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Abstract
An algorithm is called data-oblivious if its control flow and memory access pattern do not depend
on its input data. Data-oblivious algorithms play a significant role in secure cloud computing,
since programs that are run on secret data—as in fully homomorphic encryption or secure multi-
party computation—must be data-oblivious. In this paper, we formalize three definitions of
data-obliviousness that have appeared implicitly in the literature, explore their implications, and
show separations. We observe that data-oblivious algorithms often compose well when viewed
as data structures. Using this approach, we construct data-oblivious stacks, queues, and priority
queues that are considerably simpler than existing constructions, as well as improving constant
factors. We also establish a new upper bound for oblivious data compaction, and use this result to
show that an “offline” variant of the Oblivious RAM problem can be solved with O(logn log logn)
expected amortized time per operation— as compared with O(log2 n/ log logn), the best known
upper bound for the standard online formulation.
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1 Introduction

An algorithm is called data-oblivious, or just oblivious, if its control flow and memory access
pattern do not depend on its input data. Data-obliviousness has compelling applications in
cryptography and security. When an untrusted cloud server computes on encrypted data, the
computation must be oblivious, since by assumption the server cannot learn anything about
the data. Obliviousness also subsumes standard notions of security against side-channel
attacks. If an adversary cannot distinguish between different primitive operations, then by
making a program oblivious, we ensure that the adversary gains no information from any other
source—including standard side channels such as timing, cache performance, and termination
behavior. In addition, deterministic oblivious algorithms correspond directly to uniform
families of Boolean circuits, and so they are useful in designing hardware implementations
whose structure must be fixed before the input is known.

There has been a large body of work on the Oblivious RAM problem, which concerns
a general translation of RAM programs to versions that are data-oblivious in a certain
sense [7, 15, 10, 17, 6], as well as on other general data-oblivious simulations [9, 16]. In addition,
there has been some work on developing data-oblivious solutions to specific problems [4, 8],
but this class of questions has received relatively little attention in the past, particularly
with respect to the prospect of composable data-oblivious data structures. In this work:

We formalize three definitions of data-obliviousness—including formulations that apply
to modern cloud computing settings, in which algorithms need only be oblivious with
respect to part of the data.
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We give new results on data-oblivious algorithms and simple composable data structures,
including new bounds for data compaction and an “offline” variant of Oblivious RAM.
We give a number of refinements of existing results, including simpler and tighter
constructions for oblivious stacks, queues, and priority queues.

2 The formal computation model

We will consider algorithms executed on a word RAM, with a word size of Θ(logn), where n
is the size of the input (or the capacity of the data structure, as appropriate), and the entire
memory consists of poly(n) words.1 The RAM has a constant number of public and secret
registers, and can perform arbitrary operations (of circuit size poly(logn)) on a constant
number of registers in constant time. (Data-oblivious algorithms are sometimes also studied
in the external memory model. In the language of that model, our results assume a block
size of B = Θ(logn), and a cache of a constant number of blocks, M = O(B); this is the
traditional setting of Oblivious RAM [7].)

We will further assume that the machine’s memory is divided into public and secret
regions, and that an operation is prohibited if it could cause values originating from secret
regions to influence those in public regions. The formal mechanism for this restriction
depends on the machine specification, but in general, we assume standard techniques from
(branching-sensitive) static information flow control [14, 13]. For example, we may specify
that (i) a register is tagged as secret when its value is read from a secret memory location or
is updated based on another secret register; (ii) a register does not become public again until
it is directly overwritten by a constant or the contents of a public memory location; and (iii)
that no secret register may be involved in a write instruction to a public memory location.
The notion of obliviousness is then parameterized over which part of the input is secret: we
say that an algorithm is oblivious if it never executes any instruction that sets its program
counter or memory-address operands based on a secret register. Thus, if the entire memory
is designated as secret, we recover the standard definition of oblivious computation.

We will also assume that each of the registers and memory locations is labeled as determ-
inistic or nondeterministic, with the restriction that values labeled nondeterministic can
never influence those labeled deterministic.2 We assume that machines have a finite number
of registers of every type (public/deterministic, public/nondeterministic, secret/deterministic,
secret/nondeterministic), and we will measure memory usage of all types together. When
machines have access to randomness, we will say that they are provided with two read-only
one-way-infinite tapes of uniformly random bits, with one labeled public and one labeled
secret, and both labeled nondeterministic.

We can now state three definitions, in increasing order of computational power.
1. Deterministically data-independent: The RAM can only set its control flow based

on registers that are both public and deterministic. This definition corresponds directly
to uniform families of Boolean circuits.

2. Data-independent: The RAM can only set its control flow based on registers that are
public (though these registers may be either deterministic or nondeterministic). Even

1 Our choice of such a powerful machine model is motivated by the thin asymptotic complexity margins
inherent in the study of obliviousness. As we note in Section 2.1, any program can be made oblivious
with overhead linear in its time complexity, and thus it would not make sense to study a simpler model
such as the Turing machine, which may already incur linear overhead just by virtue of being limited to
sequential memory access.

2 As above, this restriction can be effected using standard static information-flow control rules.
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though its structure varies based on random bits, the computation can still proceed
without seeing the secret data.

3. Data-oblivious: The RAM can only set its control flow based on public registers, but
it is equipped with an additional “declassification” operation that moves a value from
any secret register to any public register. However, the distribution of all declassified
values (along with the point during execution at which each declassification occurs) is
independent3 of all secret inputs. Here, the algorithm can see the secret data and branch
on it, but its control flow and memory access pattern still must not reveal any secret
values. This definition captures the setting of Oblivious RAM with constant client-side
storage [7, 10, 3]; the physical memory locations accessed by the Oblivious RAM protocol
must be independent of the logical memory locations requested.

Qualitatively, the fundamental difference between these definitions is that data-independent
machines must satisfy a purely static constraint on the kinds of operations that are permitted
on secret locations, while data-oblivious machines must only satisfy a dynamic condition,
describing the actual effects of declassification operations at runtime. This distinction is fairly
subtle. For instance, Beame and Machmouchi [1] give a lower bound for oblivious branching
programs that was originally believed to apply to Oblivious RAM; however, as indicated
by the authors in a supplementary note [2], their result applies only to data-independent
algorithms, not to data-oblivious algorithms such as Oblivious RAM.

We also remark that, in general, deterministic data-independence is a very strong condition.
For hardware implementations, it may be the case that the control flow of the algorithm is
fixed a priori and cannot depend on any random bits at runtime. In virtually all applications
in cryptography and security, however, no such restriction exists in practice. Even in the
case of fully homomorphic encryption, the server operating on ciphertexts may generate and
encrypt its own random bits.4 Thus, for the remainder of this paper, we will use the term
data-independent to refer to probabilistically data-independent algorithms, unless otherwise
indicated.

Finally, we will sometimes want to enable the machine to execute cryptographic operations,
such as evaluating a pseudorandom function (PRF), at unit cost. While this feature is
standard in the Oblivious RAM setting [7, 10], it introduces subtle difficulties. The largest
cryptographic key that will fit in the machine’s O(1) registers is of size Θ(logn)—which
cannot possibly provide security better than 2Θ(log n) = poly(n). So instead, whenever
cryptographic operations are relevant, we introduce an additional security parameter λ, and
assume that the adversary’s advantage is negligible in any relevant cryptographic game when
instantiated with λ as the security parameter.5 In such settings, when we write O(t(n)), it
should be taken to mean O(t(n) · (1+poly(λ/ logn))), i.e., O(t(n)) standard RAM operations
plus O(t(n)) cryptographic operations.

3 We extend this definition in the natural way to statistically data-oblivious, in which the distributions
for two different secret inputs are statistically close; or computationally data-oblivious, in which the
distributions are computationally indistinguishable. In this case, we refer to the original definition as
perfectly data-oblivious.

4 Indeed, even when the server must provide proof that it conducted the computation correctly, it can
still simulate the same effect by evaluating a pseudorandom function homomorphically.

5 In practical settings, this may require a superpolynomial hardness assumption, since we generally always
have λ < n. An alternate approach, suggested by Goldreich and Ostrovsky [7], is to give the machine
(but not the adversary) unit-cost access to a random oracle.
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2.1 General program transformations
We note that there is a general upper bound on the cost of making an arbitrary algorithm
data-independent:

I Theorem 1. Any RAM program whose running time is at most T (n), and refers to memory
addresses bounded by S(n), 6 may be translated to a deterministically data-independent RAM
program that uses Θ(S(n)) space and runs in time Θ(T (n)S(n)).

Proof. The translation is simply by brute force. At each time step, iterate over the entire
finite program, and for each possible pair 〈instruction, memory location〉, compute the
Boolean value b corresponding to whether (a) the program counter resides at the given
instruction and (b) the given memory location is requested by that instruction. Then
compute the result of executing the instruction, and set the resulting register and/or memory
location accordingly, by “arithmetizing” the branch: A` := (b ·new_value)+((1−b) ·A`). J

If the algorithm need only be data-oblivious, not necessarily data-independent, then the
upper bound is considerably better. A long line of work on the Oblivious RAM problem [7, 15,
10, 17, 6] has produced increasingly efficient data-oblivious simulations of RAMs, achieving
the following complexity bound [10]:

I Theorem 2 (Kushilevitz, Lu, and Ostrovsky, 2012). Assuming one-way functions exist, there
is an Oblivious RAM that requires O(log2 n/ log logn) amortized overhead per operation and
uses Θ(n) space.

2.2 Data-oblivious data structures
We extend the formal treatment above to data structures, by considering each operation on
a data structure as an algorithm taking its current internal state and a query as input, and
producing as output its result and subsequent internal state.7

As a simple example, we consider the case of the array: we must produce an algorithm
that takes a query tuple (read/write, index, value), along with some current memory state,
and returns a new memory state (and, if the operation was a read, the result of the query).
For simplicity, we restrict our attention to arrays that are operation-secret as well as data-
secret—i.e., the identity of the operation being performed (read or write), is labeled as secret,
in addition to the values in the array.8 (Of course, we also restrict our attention to arrays
that are index-secret—i.e., the index i is labeled as secret—since otherwise the solution is
trivial; an ordinary random-access array suffices.)

For general arrays, it is clear that we cannot hope for a nontrivial data-independent
construction:
I Proposition 3. Any data-independent array of size n requires Ω(n) space and Ω(n) time
per operation.

Proof. Immediate by an information-theoretic argument. J

6 Technically, we also require T and S to be time- and space-constructible by an oblivious machine, since
we must decide when to stop the simulation without inspecting the simulated data values.

7 Here we remark that our notion of data-oblivious data structures is also distinct from that of Miccian-
cio [12]: under our definition, the obliviousness criterion applies not to the physical representation of
the data structure, but rather to the algorithms that implement its operations. Data-obliviousness is
also distinct from cache-obliviousness (as in external memory models).

8 One could also weaken the requirements so that arrays may be operation-public, and describe the
complexity of reads and writes separately, but this does not change the situation up to constant factors,
since we can just execute both a read and a write whenever either is requested.
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We may consider relaxing the requirements by specifying only that the array be data-
oblivious, rather than data-independent. In this case, the setting coincides with that of
Oblivious RAM, and Theorem 2 gives an efficient construction.

Alternatively, we can relax the requirements not by changing the model, but by restricting
the features of the data structure itself. Indeed, we now show that for many common uses of
arrays—notably, stacks, queues, and priority queues—it is possible to do considerably better
than the naive translation, even in the data-independent setting.

3 Stacks and queues, via composition

In some of the earliest work that considers obliviousness as an explicit goal, Pippenger and
Fischer give a simulation of a multitape Turing machine by a deterministic data-independent
two-tape Turing machine, running in time O(T (n) log T (n)), where T (n) bounds the running
time of the original machine [16]. Initially, constructions such as the Pippenger-Fischer
simulation were used to refine the time hierarchy theorem, as they permit a more efficient
universal Turing machine simulation than the naive Θ(T (n)2).

However, from the perspective of oblivious algorithms (even executed on a RAM), we
find that the Turing machine tape is a useful data structure in its own right. As above, we
will restrict our attention to the nontrivial case, that of operation-secret Turing machine
tapes: the identity of each operation (i.e., {read,write} × {left, right}), as well as each tape
symbol, is deemed secret for the purpose of obliviousness. We state the following results:

I Theorem 4. There exists a deterministic data-independent Turing machine tape with
(pre-specified, public) length n, using Θ(n) space and O(logn) amortized time per operation.
The tape may be taken to be either (a) toroidal, so that attempting to move off the right end
wraps around to the left end, and vice versa; or (b) bounded, so that attempting to move off
either end results in no head movement.

Proof. Follows directly from the Pippenger-Fischer simulation [16]. J

I Corollary 5. There exists a deterministic data-independent stack with (pre-specified, public)
capacity n, using Θ(n) space and Θ(logn) amortized time per operation.

Proof. Follows from Theorem 4, since a stack may be implemented by writing the elements
in sequence on a Turing machine tape, leaving the head at the end. J

Fischer et al. also showed that it is possible to simulate a Turing machine with multiple
heads using a Turing machine with multiple tapes (but only one head on each tape), with
only a constant factor slowdown [5]. This result enables a straightforward construction of
efficient oblivious queues, by composition with the stack of the previous section:

I Theorem 6. There exists a deterministic data-independent queue with (pre-specified, public)
capacity n, using Θ(n) space and Θ(logn) amortized time per operation.

Proof. Given a two-headed Turing machine tape, a queue can trivially be implemented with
overhead Θ(1) (and no extra space), by keeping the front of the queue at one head and the
back of the queue at the other. A two-headed Turing machine tape can be implemented
by a constant number of (non-oblivious) single-headed Turing machine tapes, also with
linear space and only a constant factor slowdown [5, 11]. Thus, if we use the oblivious
Turing machine tape of Pippenger and Fischer (Theorem 4) to implement each, the entire
construction uses only Θ(logn) amortized time per operation (and linear space). J
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4 Stacks and queues, directly

In the previous section, we illustrated the ability to build data-oblivious data structures
by composition of other data structures. We now show that one may also proceed from
first principles, sometimes obtaining constructions that are much simpler and have better
constant factors. Generally, efficient data-oblivious data structures share the following traits:

Data locality – the Turing machine tape, for example, can only visit a neighborhood of
size O(k) within k steps.
Self-similarity or isotropy – the “local context” at any point in the data structure must
appear the same, so that the structure can operate obliviously on local data, and can
obliviously shift data so that the new local context is correct.

Proceeding from these principles, we arrive at the following results:

I Theorem 7. There exists a deterministic data-independent stack with (pre-specified, public)
capacity n, requiring linear space and amortized time at most ∼ 8dlgne per operation.

I Theorem 8. There exists a deterministic data-independent queue with (pre-specified, public)
capacity n, requiring linear space and amortized time at most ∼ 11.5dlgne per operation.

At a high level, our constructions implement a “b-structure”, which operates on b-word
blocks, in terms of (i) a buffer of a constant number of b-word blocks, kept fairly close to
half-full; and (b) a “2b-structure”, defined inductively, into which blocks are pushed or pulled
as the local buffer becomes too imbalanced. We defer the details to the extended version
of this work. We note that the overhead of our oblivious stack is significantly better than
the 24dlgne of the Pippenger-Fischer simulation (Corollary 5), and even yields a tighter
oblivious Turing machine tape (16dlgne, by implementing the tape using two stacks). The
constant-factor improvement in the oblivious queue is even more significant, since Theorem 6
invokes not only the Pippenger-Fischer simulation but also a simulation of a two-headed
machine.

5 Priority queues

As another example of data structure composition, we now show how to build efficient
oblivious priority queues (both operation-secret and operation-public), using oblivious queues
as a key component. As above, we will be concerned only with data-secret priority queues,
since the data-public case is trivial. However, unlike the Turing machine tape, the oblivious
priority queue harbors a nontrivial distinction between operation-secret and operation-public
structures, and we will consider both. In what follows, we write a to denote the capacity of
the priority queue, n the number of items in the priority queue at any given time, and m the
total number of operations that have been performed.

First, we note that if the priority queue is operation-secret, then the time bounds must
depend only onm and a (since n depends on whether the operations performed were insertions
or deletions.) We also note that in general:

I Lemma 9. Given an operation-public priority queue such that remove-min and insert both
run in amortized time f(a, n,m) (where f is monotonically increasing and poly(a, n,m)),
there exists an operation-secret priority queue such that both operations run in amortized
time O(f(m,m,m)).

Proof. By performing dummy operations; we defer the details to the extended version. J
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I Theorem 10. There exists a deterministic data-independent, operation-secret priority
queue, using Θ(min(a,m)) space and Θ(log2(min(a,m))) amortized time per operation.

Proof. For simplicity, we assume the capacity of the priority queue is a power of two,
a = 2k, and that all elements are distinct. We use a hierarchical series of k oblivious queues
(Section 8), as in standard Oblivious RAM constructions; the ith queue has capacity 2i+1.

We maintain the following invariant: at the beginning of any operation, queue i contains
up to 2i items in sorted order. The operations are then implemented as follows:9
1. To remove the minimum: first, find the minimum by examining the front of each queue.10

Then, for each queue, if its front is the minimum, pop it; otherwise, do nothing. (Since
all elements are distinct, only one of the queues will actually be popped.)

2. To insert an item: first, let l be the deepest level such that 2l divides m (where m, as
above, is the number of operations performed so far). Create a temporary buffer queue B
of size 2l+1, holding only the new element. Then, for each level i ∈ (0, . . . , l), merge the
contents of queue i into B. This can be done using the standard merge algorithm: pop
whichever of the two queues currently yields the smaller element, accumulating the results
in a new buffer B′, and finally replace B with B′.

By the properties of the oblivious queue, operation (1) takes amortized time Θ(log(2i)) on
level i, and thus the total running time is

∑l−1
i=0 Θ(i) = Θ(l2) = Θ(log2 min(a,m)) (where l is

the index of the largest occupied level). On the other hand, operation (2) merges a queue of
size Θ(2i) into its successor (taking time Θ(2i log 2i)) once after every 2i operations, and thus
the amortized cost of each operation is

∑l
i=0(1/2i)(Θ(2i log 2i)) = Θ(l2) = Θ(log2 min(a,m))

also. J

I Theorem 11. There exists a deterministic data-independent operation-public priority
queue, using Θ(n) space and Θ(log2 n) amortized time per operation, where n is the size of
the priority queue prior to each operation.

Proof. Similar to the proof of Theorem 10; we defer the details to the extended version. J

Theorems 10 and 11 establish efficient constructions of oblivious priority queues in both the
operation-secret and the operation-public models. Evidently, for series of operations in which
m = O(n) (e.g., inserting 2m/3 items followed by removing m/3 items), the performance
in the operation-secret case is no worse asymptotically than in the operation-public case;
since the operation-secret queue cannot reveal the pattern of operations, in a sense, this is
the best we can hope for, without also obtaining a faster operation-public queue. Thus, the
distinction between operation-public and operation-secret priority queues turns out not to
matter, at least in the context of our best known constructions.

The constructions above compare favorably with the generic solution in the data-oblivious
setting: i.e., representing the priority queues as min-heaps, and using Oblivious RAM to serve
as the underlying array. In this case, using the Oblivious RAM of Kushilevitz et al. [10], we
would spend Θ(log3 n/ log logn) time, and Θ(log2 n) sequential communication rounds, per
operation (and we would incur either a large constant factor, if the Oblivious RAM uses the
AKS sorting network; or a moderate constant factor, with some small probability of error, if
the Oblivious RAM uses Goodrich’s randomized Shellsort). In contrast, our constructions

9 In fact, since the priority queue is operation-secret, of course, we simulate both (1) and (2) when either
operation is requested.

10Strictly speaking, this is not an operation of the queue interface above, but it is a straightforward
extension since the pop operation is not destructive.
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are not just data-oblivious but data-independent; they operate deterministically, and costs
only Θ(log2 n) time per operation, with a very small constant factor.

We note that in recent independent work, Toft [18] has also described a data-oblivious
priority queue with the same asymptotic bounds, albeit by a different method. The construc-
tions of this section are much simpler, however, due to the composition of data-oblivious
primitives.

6 Data compaction and the partition problem

Goodrich [8] describes a problem called data compaction: given an array of length n in which
r of the elements are marked as “distinguished”, construct a new array of size O(r) containing
only the distinguished items. If the resulting array is required to be of size exactly r, the
compaction is said to be tight; otherwise it is loose. If the items are also required to be in
their original order, the compaction is additionally said to be order-preserving. Goodrich
proves the following:

I Theorem 12 (Goodrich, 2011). There exists a deterministically data-independent algorithm
for tight order-preserving data compaction running in time Θ(n logn).

I Theorem 13 (Goodrich, 2011). There is a data-oblivious algorithm that runs in time
O(n log∗ n) and achieves loose data compaction with high probability when r < n/4.

However, for the next section, we will need fast tight compaction. To that end, we first
rephrase the problem of tight compaction in terms of the partition problem: given an array
of n items each tagged with a single bit, separate the items so that all those tagged with a 0
appear to the left of those tagged with a 1.11

Now, we will show:

I Theorem 14. There is a data-independent algorithm that runs in time Θ(n log logn) and
achieves tight data compaction (i.e., solves the partition problem) with high probability.

Proof. First, we note that we can easily count which tag (0 or 1) constitutes a majority,
and obliviously decide whether to invert the tags (and reverse the array) based on that
information. Thus, it suffices to give an algorithm to extract a constant fraction of whichever
tag constitutes a majority (placing the extracted items at either the beginning or the end of
the array, as appropriate), since we may then recur on the rest of the array. At any stage in
this recursion, let n denote the size of the entire array, and n′ denote the size of the subarray
being partitioned at this point.

Now, without loss of generality, suppose the subarray contains more zeroes than ones.
Let A denote the leftmost n′/3 cells, and B the rightmost 2n′/3. Let s, the bucket size, be
(logn)k for an arbitrary constant k > 1. Then:
1. For each cell ai in A, pick c cells bi uniformly at random from B (for some constant c to

be determined), and, if bi contains a 0, swap ai with bi.
2. Divide A into n′/3s buckets of s cells each. Partition each bucket using any Θ(s log s)

algorithm (e.g., Theorem 12).

11To show the equivalence, we note that in order to solve the data compaction problem, we can simply
mark the distinguished cells with 0, run a partition algorithm, and return the appropriate prefix of the
original array. Conversely, to solve the partition problem, we run data compaction twice: once with
the 0 elements marked as distinguished, and once with the array in reverse order and the 1 elements
marked as distinguished. Then, iterate over the two resulting arrays in parallel, and at each index, copy
from whichever array has a distinguished item.

STACS’14



562 Data-Oblivious Data Structures

3. Extract and concatenate all of the first halves of the buckets (i.e., n′/3s half-buckets,
each of size s/2, for a total of n′/6 items).

Evidently, this procedure performs a total of cn′/3+(n′/3s)(s log s)+n′/6 = Θ(n′ log s) =
Θ(n′ log logn) operations, giving a running time of Θ(n′ log logn) for a subarray of size n′.
Since T (n′) = T (5n′/6) + Θ(n′ log logn) (and noting that we may stop the recursion at
n′ = O(s), solving the base case directly by the algorithm of Theorem 12 with T (s) =
O(s log s) = s log logn), we have an overall running time of T (n) = Θ(n log logn).

For correctness, we now claim that for any given subarray of size n′, after the final step
of the iteration, the first n′/6 cells of A are all 0 with high probability. To show this, we first
note that since zeroes constitute a majority of the array, B (the rightmost 2n′/3 cells) must
contain at least n′/6 zeroes at all times. Thus, in step 1, ai will become zero with probability
at least (n′/6)/(2n′/3) = 1/4 on every potential swap, independently of any other events.
Since c swaps are performed, the probability that ai will become zero after the entire step
is at least 1 − (3/4)c; we choose c so that this success probability is bounded away from
1/2. Thus, by Hoeffding’s inequality (and a union bound), the probability that there are
more than s/2 ones in any bucket (and, thus, the probability that we fail to extract n′/6
zeroes after partitioning and splitting) is at most (n′/3s)e−2(2/3−1/2)2s = (n′/6)e−Θ(s). Even
after executing this procedure at every level of the recursion (as n′ decreases from n down to
s), again by a union bound, the overall probability of error is at most

∑
n′(n′/6)e−Θ(s) =

ne−Θ(s) = n−Θ(lgk−1 n). J

Crucially, because this partitioning algorithm is based on swaps (and is data-independent,
not just data-oblivious), we can also use it to “un-partition”, or intersperse, items:

I Theorem 15. Given an array of r items and an array of r binary tags, there is a data-
independent algorithm that runs in time Θ(r log logn) and, with probability 1 − 1/nω(1),
produces a permutation of the array such that every element that was originally in the left
half now occupies a location that was tagged with 0. If one-way functions exist, this algorithm
can use O(n) words of memory; otherwise, it uses O(n log logn) words.

Proof. Run the algorithm of Theorem 14 on the tag array, and record a “trace” consisting of
each pair of indices that it decided to swap, accompanied by a (secret) bit indicating whether
those items were actually swapped. (These indices may also include empty scratch cells, not
initially containing either a 0 or a 1 item.) Then, run the trace in reverse on the array of
actual items.

The space used by the trace is O(r log logn) bits, which requires o(r) words; plus
O(r log logn) pairs of indices, which requires O(r log logn) words. However, assuming one-
way functions (and hence PRFs), the index pairs can be taken to be the output of a PRF on
a short seed and a time step, in which case the entire assembly requires only linear space. J

I Lemma 16. Given two arrays of size r, each permuted according to a distribution that is
computationally indistinguishable from uniform, there is a data-independent algorithm that
runs in time Θ(r log logn) and results in a permutation that is computationally indistinguish-
able from uniform on all 2r elements.

Proof. Follows from Theorem 15. J

7 Offline Oblivious RAM

We now show that the data compaction problem is closely related to the question of
data-oblivious arrays (i.e., Oblivious RAM). Intuitively, the hierarchical Oblivious RAM
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constructions of Goldreich and Ostrovsky [7] and of Kushilevitz et al. [10] must remember
(and hide from the adversary) two things: (i) the “level”, or epoch, in which each item resides;
and (ii) the permutation of the items within each epoch. As a result, they must use techniques
such as oblivious cuckoo hashing via sorting [10] or logarithmic-sized buckets [7] in order to
make accesses to a level look the same whether an item is present or not. However, we can
separate these two issues by considering a variant of the problem in which the RAM need
not remember when an item was last accessed—perhaps because the sequence of memory
addresses is known in advance, and can be preprocessed before the queries are made.

More precisely, we define a primed array to be a data structure that has the same interface
as an array, except that each request (read or write) is accompanied by the (logarithm of
the) time since the requested cell was last accessed. We note that a primed array generalizes
an “offline” array with preprocessed queries, since the preprocessor may annotate each query
with the preceding access time to that cell. Now, we can show:

I Theorem 17. Assuming one-way functions exist, there is a (computationally) data-oblivious
primed array with expected amortized overhead O((p(n)/n) logn) per operation, where p(n)
is the time required for oblivious partitioning (or data compaction) of n items.

Proof. As in other hierarchical Oblivious RAM constructions, we maintain a series of levels
of increasing power-of-two sizes, in which level i contains between zero and r = 2i items,
and is “shuffled” into the next larger level (in a sense specified below) and after every epoch
of length r. Here, level i consists of a dictionary Di of size Θ(r), mapping each of 2r keys
to a data item, where each key is either an element of {1, . . . , n} or one of the dummy
values {dummyti

1 , . . . ,dummyti
r }, where ti is the time of the most recent shuffle at level i

(superscripts elided below for clarity). (Di may be implemented by a cuckoo hash table, or
even a standard linked-list-based hash table, since we will not depend on its hiding the access
pattern—only on the fact that it implements a dictionary in expected amortized constant
time.) Further, during any fixed epoch, level i will have an associated injective PRF ψti

i

(again, we drop the time index for clarity, and just write ψi). For each logical address x
present at level i, Di(ψi(x)) is the item stored at x; while for each dummy index dummys,
the key ψi(dummys) is present in Di (and is mapped to a dummy item). Now, upon receiving
a query, we find out how long ago the cell was accessed. This tells us in which level it resides
(since, as in standard Oblivious RAM constructions, we will “promote” an item to the top
level whenever it is accessed). Suppose it resides at level i. We then access a real item in
that level only, by querying Di at ψi(x), and query for a unique dummy item in all other
levels (e.g., ψj(dummyt mod 2j )).

When it is time for a level to be merged into the next level down, we first extract (via
oblivious partitioning) the items from both levels that have not yet been accessed during this
epoch—possibly including some real items and some dummy items (which we overwrite with
new dummy indices appropriate to the new, merged level). Then, we randomly intersperse
these two lists of items (Section 6). Finally, we fill the resulting 2r items into the new level’s
hash table, keyed by the values of a new PRF (evaluated on either the items’ addresses, for
real items, or on their new dummy indices).

During this process, the adversary sees the values of the new PRF on all addresses
remaining in both levels, appearing in the order they were in after the partition operations.
Since these addresses are all distinct, their images under the PRF are indistinguishable from
an independently uniform set of size 2r. Hence the information obtained by the adversary is
completely described by the correspondence between these values and the PRF image value
queried on each level’s dictionary when an item is retrieved (recall that these can match
only once, since as soon as an item is found, it is promoted to the top level; while dummy
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indices are used only once per epoch). This reveals only the order that an item had when it
was initially inserted into its current level during a merge. Thus, if we assume inductively
that the ordering of unvisited items in each of the higher levels was indistinguishable from a
uniform permutation (of their order of insertion), then it follows from Lemma 16 that the
resulting ordering in the current level is also indistinguishable from a uniform permutation,
and so is independent of the address request sequence, as desired. J

I Corollary 18. Assuming one-way functions exist, there is an offline Oblivious RAM with
expected amortized overhead O(logn log logn) per operation.

Proof. Immediate from Theorems 14 and 17. J

8 Lower bounds via communication complexity

For most problems, it seems very difficult to establish lower bounds on oblivious algorithms,
since any nontrivial slowdown due to obliviousness would imply nontrivial uniform circuit
lower bounds. For oblivious data structures, however, this is not the case. In fact, by viewing
the Oblivious RAM as an oblivious data structure, we immediately obtain a communication
complexity lower bound that generalizes both that of Pippenger and Fischer [16], for oblivious
Turing machine tapes, and that of Goldreich and Ostrovsky [7], for Oblivious RAMs (we
defer the proof to the extended version of this work):

I Theorem 19. Any data-oblivious Turing machine tape of length n requires Ω(logn) expected
amortized time per operation.

Now Theorem 19 immediately entails Ostrovsky’s lower bound for Oblivious RAM
(originally proven by a combinatorial argument [7]):

I Corollary 20. Any Oblivious RAM (i.e., any data-oblivious array) with n memory words
requires Ω(logn) expected amortized time per operation.

Proof. Use the array to implement a Turing machine tape and invoke Theorem 19. J
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