pr.

We will now construct a solution for γ(J − Fr), using solutions for the intermediate
functions fi. From Theorem 8 we know that we only need to construct solutions for γ(J −
F1), γ(F1 −F2), . . . , γ(Fr−1 −Fr). From Theorem 10 we know that instead of constructing a
solution for γ(Fk − Fk+1), which is γ(Fk − Fk ◦ Pk+1), we can construct several solutions,
one for each value of fk(x). More precisely, let fk : D → Ek; then we can construct solutions
for γ(J − P ek+1) for all e ∈ Ek, where P ek+1 is the matrix Pk+1 restricted to x that satisfy
fk(x) = e.

For any k, the problem corresponding to γ(J−P ek+1) is just the problem of finding the first
disagreement between x and a known string, which is the essentially the find-first-one function.
This has a solution with cost function O(

√
f(x)), which in this case is O(

√
pk+1(x)).

I Theorem 11. Let f be the function that outputs the smallest i such that xi = 1 and
outputs N + 1 if x = 0N and let F be its Gram matrix. Then there is a c ∈ Γ(J − F) such
that c(x) = O(

√
f(x)).

Proof. Let ak = k−1/4 and bk = 1/ak = k1/4. Define |uxj〉 = |vxj〉 as the following.

|uxj〉 = |vxj〉 =


aj , if j < f(x)
bf(x), if j = f(x)
0, if j > f(x).

This is a feasible solution for γ(J −F). Since the constraints are symmetric in x and y, there
are two cases: either f(x) < f(y) or f(x) = f(y). In the first case,

∑
j:xj 6=yj

〈uxj |vyj〉 =∑
j=f(x)〈uxj |vyj〉 = af(x)bf(x) = 1, since x and y agree on all positions before f(x). In the

R. Kothari 491

second case,
∑
j:xj 6=yj

〈uxj |vyj〉 = 0, since x and y only disagree after position f(x) = f(y).
To compute the cost function, note that c(0N) =

∑N
k=1 a

2
k = O(

√
N) = O(

√
f(0N)). For

x 6= 0N , c(x) =
∑f(x)−1
k=1 a2

k + b2
f(x) =

∑f(x)−1
k=1 k−1/2 +

√
f(x) = O(

√
f(x)). J

Our function is different from this one in two ways. First, we wish to find the first
disagreement with a fixed string s instead of the first 1. This change does not affect the
Gram matrix or the SDP. Second, we are looking for a disagreement according to an order σ,
not from left to right. This is easy to fix, since we can replace j with σ(j) in the definition
of the vectors in the proof above.

This shows that for any k, there is a feasible cost function for γ(J − P ek+1) with cost
c(x) = O(

√
pk+1(x)) for any x that satisfies fk(x) = e. Using Theorem 10, we get that for any

k there is a ck ∈ Γ(Fk − Fk ◦ Pk+1) with ck(x) = O(
√
pk+1(x)) for all x ∈ D. Finally, using

Theorem 8, we have a c ∈ Γ(J − Fr) with cost c(x) = O(
∑r
i=1
√
pi(x)) = O(

∑r(x)
i=1

√
pi(x)).

Since the function fr(x) uniquely determines x, we have a feasible cost function for oracle
identification with cost O(

∑r(x)
i=1

√
pi(x)), subject to the constraints of Lemma 4, which we

have already solved. Along with the lower bound, this yields the main result.

I Theorem 2. For N < M ≤ 2N , Q(oip(M,N)) = Θ
(√

N logM
log(N/logM)+1

)
.

4 Other applications

4.1 Quantum learning theory
The oracle identification problem has also been studied in quantum learning theory with the
aim of characterizing Q(oip(C)). The algorithms and lower bounds studied apply to arbitrary
sets C, not just to the class of sets of a certain size, as in the rest of the paper. We show that
Algorithm 3 also performs well for any set C, outperforming the best known algorithm. The
known upper and lower bounds for this problem are in terms of a combinatorial parameter γ̂C ,
defined by Servedio and Gortler. They showed that for any C, Q(oip(C)) = Ω(

√
1/γ̂C+ logM

logN)
[18]. Later, Atıcı and Servedio showed that Q(oip(C)) = O(

√
1/γ̂C logM log logM) [5].

While we do not define γ̂C, we can informally describe it as follows: γ̂C is the largest
α < 1, such that for any set S ⊆ C, if we know that x belongs to S, there is a bit of x that
can be queried such that size of the set of strings consistent with the answer to this query
is at most (1 − α)|S|, no matter what the oracle responds. This ensures that if we query
the oracle with the permutation of Lemma 3, which was chosen to maximize the number of
strings eliminated with a query, each query reduces the size of S by a factor of (1− γ̂C).

This adds an extra constraint to Lemma 4 of the form M
∏r
i (1− γ̂C)pi ≥ 1, since learning

pi bits will reduce the size of the remaining set by a factor of (1− γ̂C)pi . From this constraint
we get (

∑
i pi) log(1− γ̂C) ≥ − logM . Using log(1− γ̂C) ≤ −γ̂C gives

∑
i pi ≤

logM
γ̂C .

We may now replace the constraint
∑
i pi ≤ N with

∑
i pi ≤

logM
γ̂C in the optimization

problem of Lemma 4. This inequality also implies pi ≤ logM
γ̂C and r ≤ logM

γ̂C . Thus we may
simply replace all occurrences of N by logM

γ̂C in Lemma 4. This yields the following theorem,
which resolves a conjecture of Hunziker et al. [13, Conjecture 2].

I Theorem 12. Algorithm 3 solves oip(C) with O
(√

1/γ̂C

log 1/γ̂C logM
)
queries.

Since Q(oip(C)) = Ω(
√

1/γ̂C + logM
logN), we see that Algorithm 3 makes O(Q(oip(C))2√

logQ(oip(C))
logN)

queries, which means it can be at most about quadratically worse than the optimal algorithm
for oip(C).

STACS’14

492 An optimal quantum algorithm for the oracle identification problem

4.2 Boolean matrix multiplication

In this section we show how to improve the upper bound on Boolean matrix multiplication
(BMM) from O(n

√
l poly(logn)) [14] to O(n

√
l), where n is the size of the matrices and l is

the output sparsity. Like in the analysis in Section 3, we will break up the BMM algorithm
of [14] into a sequence of algorithms Ai such that the output of Ai is the input of Ai+1, and
convert each algorithm into a feasible solution for the corresponding SDP.

The BMM algorithm is almost of this form: It uses two subroutines for graph collision,
one for the decision problem and another to find all collisions. The first subroutine solves
the problem on a bipartite graph with 2n vertices and m nonedges in O(

√
n+
√
m) queries.

Since this query complexity is not input dependent, there is a feasible SDP solution for this
problem with c(x) = O(

√
n+
√
m) using the known characterization of Lee et al. [16].

The second subroutine finds all graph collisions in an instance with λ collisions using
O(
√
nλ+

√
m) queries. This upper bound is input dependent, since λ is a function of the input.

In this subroutine, the only input-dependent algorithm is the variant of Grover’s algorithm
that uses O(

√
nk) queries to find all k ones in an n-bit string with k ones. It is easy to show

that there is a feasible cost function for this with c(x) = O(
√
nk). For example, we may

compose the SDP solution for the find-first-one function (Theorem 11) with itself repeatedly
to find all ones. The cost function of the resultant SDP will satisfy c(x) = O(

∑
i

√
pi), where

pis are the locations of the ones. By the Cauchy-Schwarz inequality this is O(
√
nk). Thus

the second subroutine has a feasible cost function c(x) = O(
√
nλ+

√
m).

The BMM algorithm breaks up the problem into n instances of graph collision. The
algorithm repeatedly searches for indices i such that the ith graph collision instance has a
collision. Then it finds all graph collisions of this instance and repeats. Instead of searching
for any i, we can search for the first i. The problem of searching for the first i that has a
graph collision is the composition of the find-first-one function (Theorem 11) and the graph
collision function. It is a composition in the sense that each input bit of the first problem
is the output bit of another problem. It is known that the optimal value of the γ SDP for
f ◦ gn is at most γ(J − F)γ(J −G). Similarly, it can be shown that there is a feasible cost
function for f ◦ g that is at most the product of the cost functions. This is similar to [16,
Lemma 5.1] or Lemma 9, but we take the tensor product instead of taking the direct sum.

Finally, let p1, . . . , pt be the positions of indices found in the algorithm. The search problem
requires O(√pi(

√
n+
√
m)) queries for each i, since it is the composition of the two above-

mentioned algorithms. The algorithm that finds all graph collisions has a feasible cost function
O(
√
nλi +

√
m), where λi is the number of graph collisions in the ith graph collision instance.

This gives a feasible cost function for BMM with cost O(
∑
i(
√
pi(
√
n+
√
m) +

√
nλi +

√
m)),

which is the same optimization problem solved in [14], without log factors. This is O(n
√
l).

5 Open questions

Our composition theorem only works for solutions of the filtered γ2-norm SDP, not for
quantum query complexity itself. While this is sufficient for our application, it would
be interesting to know if bounded-error quantum algorithms with input-dependent query
complexities can be composed in general without incurring log factors.

While the query complexity of oracle identification in terms of M and N has been fully
characterized, finding an optimal quantum algorithm for oip(C) remains open, even classically.
It would also be interesting to study time-efficient oracle identification algorithms for specific
sets C, since none of the known algorithms is known to be time efficient.

R. Kothari 493

Acknowledgments. I thank Andrew Childs and Ben Reichardt for helpful discussions,
Seiichiro Tani for pointing me to Ref. [3], and Andrew Childs and Ansis Rosmanis for
comments on a preliminary draft. This work was supported in part by NSERC, the Ontario
Ministry of Research and Innovation, and the US ARO.

References
1 Andris Ambainis, Kazuo Iwama, Akinori Kawachi, Hiroyuki Masuda, Raymond H. Putra,

and Shigeru Yamashita. Quantum Identification of Boolean Oracles. In STACS 2004,
volume 2996 of LNCS, pages 105–116. Springer, 2004.

2 Andris Ambainis, Kazuo Iwama, Akinori Kawachi, Rudy Raymond, and Shigeru Yamashita.
Improved algorithms for quantum identification of Boolean oracles. Theor. Comput. Sci.,
378(1):41 – 53, 2007.

3 Andris Ambainis, Kazuo Iwama, Masaki Nakanishi, Harumichi Nishimura, Rudy Raymond,
Seiichiro Tani, and Shigeru Yamashita. Average/worst-case gap of quantum query complex-
ities by on-set size. arXiv preprint arXiv:0908.2468, 2009.

4 Dana Angluin. Queries and Concept Learning. Machine Learning, 2:319–342, 1988.
5 Alp Atıcı and Rocco Servedio. Improved Bounds on Quantum Learning Algorithms.

Quantum Information Processing, 4:355–386, 2005.
6 Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths and

Weaknesses of Quantum Computing. SIAM J. Comput., 26(5):1510–1523, 1997.
7 Ethan Bernstein and Umesh Vazirani. Quantum Complexity Theory. SIAM J. Comput.,

26(5):1411–1473, 1997.
8 Dan Boneh and Mark Zhandry. Quantum-Secure Message Authentication Codes. In Ad-

vances in Cryptology – EUROCRYPT 2013, volume 7881 of LNCS, pages 592–608. Springer,
2013.

9 Andrew M. Childs, Robin Kothari, Maris Ozols, and Martin Roetteler. Easy and Hard
Functions for the Boolean Hidden Shift Problem. In TQC 2013, volume 22 of LIPIcs,
pages 50–79, 2013.

10 Christoph Dürr, Mark Heiligman, Peter Høyer, and Mehdi Mhalla. Quantum query com-
plexity of some graph problems. SIAM J. Comput., 35(6):1310–1328, 2006.

11 Lov K. Grover. A fast quantum mechanical algorithm for database search. In STOC 1996,
pages 212–219, 1996.

12 Tibor Hegedűs. Generalized teaching dimensions and the query complexity of learning. In
COLT 1995, pages 108–117, 1995.

13 Markus Hunziker, David A. Meyer, Jihun Park, James Pommersheim, and Mitch Rothstein.
The geometry of quantum learning. Quantum Information Processing, 9(3):321–341, 2010.

14 Stacey Jeffery, Robin Kothari, and Frédéric Magniez. Improving Quantum Query Com-
plexity of Boolean Matrix Multiplication Using Graph Collision. In ICALP 2012, volume
7391 of LNCS, pages 522–532. Springer, 2012.

15 Robin Kothari. An optimal quantum algorithm for the oracle identification problem. arXiv
preprint arXiv:1311.7685, 2013.

16 Troy Lee, Rajat Mittal, Ben W. Reichardt, Robert Špalek, and Mario Szegedy. Quantum
Query Complexity of State Conversion. In FOCS 2011, pages 344–353, 2011.

17 Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning, 2(4):285–318, 1988.

18 Rocco A. Servedio and Steven J. Gortler. Equivalences and Separations Between Quantum
and Classical Learnability. SIAM J. Comput., 33(5):1067–1092, 2004.

19 Wim van Dam. Quantum Oracle Interrogation: Getting All Information for Almost Half
the Price. In FOCS 1998, page 362, 1998.

20 Wim van Dam, Sean Hallgren, and Lawrence Ip. Quantum Algorithms for Some Hidden
Shift Problems. SIAM J. Comput., 36(3):763–778, 2006.

STACS’14

	Introduction
	Oracle identification algorithm
	Basic halving algorithm
	Improved halving algorithm
	Final algorithm

	Composition theorem for input-dependent query complexity
	Composition theorem for worst-case query complexity
	Cost functions
	Algorithm analysis

	Other applications
	Quantum learning theory
	Boolean matrix multiplication

	Open questions

