
On Boolean closed full trios and rational Kripke
frames
Markus Lohrey1 and Georg Zetzsche2

1 Department für Elektrotechnik und Informatik, Universität Siegen, Germany
lohrey@eti.uni-siegen.de

2 Fachbereich Informatik, Technische Universität Kaiserslautern, Germany
zetzsche@cs.uni-kl.de

Abstract
A Boolean closed full trio is a class of languages that is closed under the Boolean operations
(union, intersection, and complementation) and rational transductions. It is well-known that the
regular languages constitute such a Boolean closed full trio. It is shown here that every such
language class that contains any non-regular language already includes the whole arithmetical
hierarchy (and even the one relative to this language).

A consequence of this result is that aside from the regular languages, no full trio generated
by one language is closed under complementation.

Our construction also shows that there is a fixed rational Kripke frame such that assigning
an arbitrary non-regular language to some variable allows the definition of any language from
the arithmetical hierarchy in the corresponding Kripke structure using multimodal logic.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases rational transductions, full trios, arithmetical hierarchy, Boolean opera-
tions

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.530

1 Introduction

The study of closure properties of language classes has a long tradition, it can be traced back
to the introduction of regular languages [10]. Among other applications, they provide insights
about whether languages belong to certain classes and, as far as they are effective, allow
the computation of representations of languages. They also often serve as a way to describe
language classes without reference to concrete generating or accepting devices: In many
cases, a language class can be described as the smallest class of languages that possesses a
given collection of closure properties and contains certain generating languages.

Here, we are concerned with Boolean closed full trios, i.e., classes closed under the
Boolean operations (union, intersection, and complementation) and rational transductions.
It is well-known that the class of regular languages constitutes a Boolean closed full trio.

This combination of closure properties is interesting for several reasons. First, in the
case of regular languages, this particular collection is exploited, for example, in the theory of
automatic structures [9], since it implies that in such structures, every first-order definable
relation can be represented by a regular language. Since emptiness is decidable for regular
languages, one can therefore decide the first-order theory of these structures.

Second, the languages definable by multimodal logic in a rational Kripke frame, i.e., a
Kripke frame in which the worlds are words and the visibility relations are given by rational
transductions, are always confined to the Boolean closed full trio generated by the values

© Markus Lohrey and Georg Zetzsche;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 530–541

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62918563?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.530
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Lohrey and G. Zetzsche 531

(that is, languages) assigned to the variables. This was observed by Bekker and Goranko [2]
and then used to show that the model checking problem for multimodal logic and rational
Kripke frames is decidable if all variables are assigned regular languages.

Third, a wide range of interesting language classes are principal full trios, i.e., full trios
that are generated by one language. Since these are always union closed, their closure
under complementation is equivalent to the class being a Boolean closed full trio. Examples
of principal full trios are the context-free languages, languages accepted by multicounter
automata (for a bounded number of counters and blind, partially blind, or with zero test [7]),
and the languages accepted by valence automata over a finitely generated monoid [6].

Hence, the question arises whether there are language classes beyond the regular languages
that enjoy these closure properties and still admit decision procedures for simple properties
such as emptiness. Our first main result (Theorem 9) states that every Boolean closed
full trio that contains any non-regular language already includes the whole arithmetical
hierarchy (and even the arithmetical hierarchy relative to this language) and thus loses
virtually all decidability properties. This is a remarkable fact, because it means that these
closure properties are so extremely powerful that even the simplest non-regular languages
allow the construction of a very large class of languages.

A large number of grammar and automata models is easily seen to exceed the regular
languages but stay within the recursively enumerable languages. Hence, Theorem 9 also
implies that the corresponding language classes are never Boolean closed full trios. We can
also conclude that other than the regular languages, no principal full trio is closed under
complementation.

It should be noted that Theorem 9 does not mean that there is no way of developing a
theory of automatic structures beyond regular languages. It might well be that some smaller
collection of closure properties suffices to obtain all first-order definable relations and still
admits a decision procedure for the emptiness problem.

Actually, it turns out that three fixed rational transductions, together with the Boolean
operations, suffice to construct all arithmetical languages from any non-regular language.
Therefore, our second main result (Theorem 14) states that there is a fixed rational Kripke
frame with three modalities such that assigning any non-regular language to a variable allows
the definition of every arithmetical language using multimodal logic.

Other results of a similar spirit on closure properties of language classes have been known
for a long time. For example, Hartmanis and Hopcroft [8] have proved that every intersection
closed full AFL containing {anbn | n ∈ N} includes the recursively enumerable languages.
Here, a full AFL is a full trio that is closed under union and the Kleene star. Furthermore,
Book [4] has shown that the arithmetical languages constitute the smallest Boolean closed full
trio that is closed under homomorphic replication, the latter of which is a generalization of
homomorphisms. Hence, our result means in Book’s result one can replace the homomorphic
replication by containment of any non-regular language. However, to the best of the authors’
knowledge, to date there is no known combination of natural closure properties that are
enjoyed by the regular languages but that yield all the recursively enumerable languages (let
alone the arithmetical hierarchy) when applied to any non-regular language.

2 Preliminaries

Let Σ be a fixed countable set of abstract symbols, the finite subsets of which are called
alphabets. Given an alphabet X, the set of words over X is denoted by X∗ and the empty
word by λ. Subsets of X∗ for alphabets X are called languages. For a language L, the

STACS’14

532 On Boolean closed full trios and rational Kripke frames

smallest alphabet X with L ⊆ X∗ is denoted by α(L). The complement of L is defined as
L = α(L)∗ \ L. A transduction is a subset of X∗ × Y ∗ for alphabets X, Y .

Let M be a monoid with neutral element 1. An automaton over M is a tuple A =
(Q,M,E, q0, F), in which Q is a finite set of states, E is a finite subset of Q×M ×Q called
the set of edges, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states. The step
relation ⇒A of A is a binary relation on Q ×M , for which (p, a) ⇒A (q, b) if and only if
there is an edge (p, c, q) such that b = ac. The set generated by A is then

S(A) = {a ∈M | ∃q ∈ F : (q0, 1)⇒∗A (q, a)}.

A set R ⊆M is called rational if it can be written as R = S(A) for some automaton A over
M . A rational language is also called regular. We use REG to denote the class of regular
languages.

A valence automaton over M is an automaton A over the monoid X∗ ×M , where X is
an alphabet. The language accepted by A is defined as L(A) = {w ∈ X∗ | (w, 1) ∈ S(A)}.
The class of languages accepted by valence automata over M is denoted by VA(M).

Given alphabets X and Y , a rational transduction is a rational subset of the monoid
X∗ × Y ∗. For a language L ⊆ Y ∗ and a rational transduction R, we write RL for {x ∈ X∗ |
∃y ∈ L : (x, y) ∈ R}.

A language class is a set of languages that contains at least one non-empty language. A
language class C is called a full trio (or cone) if it is closed under (arbitrary) homomorphisms,
inverse homomorphisms, and intersection with regular languages. It is well-known [3] that
a class C is a full trio if and only if it is closed under rational transductions, i.e., for every
L ∈ C and every rational transduction R, we have RL ∈ C. We call a language class Boolean
closed if it is closed under all Boolean operations (union, intersection, and complementation).
By the full trio generated by the language L we mean the smallest full trio that contains L.
A full trio is called a principal full trio if it is generated by some language.

For any language class C, we write RE(C) for the class of languages accepted by some
Turing machine with an oracle L ∈ C. Similarly, let REC(C) be the class of languages
accepted by some Turing machine that halts on every input and has access to an oracle
L ∈ C. Furthermore, let REC denote the class of recursive languages. We also write REC(L)
and RE(L) for REC({L}) and RE({L}), respectively. Then the arithmetical hierarchy (see,
for example, [11]) is defined as

Σ0 = REC, Σn+1 = RE(Σn) for n ≥ 0, AH =
⋃

n≥0
Σn.

Languages in AH are called arithmetical. The arithmetical hierarchy relative to L is defined
as

Σ0(L) = REC(L), Σn+1(L) = RE(Σn(L)) for n ≥ 0, AH(L) =
⋃

n≥0
Σn(L).

We will often encode words from an alphabet X, |X| ≥ 2, by words in {0, 1}∗. If
X = {a1, . . . , an}, then a homomorphism g : X∗ → {0, 1}∗ with g(ai) = 10i will be called a
standard encoding. For each subset Y ⊆ X, the homomorphism πY : X∗ → Y ∗ is defined by
πY (x) = x for x ∈ Y and πY (x) = λ for x ∈ X \ Y .

Let X be an alphabet. For languages L ⊆ X∗ and words u, v ∈ X∗, we write u ≡L v if
for each w ∈ X∗, we have uw ∈ L if and only if vw ∈ L. The equivalence relation ≡L is
called the Myhill-Nerode equivalence. The well-known Myhill-Nerode Theorem states that L
is regular if and only if ≡L has a finite index.

M. Lohrey and G. Zetzsche 533

I Remark. In the following, we will make statements about certain languages in {0, 1}∗ being
obtainable from other languages in {0, 1}∗ either by using a finite set of transductions or by
using a finite set of transductions and Boolean operations. It will then always be possible
to use larger alphabets with auxiliary symbols for the following reason. Suppose there is
a finite set S of transductions, each over the alphabet X = {a1, . . . , an}, where {0, 1} ⊆ X.
Let h : X∗ → {0, 1}∗ be a standard encoding. Then we have

h(L ∩K) = h(L) ∩ h(K), h(L ∪K) = h(L) ∪ h(K),

h(L) = h(L) ∩ h(α(L))∗, h(RL) = hRh−1(h(L)).

By induction, it follows that for every language K ⊆ X∗ that can be obtained from L ⊆ X∗
using transductions in S (and Boolean operations), we can obtain h(K) from h(L) by using
transductions in

S′ = {ρY | Y ⊆ X} ∪ {hRh−1 | R ∈ S}

(and Boolean operations), where ρY is the rational transduction in {0, 1}∗ × {0, 1}∗ that
maps M to M ∩ h(Y)∗. In particular, if K ⊆ {0, 1}∗ can be obtained from L ⊆ {0, 1}∗ using
transductions in S (and Boolean operations), we can obtain K from L by using transductions
in S′′ = S′ ∪ {h |{0,1}∗ , ρ{0,1} ◦ h−1} (and Boolean operations) by producing h(L), then h(K)
using S′ (and Boolean operations), and then ρ{0,1}(h−1(h(K))) = K. J

3 Boolean closed full trios

I Lemma 1. Let X = {0, 1}. There is a finite set F of rational transductions in X∗ ×X∗
such that each regular language K ⊆ X∗ can be obtained from any non-empty L ⊆ X∗ using
transductions in F .

Proof. It suffices to prove the lemma for K ⊆ X∗ with λ /∈ K: If λ ∈ K, K \ {λ} 6= ∅, we
can use the rational transduction Λ = {(w,w) | w ∈ X∗} ∪ {λ} ×X∗, which maps w ∈ X∗
to {w, λ}, to obtain K from K \ {λ}. If K = {λ}, we can use Λ′ = {λ} ×X∗, which maps
every w ∈ {0, 1}∗ to λ, to obtain K directly from L. We may therefore assume that K is
accepted by an automaton A = (Q,X,E, q,Qf), where Q = {0, . . . , k}, q = 0, Qf = {1},
and E ⊆ Q×X ×Q.

Our goal is to produce the language TA of all words 10i01x110i1 · · ·xn10in , such that
i0 = 0, in = 1, and xj ∈ {0, 1} and (ij , xj+1, ij+1) ∈ E for 0 ≤ j < n. Then, clearly, the
rational transduction P that outputs only the xj will satisfy PTA = K. By the above remark,
it suffices to provide transductions over the extended alphabet Y = {0, 1,#1,#2}. The
additional symbols #1,#2 are called markers.

First we use the initial transduction I = 1(1{0, 1}10∗)∗1{0, 1}10 × {0, 1}∗ to produce
the set 1(1{0, 1}10∗)∗1{0, 1}10 from L. In the following, a word 10i01x110i1 · · ·xn10in is
called an encoding. Its factors 0ij are called state blocks and its factors 0ij 1x10ij+1 are called
transition blocks. The transduction I already guarantees that the leftmost and the rightmost
state block correspond to the initial and the final state, respectively. We now wish to remove
all words that contain a state block of length greater than k. In order to do this, we use
the transduction S1, which inserts the marker #1 in the beginning of every state block.
Furthermore, we have the transduction M1, which moves each occurrence of the marker one
position to the right (i.e. outputs 0#1 on input #10) if its right neighbor is a 0, and drops
the occurrence otherwise. We also have the transduction R, which rejects all inputs that
have a factor #10. All other words are accepted by R but stripped of their occurrences of

STACS’14

534 On Boolean closed full trios and rational Kripke frames

#1 in the output. Then applying RMk
1 S1 yields the set of encodings with state blocks of

length at most k.
In the next step, we wish to remove from the language all encodings that contain a

transition block 10`x10m with x ∈ {0, 1}, 0 ≤ `,m ≤ k, and (`, x,m) /∈ E. To this end,
we have the transductions S2 and M2, which behave analogously to S1 and M1 by using
#2 instead of #1. We assume that S1 and S2 are defined so as to add their marker and
leave the other marker in place. We assume further that M1 and M2 move their marker
so as to overtake the other marker if necessary. Finally, we have for each x ∈ {0, 1} the
transition Rx, which rejects every word containing a transition block in which #1 is on the
right end of the left state block, #2 is on the right end of the right state block, and the
input letter is x. All other words are accepted by Rx but stripped of all occurrences of
markers. Applying RxM

m
2 S2M

`
1S1 clearly yields the set of encodings that do not contain

the transition block 10`1x10m. Therefore, we apply this sequence of transductions for each
triple (`, x,m) with 0 ≤ `,m ≤ k, x ∈ {0, 1}, and (`, x,m) /∈ E. This clearly produces
the language TA and hence K = PTA is obtained. Since we only used transductions in
{Λ,Λ′, P, I, S1, S2,M1,M2, R,R0, R1}, the lemma is proven. J

I Lemma 2. Let X be an alphabet with |X| ≥ 2. For each finite set F of rational transductions
in X∗×X∗, there are rational transductions R,S, T in X∗×X∗ such that every composition
of transductions from F can be written in the form TnSmR with m,n ∈ N.

Proof. Let 0, 1 ∈ X be distinct letters and for x ∈ {0, 1}, let Ax be the transduction
that appends x to each input word, hence Ax = {(wx,w) | w ∈ X∗}. Furthermore, let
F = {U0, . . . , Uk−1}, b = k + 1, and let U ′i be the rational transduction

U ′i = {(u10m, v10bm+i) | (u, v) ∈ Ui,m ∈ N}, U ′k = {(w,w10k) | w ∈ X∗}

for each 0 ≤ i < k. We shall prove that R = A1, S = A0, and T =
⋃

0≤i≤k U
′
i have the

desired property. Let Uin · · ·Ui0 be a composition of elements of F and let in+1 = k. We
claim that

Uin
· · ·Ui0 = Tn+2SmR for m =

n+1∑
j=0

ijb
j .

Applying SmR appends 10m to each input word. Then, each application of T to a word w10`

chooses some U ′j , but this choice will only lead to a valid computation of the transducer if `
is congruent to j modulo b. Hence, applying Tn+1 to w10m has the same effect as applying
U ′in
· · ·U ′i0

. Since the most significant digit in the b-ary representation of m is in+1 = k,
applying T once more means applying U ′k and hence removing the 10k suffix of the input
word. In the end, we applied Uin

· · ·Ui0 . J

Lemmas 1 and 2 together immediately imply the following byproduct, which might be of
independent interest.

I Corollary 3. Let X = {0, 1}. There are rational transductions R,S, T over X∗ such that
every regular language K ⊆ X∗ can be written as TnSmRX∗ for some m,n ∈ N.

We define the alphabet ∆ = {+,−, z}, whose elements will represent the operations
increment, decrement, and zero test, respectively.

I Definition 4. Let C ⊆ ∆∗ be the set of words δ1 · · · δm, δ1, . . . , δm ∈ ∆ for which there
are numbers x0, . . . , xm ∈ N such that for 1 ≤ i ≤ m:

M. Lohrey and G. Zetzsche 535

1. if δi = +, then xi = xi−1 + 1,
2. if δi = −, then xi = xi−1 − 1, and
3. if δi = z, then xi = xi−1 = 0.

We shall prove that from L we can construct the following language ĈL using a fixed
finite set of rational transductions and Boolean operations.

I Definition 5. Suppose the alphabets X, ∆, and {#} are pairwise disjoint. Let ĈL ⊆
(∆ ∪X ∪ {#})∗ be the set of all words

v0δ1v1 · · · δmvm#u0# · · ·un#

with δi ∈ ∆, vi ∈ X∗, uj ∈ X∗, such that uk 6≡L u` for k 6= ` and for each 1 ≤ i ≤ m there
is a 1 ≤ j ≤ n with
1. if δi = +, then vi−1 ≡L uj−1, vi ≡L uj ,
2. if δi = −, then vi−1 ≡L uj , vi ≡L uj−1, and
3. if δi = z, then j = 1 and vi−1 ≡L vi ≡L u0 = uj−1.

I Lemma 6. If L is not regular, then π∆(ĈL) = C.

Proof. In order to prove the inclusion “⊇”, let x0, . . . , xm ∈ N be numbers as in Definition 4
and suppose {x0, . . . , xm} ⊆ {0, . . . , n}. Since L is not regular, we can find words u0, . . . , un ∈
X∗ such that uk 6≡L u` for k 6= `. Now for each 0 ≤ i ≤ m, let vi = uxi . Then it can be checked
straightforwardly that v0δ1v1 · · · δmvm#u0# · · ·un# ∈ ĈL and hence δ1 · · · δm ∈ π∆(ĈL).

For the inclusion “⊆”, let δ1 · · · δm ∈ π∆(ĈL). Then there are words v0, . . . , vm ∈ X∗,
u0, . . . , un ∈ X∗ with v0δ1v1 · · · δmvm#u0# · · ·un# ∈ ĈL. By the definition of ĈL, this
means for each 1 ≤ i ≤ m, there is a 1 ≤ j ≤ n such that 1–3 of Definition 5 hold. Hence,
we can pick for each 1 ≤ i ≤ m an xi ∈ {1, . . . , n} such that 1–3 of Definition 5 hold with
j = xi. Note that since this implies vi−1 ≡L uj−1 for δi ∈ {+, z} and vi−1 ≡L uj for δi = −
and the uk are pairwise incongruent w.r.t. ≡L, this choice of xi is unique. It can now be
verified by induction on i that the conditions 1–3 of Definition 4 are satisfied. J

The following lemma is the central ingredient in our proof. The idea is to construct ĈL,
which by Lemma 6 allows us to obtain C.

I Lemma 7. Let X = {0, 1}. There is a finite set F of rational transductions such that for
any non-regular L ⊆ X∗, the language C can be obtained from L using transductions in F
and Boolean operations.

Proof. We will use the alphabet Y = X ∪ {#} ∪∆. We prove the lemma by constructing C
from L using a sequence of Boolean operations and transductions T1, . . . , T19 over Y ∗ for
which it will be clear that they do not depend on L.

There are clearly rational transductions T1 and T2 with

W1 = {u#v#w | u, v, w ∈ X∗, uw ∈ L} = T1L,

W2 = {u#v#w | u, v, w ∈ X∗, vw ∈ L} = T2L,

which means we can construct W1 and W2. Hence,

W ′ = {u#v#w | u, v, w ∈ X∗, (uw ∈ L, vw /∈ L) or (uw /∈ L, vw ∈ L)}
= (W1 ∩W2) ∪ (W1 ∩W2)

STACS’14

536 On Boolean closed full trios and rational Kripke frames

can also be constructed. We can clearly find a rational transduction T3 with

W = {u#v | u, v ∈ X∗, u 6≡L v} = {u#v | u#v#w ∈W ′ for some w ∈ X∗} = T3W
′.

This means P = {u#v | u ≡L v} = X∗#X∗ \W = T4W , for some T4, can be constructed.
With suitable rational transductions T5, T6, we have

S = {u0#u1# · · ·un# | ui 6≡L uj for all i 6= j}
= (X∗#)∗ \ {ru#sv#t | r, s, t ∈ (X∗#)∗, u#v ∈ P} = T6T5P ,

meaning that S can be constructed as well. Let M (matching) be the set of all words
v1δv2#u1#u2 where v1, v2, u1, u2 ∈ X∗ with

if δ = +, then v1 ≡L u1 and v2 ≡L u2,
if δ = −, then v1 ≡L u2 and v2 ≡L u1, and
if δ = z, then v1 ≡L v2 ≡L u1.

Since

M = {v1+v2#u1#u2 | v1#u1 ∈ P, v2#u2 ∈ P}
∪ {v1−v2#u1#u2 | v1#u2 ∈ P, v2#u1 ∈ P}
∪ {v1zv2#u1#u2 | v1#v2 ∈ P, v1#u1 ∈ P, u2 ∈ X∗}

= (T7P ∩ T8P) ∪ (T9P ∩ T10P) ∪ (T11P ∩ T12P)

for suitable rational transductions T7, . . . , T12, we can also construct M .
Let E (error) be the set of words v1δv2#u0# · · ·un# such that for every 1 ≤ j ≤ n, we

have v1δv2#uj−1#uj /∈M or we have δ = z and v1 6≡L u0. Since

E′ = {v1δv2#ru1#u2#s | v1δv2#u1#u2 ∈M, r, s ∈ (X∗#)∗} = T13M

for some rational transduction T13, we can construct E′. Furthermore, since

E = {v1zv2#u0r | v1 6≡L u0, r ∈ (X∗#)∗, v2 ∈ X∗} ∪ [(X∗∆X∗#(X∗#)∗ \ E′]
= T14P ∪ T15E′,

for some rational transductions T14, T15, we can construct E.
Let N (no error) be the set of words v0δ1v1 · · · δmvm#u0# · · ·un# such that for every

1 ≤ i ≤ m, there is a 1 ≤ j ≤ n with vi−1δivi#uj−1#uj ∈M and if δi = z, then vi−1 ≡L u0.
Since

N ′ = {w ∈ (X∗∆)∗v1δv2(∆X∗)∗#u0# · · ·un# | v1δv2#u0# · · ·un# ∈ E} = T16E,

N = (X∗∆)+X∗#(X∗#)∗ \N ′ = T17N ′

for some rational transductions T16, T17, we can construct N .
Now we have ĈL = N ∩ (X∗∆)∗X∗#S = N ∩ T18S for some rational transduction

T18, meaning we can construct ĈL. By Lemma 6, we have C = T19ĈL for some rational
transduction T19. This proves our claim and hence the lemma. J

I Lemma 8. Let X = {0, 1}. There is a finite set F of rational transductions in X∗ ×X∗
such that for any non-regular L ⊆ X∗, each K ∈ RE, K ⊆ X∗, can be obtained from L using
transductions in F and Boolean operations.

M. Lohrey and G. Zetzsche 537

Proof. Let F ′ contain the set of rational transductions provided by Lemma 1 and the one
provided by Lemma 7. We will use the alphabet Y = X ∪∆ ∪ {#} and a standard encoding
g : Y ∗ → X∗.

Suppose K ⊆ X∗ is recursively enumerable and let A = (Q,X,E, q0, Qf) be a 2-counter
machine, E ⊆ Q×X∗×∆×∆×Q, accepting K and with Q = {0, . . . , k} and Qf = {k}. Here,
we assume that the machine operates on both counters in each step. Let R be the regular
language of all words 0m0

∏n
i=1 #wi#δ(0)

i δ
(1)
i 0mi with (mi−1, wi, δ

(0)
i , δ

(1)
i ,mi) ∈ E for every

1 ≤ i ≤ n, m0 = 0, and mn = k. We can obtain g(R) from L using only transductions in
F ′. Thus, we can obtain R = g−1(g(R)). Clearly, there are rational transductions T1 and T2
such that

U =
{

100
n∏

i=1
#wi#δ(0)

i δ
(1)
i 10mi ∈ R

∣∣∣∣∣ δ(k)
1 · · · δ(k)

n ∈ C for k = 0, 1
}

= R ∩ T1C ∩ T2C,

meaning that we can also obtain U . Finally, applying to U the transduction T3 that outputs
all occurrences of X after odd occurrences of # up to the next occurrence of # clearly yields
K. If we let F consist of F ′ and g−1, T1, T2, T3, the lemma is proven. J

I Theorem 9. Let X = {0, 1}. There are rational transductions R,S, T over X∗ such that
for any non-regular L ⊆ X∗, each K ∈ AH(L), K ⊆ X∗, can be obtained from L using
R,S, T and Boolean operations.

Proof. We shall prove that there is a finite set F of rational transductions in X∗ ×X∗ such
that for any K ⊆ X∗, we can obtain each M ∈ RE(K), M ⊆ X∗, from K and L using
transductions in F and Boolean operations. This clearly implies that we can obtain all of
Σ1(L) = RE(L) from L and hence, by induction on i, all of Σi(L) from L. According to
Lemma 2 we can then find transductions R,S, T that have the desired property.

Let F ′ be the set of transductions provided by Lemma 8 and let K ⊆ X∗ be arbitrary
and M ∈ RE(K), M ⊆ X∗. This means there is an oracle Turing machine A such that M
is accepted by AK . We will use the extended alphabet Y = {0, 1,#1,#2} and a standard
encoding g : Y ∗ → {0, 1}∗. Let M ′ ⊆ Y ∗ be the set of words

u1#1 · · ·un#1v1#2 · · · vm#2w

such that there is an accepting computation in A with input w and in which oracle queries
about u1, . . . , un are made with a positive result and oracle queries about v1, . . . , vm are
made with a negative result. Note that this does not mean that ui ∈ K or vi /∈ K, we collect
all computations that A could make and what inputs would be accepted provided that an
oracle answered as specified. Then M ′ is clearly recursively enumerable. Therefore, g(M ′)
can be obtained from L by transductions in F ′ and Boolean operations.

Hence, we can obtain M ′ = g−1(g(M ′)) from L. Furthermore, since

(K#1)∗ = (X∗#1)∗K#1(X∗#1) = T1K, (K#2)∗ = (X∗#2)∗K#2(X∗#2) = T2K

for some rational transductions T1, T2, we can construct (K#1)∗ and (K#2)∗ from K.
Moreover, since

M ′′ = {u1#1 · · ·un#1v1#2 · · · vm#2w ∈M ′ | u1, . . . , un ∈ K, v1, . . . , vm ∈ K}
= M ′ ∩ (K#1)∗(X∗#2)∗X∗ ∩ (X∗#1)∗(K#2)∗X∗

= M ′ ∩ T3(K#1)∗ ∩ T4(K#2)∗

STACS’14

538 On Boolean closed full trios and rational Kripke frames

for suitable rational transductions T3, T4, we can construct M ′′ from K and L. If we now
apply a transduction T5 that for an input from Y ∗ outputs the longest suffix in X∗, we
obtain M from K and L. Since, apart from the transductions in F ′, we only used g−1 and
T1, . . . , T5, the lemma follows. J

I Corollary 10. Let L ⊆ X∗ be a non-regular language. Then AH(L) is the smallest Boolean
closed full trio containing L.

Proof. Let T be the smallest Boolean closed full trio containing L. If |X| ≤ 2, Theorem 9
implies that T includes AH(L). If |X| > 2, let g : X∗ → {0, 1}∗ be a standard encoding.
Then g(L) is non-regular as well and we have AH(L) = AH(g(L)). Hence, according to
Theorem 9, T includes AH(L) = AH(g(L)). The fact that AH(L) is a Boolean closed full trio
concludes the proof. J

The following corollary applies to a wide range of language classes. A full semi-AFL is a
union closed full trio. Although the authors are not aware of any particular full semi-AFL
for which it is not known whether complementation closure is available, the following fact is
interesting because of its generality.

I Corollary 11. Other than the regular languages, no full semi-AFL C ⊆ RE is closed under
complementation.

Proof. Suppose C were a complementation closed full semi-AFL that contains a non-regular
language. According to Theorem 9, it would already include AH and thus not be included in
RE. J

Note that the following corollary is not a special case of Corollary 11 as it is not restricted
to language classes below RE.

I Corollary 12. A principal full trio is closed under complementation if and only if it
coincides with the regular languages.

Proof. Let T be a principal full trio generated by the language L. If L is regular, T coincides
with the regular languages and is therefore closed under complementation.

Suppose L is not regular. T consists of all languages of the form RL, where R is a
rational transduction. Hence, T is contained in RE(L) and closed under union. If T were
closed under complementation, it would be closed under all Boolean operations and thus, by
Theorem 9, contain AH(L). Since RE(L) (AH(L), this is a contradiction. J

I Corollary 13. For finitely generated monoids M , the following are equivalent:
1. VA(M) is closed under complementation.
2. VA(M) = REG.
3. M has only finitely many right-invertible elements.

Proof. Let L be the identity language corresponding to some finite generating set ofM . Since
VA(M) is the principal full trio generated by L, Corollary 12 yields the equivalence between
3a and 3b. The equivalence between 3b and 3c has been shown in [14] (and independently
in [16]). J

M. Lohrey and G. Zetzsche 539

4 Rational Kripke frames

Theorem 9 can be also restated in terms of multimodal logic. A Kripke structure (or edge-
and node-labeled graph) is a tuple

K = (V, (Ea)a∈A, (Up)p∈P),

where V is a set of nodes (also called worlds), A and P are finite sets of actions and
propositions, respectively, for every a ∈ A, Ea ⊆ V × V , and for every p ∈ P , Up ⊆ V .
The tuple F = (V, (Ea)a∈A) is then also called a Kripke frame. We say that K (and F) is
word-based if V = X∗ for some finite alphabet X. Formulas of multimodal logic are defined
by the following grammar, where p ∈ P and a ∈ A:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | �aϕ | ♦aϕ.

The semantics [[ϕ]]K ⊆ V of formulas ϕ in K is defined inductively as follows:

[[p]]K = Up,

[[¬ϕ]]K = V \ [[ϕ]]K,
[[ϕ ∧ ψ]]K = [[ϕ]]K ∩ [[ψ]]K,
[[ϕ ∨ ψ]]K = [[ϕ]]K ∪ [[ψ]]K,
[[�aϕ]]K = {v ∈ V | ∀u ∈ V : (v, u) ∈ Ea → u ∈ [[ϕ]]K},
[[♦aϕ]]K = {v ∈ V | ∃u ∈ V : (v, u) ∈ Ea ∧ u ∈ [[ϕ]]K}.

A word-based Kripke frame F = (X∗, (Ea)a∈A) is called rational if every Ea is a rational
transduction. Rational Kripke frames with a single relation are also known as rational
graphs and have been studied intensively [5, 12, 13]. A word-based Kripke structure K =
(X∗, (Ea)a∈A, (Up)p∈P) is called rational if every relation Ea is a rational transduction and
every Up is a regular language. The closure properties of regular languages imply that
for every rational Kripke structure K and every multimodal formula ϕ, the set [[ϕ]]K is
a regular language that can be effectively constructed from ϕ and (automata describing
the structure) K. Using this fact, Bekker and Goranko [2] proved that the model-checking
problem for rational Kripke structures and multimodal logic is decidable. This problem has
as input a rational Kripke structure K (given by a tuple of automata and transducers), a
word w ∈ X∗ (where X∗ is the node set of K), and a multimodal formula ϕ, and it is asked
whether w ∈ [[ϕ]]K holds. In contrast, there exist rational graphs (even acyclic ones) with
an undecidable first-order theory [5, 15], but every rational tree has a decidable first-order
theory [5]. Rational Kripke structures and frames were also considered in the context of
querying graph databases [1].

Our reformulation of Theorem 9 in terms of multimodal logic is:

I Theorem 14. Let X = {0, 1}. There are rational transductions Er, Es, Et in X∗ such
that the rational Kripke frame F = (X∗, Er, Es, Et) has the following property: For every
non-regular language Up ⊆ X∗ and every language K ∈ AH(Up), K ⊆ X∗, there exists a
multimodal formula ϕ such that K = [[ϕ]]K, where K = (X∗, Er, Es, Et, Up).

Proof. Take the rational transductions R,S, T provided by Theorem 9. Let Up ⊆ X∗ be a
non-regular language and take the Kripke structure K = (X∗, Er, Es, Et, Up), where Er = R,
Es = S, and Et = T . By induction, we can construct for every languageK obtainable from Up

by the transductions R,S, T and Boolean operations a multimodal formula ϕ with K = [[ϕ]]K.
For instance, if K = [[ψ]]K, then RK = [[♦rψ]]K. The theorem follows immediately. J

STACS’14

540 On Boolean closed full trios and rational Kripke frames

The question arises whether an analogous statement holds when we allow choosing
an arbitrary non-rational transduction instead of an arbitrary non-regular language. In
other words: Are there rational transductions R1, . . . , Rn and regular languages L1, . . . , Lm

over an alphabet X such that for any non-rational transduction T , the Kripke structure
(X∗, R1, . . . , Rn, T, L1, . . . , Lm) allows to define every arithmetical language in multimodal
logic? The answer is no, since there are non-rational transductions T that preserve regularity,
i.e., for which TL is regular whenever L is regular. Take, for example, the transduction
T = {(w,ww) | w ∈ X∗}. It is clearly not rational, since T−1X∗ = {ww | w ∈ X∗} is not
regular. However, it is not hard to see that TL is effectively regular for regular languages
L [17]. In particular, for every choice of R1, . . . , Rn and L1, . . . , Lm as above, every language
definable in (X∗, R1, . . . , Rn, T, L1, . . . , Lm) is regular and effectively constructible, implying
that the model-checking problem is decidable.

5 Open problems

An interesting open problem is whether in Theorem 9 one can replace the rational transduc-
tions by suitable synchronized rational relations. A relation R ⊆ X∗ ×X∗ is synchronized
rational if the set of all convolutions u⊗ v with (u, v) ∈ R is a rational language. The convo-
lution of two words u = a1a2 · · · an and v = b1b2 · · · bm is the word (a1, b1)(a2, b2) · · · (ak, bk)
where k = max{n,m}, ai = # for i > n, and bi = # for i > m. Here, # is a fresh symbol
not appearing in any pair from R. In other words, R can be recognized by an automaton on
two tapes where both heads move synchronously. Synchronized rational relations underlie
the definition of automatic structures [9]. Note that the rational transductions used in the
proof of Theorem 9 are not synchronized rational.

Another open question is whether the number of rational transductions in Theorem 9
can be reduced to 1 or 2.

References
1 Pablo Barceló, Diego Figueira, and Leonid Libkin. Graph logics with rational relations and

the generalized intersection problem. In LICS, pages 115–124. IEEE, 2012.
2 Wilmari Bekker and Valentin Goranko. Symbolic model checking of tense logics on ra-

tional Kripke models. In Margaret Archibald, Vasco Brattka, Valentin Goranko, and Be-
nedikt Löwe, editors, ILC, volume 5489 of Lecture Notes in Computer Science, pages 2–20.
Springer, 2007.

3 Jean Berstel. Transductions and context-free languages. Teubner, Stuttgart, 1979.
4 Ronald V. Book. Simple representations of certain classes of languages. Journal of the

ACM, 25(1):23–31, 1978.
5 Arnaud Carayol and Christophe Morvan. On rational trees. In Zoltán Ésik, editor, CSL,

volume 4207 of Lecture Notes in Computer Science, pages 225–239. Springer, 2006.
6 Henning Fernau and Ralf Stiebe. Sequential grammars and automata with valences. The-

oretical Computer Science, 276:377–405, 2002.
7 Sheila A. Greibach. Remarks on blind and partially blind one-way multicounter machines.

Theoretical Computer Science, 7(3):311–324, 1978.
8 J. Hartmanis and J.E. Hopcroft. What makes some language theory problems undecidable.

Journal of Computer and System Sciences, 4(4):368–376, 1970.
9 Bakhadyr Khoussainov and Anil Nerode. Automatic presentations of structures. In LCC:

International Workshop on Logic and Computational Complexity, volume 960 of Lecture
Notes in Computer Science, pages 367–392. Springer, 1995.

M. Lohrey and G. Zetzsche 541

10 Stephen Cole Kleene. Representation of events in nerve nets and finite automata. In C. E.
Shannon and J. McCarthy, editors, Automata Studies, pages 3–41. Princeton University
Press, Princeton, NJ, 1956.

11 Dexter C. Kozen. Automata and computability. Springer-Verlag, New York, 1997.
12 Christophe Morvan. On rational graphs. In Jerzy Tiuryn, editor, Proceedings of the 3rd

International Conference on Foundations of Software Science and Computation Structures
(FoSSaCS 2000), Berlin (Germany), number 2303 in Lecture Notes in Computer Science,
pages 252–266. Springer, 2000.

13 Christophe Morvan and Colin Stirling. Rational graphs trace context-sensitive languages.
In Jiri Sgall, Ales Pultr, and Petr Kolman, editors, Proceedings of the 26th International
Symposium on Mathematical Foundations of Computer Science (MFCS 2001), Marianske
Lazne (Czech Republic), number 2136 in Lecture Notes in Computer Science, pages 548–559.
Springer, 2001.

14 Elaine Render. Rational Monoid and Semigroup Automata. PhD thesis, University of
Manchester, 2010.

15 Wolfgang Thomas. A short introduction to infinite automata. In Werner Kuich, Grzegorz
Rozenberg, and Arto Salomaa, editors, Proceedings of the 5th International Conference on
Developments in Language Theory (DLT 2001), Vienna (Austria), number 2295 in Lecture
Notes in Computer Science, pages 130–144. Springer, 2001.

16 Georg Zetzsche. On the capabilities of grammars, automata, and transducers controlled by
monoids. In Luca Aceto, Monika Henzinger, and Jiri Sgall, editors, Automata, Languages
and Programming 38th International Colloquium, ICALP 2011, Zürich, Switzerland, July
4-8, 2011, Proceedings, Part II, volume 6756 of Lecture Notes in Computer Science, pages
222–233. Springer, 2011.

17 Guo-Qiang Zhang. Automata, boolean matrices, and ultimate periodicity. Information and
Computation, 152(1):138–154, 1999.

STACS’14

	Introduction
	Preliminaries
	Boolean closed full trios
	Rational Kripke frames
	Open problems

