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Abstract
In this paper we study the computational complexity of the extended minimum cost homo-
morphism problem (Min-Cost-Hom) as a function of a constraint language, i.e. a set of constraint
relations and cost functions that are allowed to appear in instances. A wide range of natural
combinatorial optimisation problems can be expressed as extended Min-Cost-Homs and a classi-
fication of their complexity would be highly desirable, both from a direct, applied point of view
as well as from a theoretical perspective.

The extended Min-Cost-Hom can be understood either as a flexible optimisation version of
the constraint satisfaction problem (CSP) or a restriction of the (general-valued) valued constraint
satisfaction problem (VCSP). Other optimisation versions of CSPs such as the minimum solution
problem (Min-Sol) and the minimum ones problem (Min-Ones) are special cases of the extended
Min-Cost-Hom.

The study of VCSPs has recently seen remarkable progress. A complete classification for
the complexity of finite-valued languages on arbitrary finite domains has been obtained Thapper
and Živný [STOC’13]. However, understanding the complexity of languages that are not finite-
valued appears to be more difficult. The extended Min-Cost-Hom allows us to study problematic
languages of this type without having to deal with with the full generality of the VCSP. A recent
classification for the complexity of three-element Min-Sol, Uppman [ICALP’13], takes a step in
this direction. In this paper we generalise this result considerably by determining the complexity
of three-element extended Min-Cost-Hom.
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1 Introduction

The constraint satisfaction problem (CSP) is a decision problem where an instance consists of
a set of variables, a set of values, and a collection of constraints expressed over the variables.
The objective is to determine if it is possible to assign values to the variables in such a way
that all constrains are satisfied simultaneously. In general the constraint satisfaction problem
is NP-complete. However, by only allowing constraint-relations from a fixed constraint
language Γ one can obtain tractable fragments. A famous conjecture by Feder and Vardi [7]
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predicts that this restricted problem, denoted CSP(Γ), is either (depending on Γ) in P or is
NP-complete.

In this paper we will study an optimisation version of the CSP. Several such variants have
been investigated in the literature. Examples are: the min ones problem (Min-Ones) [17],
the minimum solution problem (Min-Sol) [14] and the valued constraint satisfaction prob-
lem (VCSP) [18]. The problem we will work with is called the extended minimum cost
homomorphism problem (Min-Cost-Hom). The “unextended” version of this problem was,
motivated by a problem in defence logistics, introduced in [9] and studied in a series of papers
before its complexity was completely characterised in [20]. The extended version of the
problem was introduced in [21] and differs from the original version in that it is parametrised
not only by a set of allowed constraint relations, but also by a set of allowed cost functions
(a formal definition is given in Section 2).

The extended Min-Cost-Hom provide a more general framework than both Min-Ones
and Min-Sol; a problem of one of the latter types is also an extended Min-Cost-Hom. The
VCSP-framework on the other hand is more general than the extended Min-Cost-Hom. In
fact, we can describe every extended Min-Cost-Hom as a VCSP for a constraint language in
which every cost function is either {0,∞}-valued or unary. The extended Min-Cost-Hom
captures, despite this restriction, a wealth of combinatorial optimisation problems arising in
a broad range of fields.

The study of VCSPs has recently seen remarkable progress; Thapper and Živný [22]
described when a certain linear programming relaxation solves instances of the problem,
Kolmogorov [15] simplified this description for finite-valued languages, Huber, Krokhin and
Powell [10] classified all finite-valued languages on three-element domains, and Thapper and
Živný [23] found a complete classification of the complexity for finite-valued languages on
arbitrary finite domains.

Most of the classifications that have been obtained concerns finite-valued constraint
languages ([22] mentioned above being a notable exception). Understanding the complexity
of general languages appears to be more difficult. Extended Min-Cost-Homs allows us to
study languages of this type without having to deal with with the full generality of the VCSP.
Using techniques of the so called algebraic approach (see e.g. [2, 3, 11]), and building on
results by Takhanov [20, 21] and Thapper and Živný [22, 23] we could in [24] take a step in
this direction by proving a classification for the complexity of Min-Sol on the three-element
domain. In this paper we generalise these results to the extended Min-Cost-Hom. Namely,
we prove the following theorem.

I Theorem 1. Let (Γ,∆) be a finite language on a three-element domain D and define
Γ+ = Γ ∪ {{d} : d ∈ D} ∪ {{x : ν(x) < ∞} : ν ∈ ∆}. If (Γ,∆) is a core, then one of the
following is true.

(Γ+,∆) is of semilattice type (Definition 5) and Min-Cost-Hom(Γ+,∆) is in PO.
(Γ+,∆) is of tournament pair type (Definition 14) and Min-Cost-Hom(Γ+,∆) is in PO.
Min-Cost-Hom(Γ,∆) is NP-hard.

If (Γ,∆) is of semilattice type, then Min-Cost-Hom(Γ,∆) can be solved efficiently by
linear programming [22]. If (Γ,∆) is of tournament pair type we show how to reduce the
problem to one demonstrated to be tractable in [20, 21]. Also in this case the underlying
algorithmic technique is linear programming.

We define cores in Section 5. Theorem 1 combined with the following result, which
follows from [23, Lemma 2.4], yields a full classification for the extended Min-Cost-Hom on
three-element domains.
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I Proposition 2. If (Γ′,∆′) is a core of (Γ,∆) then Min-Cost-Hom(Γ,∆) and Min-Cost-
Hom(Γ′,∆′) are polynomial-time inter-reducible.

To obtain the classification we apply tools from the algebraic approach, and, following
Thapper and Živný, we make repeated use of Motzkin’s Theorem. Our tractability results
are formulated and proved for arbitrary finite domains and are therefore not restricted to
the three-element case. Many of the tools we derive to aid in proving our main theorem
are also effective on domains of size larger than three. One example is that we show that a
relation fails to be in the wpp-closure of a language only if some fractional polymorphism
of the language does not preserve the relation (Proposition 20). This complements results
in [3]. Another example is that we show that all constants can be added to a core language
without significantly changing the complexity of the associated extended Min-Cost-Hom
(Proposition 34). This complements results in [23].

The rest of the paper is organised as follows. In Section 2 we define some fundamental
concepts, in Section 3 we state and prove tractability results, in Section 4 we collect a
number of results that will be used later on (these might also be useful on domain of larger
size), in Section 5 we define cores [23] and prove a related result, in Section 6 we focus on
the three-element domain and establish our main result; that core languages that are not
tractable by the results in Section 3 are in fact NP-hard.

A longer version of this paper, containing complete proofs, is available at http://arxiv.
org/abs/1308.1394.

2 Preliminaries

Let D be a finite set. The pair (Γ,∆) is called a finite language if Γ is a finite set of finitary
relations on D and ∆ is a finite set of functions D → Q≥0 ∪ {∞}. For every finite language
(Γ,∆) we define the optimisation problem Min-Cost-Hom(Γ,∆) as follows.
Instance: A triple (V,C,w) where

V is a set of variables,
C is a set of Γ-allowed constraints, i.e. a set of pairs (s,R) where the constraint-scope
s is a tuple of variables, and the constraint-relation R is a member of Γ of the same
arity as s,
w is a weight function V ×∆→ Q≥0.

Solution: A function ϕ : V → D s.t. for every (s,R) ∈ C it holds that ϕ(s) ∈ R, where ϕ is
applied component-wise.

Measure: The measure of a solution ϕ is m(ϕ) =
∑
v∈V

∑
ν∈∆ w(v, ν)ν(ϕ(v)). For every

function ϕ : V → D that is not a solution we define m(ϕ) =∞.
The objective is to find a solution ϕ that minimises m(ϕ).

For an instance I we let Sol(I) denote the set of all solutions, Optsol(I) the set of all
optimal solutions and Opt(I) the measure of an optimal solution. If I is unsatisfiable we
set Opt(I) = ∞. We define 0∞ = ∞ 0 = 0, x ≤ ∞ and x +∞ = ∞ + x = ∞ for all
x ∈ Q≥0 ∪ {∞}.

2.1 Names and Notation
A k-ary operation on D is a function Dk → D and a (unary) cost function on D is a
function D → Q≥0 ∪ {∞}. The set of all operations on D is denoted OD. The ith projection
operation will be denoted pri and the arity of a relation R is denoted ar(R). We define(
A
2
)

= {{x, y} ⊆ A : x 6= y}. For functions f1, . . . , fk : A → B and g : Bk → C we denote
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by g[f1, . . . , fk] the function x 7→ g(f1(x), . . . , fk(x)) from A to C. For a binary operation
f we define f through f(x, y) = f(y, x). A k-ary operation f on D is called conservative
if f(x1, . . . , xk) ∈ {x1, . . . , xk} for every x1, . . . , xk ∈ D. A ternary operation m on D is
called arithmetical if m(x, y, y) = m(x, y, x) = m(y, y, x) = x for every x, y ∈ D. We say
that an operation f on D is conservative (arithmetical) on S ⊆ D if f |S is conservative
(arithmetical). Similarly we say that f is conservative (arithmetical) on S ⊆ 2D if f |S is
conservative (arithmetical) for every S ∈ S.

For a set A of operations (relations) we write A(k) for the set of all k-ary operations
(relations) in A. For a set Γ of relations on D we use Γc to denote Γ ∪ {{d} : d ∈ D}.

We use δ for the Kronecker delta function, i.e. δx,y = 1 if x = y and δx,y = 0 otherwise. A
semilattice operation is a binary operation that is idempotent, commutative and associative.

2.2 Polymorphisms
A function f : Dm → D is called a polymorphism of Γ if for every R ∈ Γ and every
t1, . . . , tm ∈ R it holds that f(t1, . . . , tm) ∈ R, where f is applied component-wise. The set
of all polymorphisms of Γ is denoted Pol(Γ). A function ω : Pol(k)(Γ) → Q≥0 is a k-ary
fractional polymorphism [4] of (Γ,∆) iff

∑
g∈Pol(k)(Γ) ω(g) = 1 and

∑
g∈Pol(k)(Γ)

ω(g)ν(g(x1, . . . , xk)) ≤ 1
k

k∑
i=1

ν(xi) for every ν ∈ ∆, x1, . . . , xk ∈ D.

The support of a fractional polymorphism ω, denoted supp(ω), is the set of polymorphisms for
which ω is non-zero. The set of all fractional polymorphisms of (Γ,∆) is denoted fPol(Γ,∆).

I Example 3. The function pri is a trivial polymorphism for any set of relations Γ, and the
function f 7→

∑k
i=1

1
k δpri,f is a k-ary fractional polymorphism of every language (Γ,∆).

2.3 Reductions
A relation R is called pp-definable in Γ iff there is an instance I = (V,C) of CSP(Γ) s.t.
R = {(ϕ(v1), . . . , ϕ(vn)) : ϕ ∈ Sol(I)} for some v1, . . . , vn ∈ V . The notation 〈Γ〉 is used for
the set of all relations that are pp-definable in Γ. Similarly; R is called weighted pp-definable
(wpp-definable) in (Γ,∆) iff there is an instance I = (V,C,w) of Min-Cost-Hom(Γ,∆) s.t.
R = {(ϕ(v1), . . . , ϕ(vn)) : ϕ ∈ Optsol(I)} for some v1, . . . , vn ∈ V . We use 〈Γ,∆〉w to
denote the set of all such relations. A function ν : D → Q≥0 ∪ {∞} is called expressible
in (Γ,∆) iff there is an instance I = (V,C,w) of Min-Cost-Hom(Γ,∆) and v ∈ V s.t.
ν(x) = min{m(ϕ) : ϕ : V → D,ϕ(v) = x}. The set of all cost functions expressible in (Γ,∆)
is denoted 〈Γ,∆〉e. We use Feas(∆) for the set {{x : ν(x) <∞} : ν ∈ ∆}.

What makes these closures interesting is the following result, see e.g. [4, 5, 13].

I Theorem 4. Let Γ′ ⊆ 〈Γ,∆〉w and ∆′ ⊆ 〈Γ,∆〉e be finite sets. Then, it holds that
Min-Cost-Hom(Γ′ ∪ Feas(∆′),∆′) is polynomial-time reducible to Min-Cost-Hom(Γ,∆).

3 Tractable languages

We will make use of two tractability results. The first follows from a theorem by Thapper
and Živný [22, Theorem 4.1 (see remarks in Section 5)].

I Definition 5. We say that a finite language (Γ,∆) is of semilattice type if there exists
ω ∈ fPol(2)(Γ,∆) with f ∈ supp(ω) s.t. f is a semilattice operation.
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I Theorem 6. If (Γ,∆) is a finite language of semilattice type, then Min-Cost-Hom(Γ,∆)
is in PO.

I Example 7. Let (Γ,∆) be a language on a totally ordered domain D that admits the binary
fractional polymorphism f 7→ 1

2δmin,f + 1
2δmax,f . Certainly min is a semilattice operation, so

by Theorem 6 it follows that Min-Cost-Hom(Γ,∆) is in PO.

We remark that the theorem in [22] from which Theorem 6 follows is very capable; it explains
the tractability of every finite-valued VCSP that is not NP-hard [23].

The second tractability result generalises a family of languages that Takhanov has proved
tractable [20, 21]. The particular formulation we will use here is a bit more general than a
version we previously used in [24, Theorem 8].

To state the result we need to introduce a few concepts. A central observation is given
by the following lemma. The result follows immediately from the definition of fractional
polymorphisms and the measure function m. We omit the proof.

I Lemma 8. If (Γ,∆) admits a k-ary fractional polymorphism ω and I is an instance of Min-
Cost-Hom(Γ,∆) with ϕ1, . . . , ϕk ∈ Sol(I), then f [ϕ1, . . . , ϕk] ∈ Sol(I) for every f ∈ supp(ω)
and ∑

f∈Pol(k)(Γ)

ω(f)m(f [ϕ1, . . . , ϕk]) ≤ 1
k

k∑
i=1

m(ϕk).

I Example 9. Consider again Example 7. It follows from Lemma 8 that, for any instance I =
(V,C,w) and any ϕ1, ϕ2 : V → D, we havem(min[ϕ1, ϕ2])+m(max[ϕ1, ϕ2]) ≤ m(ϕ1)+m(ϕ2).
Functions of this kind are called submodular and are central characters in the field of discrete
optimisation, see e.g. [8].

The following definition establishes some convenient notation.

I Definition 10. For functions ω ∈ fPol(k)(Γ,∆) and x ∈ D, y ∈ Dk we define Wω
x (y) =∑

f∈Pol(k)(Γ):f(y)=x ω(f). When there is no risk of confusion we drop the superscript and
simply write Wx(y).

For an instance I of Min-Cost-Hom(Γ,∆), a variable v and a value d we use Opt(I, v → d)
to denote the optimal measure of a solution to I that maps v to d, i.e. min{m(ϕ) : ϕ ∈
Sol(I), ϕ(v) = x}. Using these definitions we obtain the following corollary of Lemma 8.

I Lemma 11. Let I = (V,C,w) be an instance of Min-Cost-Hom(Γ,∆) and v ∈ V be s.t.
{a1, . . . , ak} ⊆ {ϕ(v) : ϕ ∈ Sol(I)}. If (Γ,∆) admits a k-ary fractional polymorphism ω, then

∑
d∈D

Wd(a1, . . . , ak) Opt(I, v → d) ≤ 1
k

k∑
i=1

Opt(I, v → ai).

I Definition 12. We say that S ⊆ D is shrinkable to S \ {x} in (Γ,∆) if (Γ,∆) admits
a sequence of fractional polymorphisms ω1, . . . , ωm and tuples a1 ∈ Sk1 , . . . , am ∈ Skm s.t.
whenever I = (V,C,w) is an instance of Min-Cost-Hom(Γ,∆) with v ∈ V s.t. S ⊆ {ϕ(v) :
ϕ ∈ Sol(I)} it holds that the system of inequalities we obtain from Lemma 11 applied to ωi
and ai, for i ∈ [m], implies that

n∑
i=1

ti Opt(I, v → si) ≤ Opt(I, v → x)

for some integer n, some t1, . . . , tn ∈ Q≥0 s.t.
∑n
i=1 ti = 1, and some s1, . . . , sn ∈ S \ {x}.

If S is shrinkable to S′ and S′ is shrinkable to S′′, then we say that S is shrinkable to S′′.

STACS’14
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So, if S is shrinkable to S \ {x} in (Γ,∆) there is a set of fractional polymorphisms of (Γ,∆)
with which we can prove the existence of some s ∈ S \ {x} s.t. if I is an instance of Min-
Cost-Hom(Γ,∆), v ∈ V and S ⊆ {ϕ(v) : ϕ ∈ Sol(I)}, then Opt(I, v → s) ≤ Opt(I, v → x).

I Example 13. Consider the language (Γ, ∅) on the domain D. Let {a1, . . . , am} ⊆ D. It is
not hard to see that ω : f 7→

∑m−1
i=1

1
m−1δpri,f is in fPol(m)(Γ, ∅). Hence, ω and (a1, . . . , am)

certifies that {a1, . . . , am} is shrinkable to {a1, . . . , am−1}.

We can now define the second family of tractable languages.

I Definition 14. A finite language (Γ,∆) on the domain D is said to be of tournament pair
type if Γ = Γc, CSP(Γ) is in P and there exists F ⊆ 〈Γ,∆〉(1)

w , A ⊆
(
D
2
)
, f1, f2 ∈ Pol(2)(Γ)

and g ∈ Pol(3)(Γ) s.t. the following holds.
If {a, b} ⊆ B for some B ∈ F , and {a, b} 6∈ A, then f1|{a,b} and f2|{a,b} are projections
and g|{a,b} is arithmetical.
If {a, b} ⊆ B for some B ∈ F , and {a, b} ∈ A, then f1|{a,b} and f2|{a,b} are different
idempotent, conservative and commutative operations.
Every S ∈ 〈Γ,∆〉(1)

w \ F is shrinkable to some S′ ∈ F .
g is idempotent on every set in F and conservative on every set in F \ A.

I Theorem 15. If (Γ,∆) is a finite language of tournament pair type, then Min-Cost-
Hom(Γ,∆) is in PO.

Proof sketch. Given an instance I of Min-Cost-Hom(Γ,∆) we can, since CSP(Γc) is in P ,
compute for every variable v the set Dv = {ϕ(v) : ϕ ∈ Sol(I)}. From the definition of
shrinkable sets it is immediate that if Dv is shrinkable to S ∈ 〈Γ,∆〉w, then we can add
the constraint (v, S) to I without deteriorating the measure of an optimal solution. We can
repeat this procedure until Dv is in F for every variable v.

It is known, see [24, Proof of Theorem 8], that from f1, f2, g one can construct (by
superposition) operations f ′1, f ′2, g′ that in addition to the conditions of the theorem also
satisfy the following stronger properties:

If {a, b} ⊆ B for some B ∈ F and {a, b} 6∈ A, then f ′1|{a,b} = f ′2|{a,b} = pr1.
The operation g′ is idempotent and conservative on every set in F .

Clearly f ′1, f ′2, g′ ∈ Pol(Γ). Note that f ′1, f ′2, g′ preserves every unary relation S ⊆ B for
B ∈ F . The result therefore follows from a reduction to the conservative, multi-sorted version
of the problem and a result due to Takhanov for this variant [21, Theorem 23]. J

I Example 16. Consider again Min-Cost-Hom(Γ, ∅). We saw in Example 13 that for every
{x} ⊆ X ⊆ D it holds that X is shrinkable to {x}. Hence, if Γc = Γ and CSP(Γ) is in P it
follows from Theorem 15 that Min-Cost-Hom(Γ, ∅) is in PO. This of course is no surprise as
Min-Cost-Hom(Γ, ∅) essentially is the same problem as CSP(Γ).

4 Tools

Here we establish a collection of results that are used to prove the results in the last two
sections. We hope this will provide an overview of the kind of techniques that are used to
prove our main theorem.

Several of the results are proved with the help of the following classical theorem, see
e.g. [19, p. 94].

I Theorem 17 (Motzkin’s Transposition Theorem). For any A ∈ Qm×n, B ∈ Qp×n, b ∈ Qm
and c ∈ Qp, exactly one of the following holds:
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Ax ≤ b, Bx < c for some x ∈ Qn
AT y +BT z = 0 and (bT y + cT z < 0 or bT y + cT z = 0 and z 6= 0) for some y ∈ Qm≥0 and
z ∈ Qp≥0

The first result concerns a slight generalisation of the concept of dominating fractional
polymorphisms [24].

I Definition 18. Let k ≥ 2 and a ∈ Dk−1, b ∈ D be s.t. a1, . . . , ak−1, b are distinct
elements. A fractional polymorphism ω ∈ fPol(k)(Γ,∆) is called (a1, . . . , ak−1, b)-dominating
if Wω

aj
(a1, . . . , ak−1, b) ≥ 1

k for every j ∈ [k − 1] and 1
k > Wω

b (a1, . . . , ak−1, b).

I Proposition 19. Let (Γ,∆) be a finite language on a finite set D. Let k ≥ 2 and a ∈ Dk−1,
b ∈ D be s.t. a1, . . . , ak−1, b are distinct. If (Γ,∆) does not admit a fractional polymorphism
that is (a1, . . . , ak−1, b)-dominating, then 〈Γ,∆〉e contains a unary function ν that satisfies
∞ > ν(a1), . . . , ν(ak−1), ν(b) and ν(c) > ν(b) for every c ∈ D \ {b}.

Using similar arguments we can also prove the following characterisation of which relations
that are wpp-definable in (Γ,∆).

I Proposition 20. Let (Γ,∆) be a finite language on a finite set D and let ∅ 6= R =
{t1, . . . , tk} ⊆ Dn. Exactly one of the following is true.
1. There exists ω ∈ fPol(k)(Γ,∆) with f ∈ supp(ω) s.t. f(t1, . . . , tk) 6∈ {t1, . . . , tk}.
2. It holds that R ∈ 〈Γ,∆〉w.

From Proposition 20 we can quickly derive a number of useful results.

I Corollary 21. Let (Γ,∆) be a finite language on a finite set D. For any fixed k the set of
wpp-definable k-ary relations, 〈Γ,∆〉(k)

w , can be computed.

Proof sketch. This is immediate from Proposition 20; we can find all polymorphisms of
arities 1, . . . , |D|k and then, for every R ⊆ Dk, solve a linear program. J

I Corollary 22. Let (Γ,∆) be a finite language on a finite set D and let {a, b} ⊆ D. If there
is ν ∈ 〈Γ,∆〉e and A ⊆ D s.t. {a, b} ⊆ A, A ∈ 〈Γ,∆〉w, ν(a) < ν(b) < ∞ and ν(b) ≤ ν(x)
for any x ∈ A \ {a, b}, then one of the following is true.
1. {a, b} ∈ 〈Γ,∆〉w
2. There is ω ∈ fPol(2)(Γ,∆) that is (a, b)-dominating.

Proof. Assume (1) does not hold. By Proposition 20 there must exist some ω ∈ fPol(2)(Γ,∆)
with f ∈ supp(ω) s.t. f(a, b) 6∈ {a, b}. It is not hard to see that in this case, because of ν,
the fractional polymorphism ω must be (a, b)-dominating. Hence, (2) must be true. J

I Corollary 23. Let (Γ,∆) be a finite language on a finite set D and let {a1, . . . , ak} ⊆ D.
One of the following is true.
1. There is ω ∈ fPol(k)(Γ,∆) and i ∈ [k] s.t. ω is (a1, . . . , ai−1, ai+1, . . . , ak, ai)-dominating.
2. For every i ∈ [k] there is j ∈ [k] \ {i} s.t. {ai, aj} ∈ 〈Γ,∆〉w.

Proof. Assume (1) is false. By Proposition 19, for any i ∈ [k], there is νi ∈ 〈Γ,∆〉e s.t.
arg minx∈D νi(x) = {ai} and νi(x) < ∞ if x ∈ {a1, . . . , ak}. Let i ∈ [m]. Pick j s.t.
νi(aj) = min{νi(x) : x ∈ {a1, . . . , ai−1, ai+1, . . . , ak}}.

Note that there is no ψ ∈ fPol(2)(Γ,∆) that is (ai, aj)-dominating; if there was then

f 7→
k−2∑
i=1

1
k
δpri,f +

∑
g∈supp(ψ)

2
k
ψ(g)δg[prk−1,prk],f

STACS’14
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would be (b1, . . . , bk−2, ai, aj)-dominating for b1, . . . , bk−2 ∈ D. Hence, by Corollary 22, we
have {ai, aj} ∈ 〈Γ,∆〉w. Since the choice of i was arbitrary (2) must be true. J

The generalised min-closed languages were introduced by Jonsson, Kuivinen and Nordh [12]
and defined as sets of relations preserved by a particular type of binary operation. Kuiv-
inen [16, Section 5.5] provides an alternative characterisation of the languages as those
preserved by a so called min set function.

A set function [6] is a function f : 2D \ {∅} → D. A ν-min set function [16] is a set
function f satisfying ν(f(X)) ≤ min{ν(x) : x ∈ X} for every X ∈ 2D \ {∅}. The following
proposition, which is a variant of [16, Theorem 5.18], will later prove to be useful.

I Proposition 24. Let (Γ, {ν}) be a finite language s.t. 〈Γ, {ν}〉(1)
w ⊆ Γ. The following are

equivalent:
1. Γ is preserved by a ν-min set function,
2. Γ is preserved by a set function f s.t. ν(f(X)) = min{ν(x) : x ∈

⋂
Y ∈〈Γ〉:Y⊇X Y } for

every X ∈ 2D \ {∅},
3. Γ is preserved by a set function and for every R ∈ 〈Γ〉 it holds that

R ∩ (arg min
x∈pr1(R)

ν(x)× · · · × arg min
x∈prar(R)(R)

ν(x)) 6= ∅.

Furthermore, if ν is injective, then the following condition is equivalent to the ones above.
4. For every R ∈ 〈Γ〉 it holds that

R ∩ (arg min
x∈pr1(R)

ν(x)× · · · × arg min
x∈prar(R)(R)

ν(x)) 6= ∅.

Let ν : D → Q≥0 be injective. We call the binary relation R a cross (with respect to
ν) iff |R| ≥ 2 and there are α1, α2 ∈ Q>0 s.t. α1ν(t1) + α2ν(t2) = 1 for every t ∈ R. The
following lemma is a generalisation of [24, Lemma 25].

I Lemma 25. Let ν : D → Q≥0 be injective. If Γ is not preserved by a ν-min set function,
then 〈Γ,∆〉w contains a cross.

Proof. Let minν be the unique set function satisfying {minν(X)} = arg minx∈X ν(x) for
every X ⊆ D. If Γ is not preserved by a ν-min set function, then Proposition 24 implies that
there is R ∈ 〈Γ〉 s.t. (minν(pr1(R)), . . . ,minν(prar(R)(R))) 6∈ R.

In fact, there must be a binary relation in 〈Γ〉 of this kind. To see this let R ∈ 〈Γ〉 be a
k-ary relation s.t. (minν(pr1(R)), . . . ,minν(prk(R))) 6∈ R and s.t. that every relation R′ ∈ 〈Γ〉
of smaller arity satisfies (minν(pr1(R′)), . . . ,minν(prar(R′)(R′))) ∈ R′. This means that there
is t1 ∈ R s.t. t1i = minν(pri(R)) for i ∈ [k] \ {1}, otherwise pr2,...,ar(R)(R) contradicts the
minimality of k. Similarly there is t2 ∈ R s.t. t2i = minν(pri(R)) for i ∈ [k] \ {2}. This means
that R′ = {(x, y) : (x, y,minν(pr3(R)), . . . ,minν(prk(R))) ∈ R} is a non-empty relation of
arity 2 s.t. (minν(pr1(R′)),minν(pr2(R′))) 6∈ R′. Hence, k = 2.

Clearly we can choose α1, α2 s.t. R′′ = arg min(x,y)∈R(α1ν(x)+α2ν(y)) satisfies |R′′| ≥ 2,
and R′′ ∈ 〈Γ,∆〉w is a cross. J

To prove that a given language is computationally hard we make use of the following
lemma which is an immediate consequence of [20, Theorem 3.1].

I Lemma 26. If {a, b} ∈ Γ and ν(a) < ν(b) <∞, σ(b) < σ(a) <∞ for some ν, σ ∈ ∆, then
either
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there exists f1, f2 ∈ Pol(2)(Γ) s.t. f1|{a,b} and f2|{a,b} are two different idempotent,
commutative and conservative operations,
there exists g ∈ Pol(3)(Γ) s.t. g|{a,b} is arithmetical, or
Min-Cost-Hom(Γ,∆) is NP-hard.

The following result by Takhanov [20, Theorem 5.4] shows how “partially arithmetical”
polymorphisms (like the ones that we might get out of the previous lemma) can be stitched
together.

I Lemma 27. Let C ⊆
(
D
2
)
. If C ⊆ Γ and for each {a, b} ∈ C an operation in Pol(3)(Γ) is

arithmetical on {a, b}, then there is an operation in Pol(3)(Γ) that is arithmetical on C.

The next lemma is a variation, see [24, Lemma 14], of a lemma by Thapper and Živný [23,
Lemma 3.5]. It allows us to prove the existence of certain nontrivial fractional polymorphisms.
We may also obtain this lemma as a simple corollary of Proposition 20.

I Lemma 28. If {(a, b), (b, a)} 6∈ 〈Γ,∆〉w, then for all σ ∈ 〈Γ,∆〉e there is ω ∈ fPol(2)(Γ,∆)
with f ∈ supp(ω) s.t. {f(a, b), f(b, a)} 6= {a, b} and σ(f(a, b)) + σ(f(b, a)) ≤ σ(a) + σ(b).

Finally, the following lemmas are used to “canonicalise” interesting fractional polymorphisms.

I Definition 29. Let P ⊆ O(2)
D . For a function ω : P → Q≥0 we define ω2 : P → Q≥0 by

ω2(f) =
∑
g,h∈P :g[h,h]=f ω(g)ω(h).

I Lemma 30. If ω ∈ fPol(2)(Γ,∆), then ω2 ∈ fPol(2)(Γ,∆).

I Lemma 31. Let β : D2 → Q≥0 and define Cω(x) =
∑
f∈Pol(2)(Γ):f(x)=f(x) ω(f) and

M(ω) =
∑
x∈D2 Cω(x). Set Ω = {ω ∈ fPol(2)(Γ,∆) : ∀s ∈ D2, Cω(s) ≥ β(s)}. If 〈Γ,∆〉(1)

w ⊆
Γ, then either Ω = ∅, or there is ω∗ ∈ Ω s.t. M(ω∗) = supω∈ΩM(ω).

I Lemma 32. Let S ⊆
(
D
2
)
and Π = {ω ∈ fPol(2)(Γ,∆) : for all S ∈ S there exists

f ∈ supp(ω) s.t. f |S is commutative}. If 〈Γ,∆〉(1)
w ⊆ Γ and Π 6= ∅, then there is ω ∈ Π s.t.

for every f ∈ supp(ω) and x ∈ D2 it holds that {f(x), f(x)} 6∈ S.

5 Cores

In this section we define cores and prove that one can add all constants to a language that is
a core without making the associated extended Min-Cost-Hom much more difficult. We use
a definition of cores from [23, Definition 3].

I Definition 33. A finite language (Γ,∆) is a core iff for every ω ∈ fPol(1)(Γ,∆) and
every f ∈ supp(ω) it holds that f is injective. A language (Γ′,∆′) is a core of another
language (Γ,∆) if (Γ′,∆′) is a core and (Γ′,∆′) = (Γ,∆)|g(D) for some ψ ∈ fPol(1)(Γ,∆) and
g ∈ supp(ψ).

A result very similar to the following was given in [10, 23] for finite-valued languages.

I Proposition 34. If (Γ,∆) is a core, then Min-Cost-Hom(Γc,∆) is polynomial-time reducible
to Min-Cost-Hom(Γ,∆).

Proof sketch. We will show that Min-Cost-Hom(Γc,∆) is polynomial-time reducible to
Min-Cost-Hom(Γ ∪ 〈Γ,∆〉(|D|)w ,∆). By Theorem 4 this is sufficient.

Assume D = {d1, . . . , d|D|}. Let R = {(d1, . . . , d|D|)} and let R′ be the closure of R
under the operations f ∈ supp(ω), ω ∈ fPol(1)(Γ,∆).
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Note that there is no k > 1, ψ ∈ fPol(k)(Γ,∆) and g ∈ supp(ψ) s.t. g does not preserve
R′. This follows from the fact that R′ was generated from a single tuple. It is not hard to
show that there is $ ∈ fPol(1)(Γ,∆) s.t. R′ = {f(d1, . . . , d|D|) : f ∈ supp($)}. Assume that
there is s = f(t1, . . . , tk) 6∈ R′ for some f ∈ supp(ψ) and t1, . . . , tk ∈ R′. This means that we
from ψ and $ can construct $′ ∈ fPol(1)(Γ,∆) with f ∈ supp($′) s.t. s = f(d1, . . . , d|D|),
which is a contradiction.

From Proposition 20 it follows that R′ ∈ 〈Γ,∆〉w. Since (Γ,∆) is a core, for every
ω ∈ fPol(1)(Γ,∆) and f ∈ supp(ω) we know that f is injective. Hence, every t ∈ R′ equals
(π(d1), . . . , π(d|D|)) for some permutation π on D.

We now use a construction that is applied for the corresponding result for CSPs [2,
Theorem 4.7]. Given an instance I of Min-Cost-Hom(Γc,∆) we create an instance of I ′ of
Min-Cost-Hom(Γ ∪ 〈Γ,∆〉(|D|)w ,∆) from I by adding variables vd1 , . . . , vd|D| and replacing
every constraint (v, {di}) with the constraint ((v, vdi),=). Finally we add the constraint
((vd1 , . . . , vd|D|), R′). If there is a solution to I, then there is also a solution to I ′. And, if
ψ is an optimal solution to I ′, then (ϕ(vd1), . . . , ϕ(vd|D|)) = (π(d1), . . . , π(d|D|)) for some
permutation π on D and ω ∈ fPol(1)(Γ,∆) s.t. π ∈ supp(ω). Hence πk ◦ ψ is another
optimal solution to I ′, for any k ≥ 1. In particular there is an optimal solution ϕ∗ to I ′ s.t.
(ϕ∗(vd1), . . . , ϕ∗(vd|D|)) = (d1, . . . , d|D|). This allows us to recover an optimal solution to
I. J

6 Proof of Theorem 1

In this section we prove our main result. To do this we rely of a few lemmas that are proved
with the help of a fair bit of case analysis. For their proofs we refer the interested reader to
the longer version of this paper.

Let A denote the following assumption: (Γ,∆) is a finite language on D = {a, b, c} s.t.
Γc ∪ Feas(∆) ∪ 〈Γ,∆〉(1)

w ∪ 〈Γ,∆〉(2)
w ⊆ Γ.

The supporting lemma below is used in the proofs of the results that follow.

I Lemma 35. Assume A. If {a, b} 6∈ Γ, then either there is ω ∈ fPol(2)(Γ,∆) that is
(a, b) or (b, a)-dominating, or there are νa, νb ∈ 〈Γ,∆〉e s.t. νa(a) < νa(c) < νa(b) and
νb(b) < νb(c) < νb(a).

We are going to analyse a few different cases depending on the number of two-element
subsets of the domain that is wpp-definable in (Γ,∆). The following lemma, which follows
immediately from Corollary 23, connects this number to dominating fractional polymorphisms.

I Lemma 36. Assume A. Either |Γ∩
(
D
2
)
| ≥ 2 or there is ω ∈ fPol(3)(Γ,∆) and a1, a2, a3 ∈ D

s.t. ω is (a1, a2, a3)-dominating and {a1, a2, a3} = D.

To understand languages that admit a ternary dominating fractional polymorphism we use
the following lemma.

I Lemma 37. Assume A. If {a, b} 6∈ Γ and there is ω ∈ fPol(3)(Γ,∆) s.t. ω is (a, b, c)-
dominating, then either {a, c}, {b, c} ∈ Γ, or (Γ,∆) is of semilattice type or of tournament
pair type, or Min-Cost-Hom(Γ,∆) is NP-hard

The following four lemmas are used to handle languages that contain two unary two-element
relations.

I Lemma 38. Assume A. If {a, c}, {c, b} ∈ Γ and there is ω ∈ fPol(2)(Γ,∆) that is (a, b)-
dominating, then (Γ,∆) is of tournament pair type or Min-Cost-Hom(Γ,∆) is NP-hard.
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I Lemma 39. Assume A. If {a, b} 6∈ Γ and {a, c}, {c, b} ∈ Γ, then either {(a, c), (c, a)} ∈ Γ,
{(b, c), (c, b)} ∈ Γ, or (Γ,∆) is of semilattice type or of tournament pair type, or Min-Cost-
Hom(Γ,∆) is NP-hard

I Lemma 40. Assume A. If {a, b} 6∈ Γ, {a, c}, {c, b} ∈ Γ and {(a, c), (c, a)} ∈ Γ and
{(b, c), (c, b)} 6∈ Γ, then (Γ,∆) is of tournament pair type or Min-Cost-Hom(Γ,∆) is NP-
hard.

I Lemma 41. Assume A. If {a, b} 6∈ Γ and {(a, c), (c, a)}, {(b, c), (c, b)} ∈ Γ, then (Γ,∆) is
of tournament pair type or Min-Cost-Hom(Γ,∆) is NP-hard.

We can now prove the main theorem.

Proof of Theorem 1. Let Γ′ = 〈Γ,∆〉(1)
w ∪ 〈Γ,∆〉(2)

w ∪ Γc ∪ Feas(∆).
Note that if (Γ′,∆) is of semilattice type or of tournament pair type, then so is (Γc ∪

Feas(∆),∆). Furthermore, by Theorem 4 and Proposition 34 we know that Min-Cost-
Hom(Γ′,∆) is polynomial time reducible to Min-Cost-Hom(Γ,∆). Hence, if Min-Cost-
Hom(Γ′,∆) is NP-hard, then also Min-Cost-Hom(Γ,∆) is NP-hard.

Clearly, if CSP(Γ′) is NP-hard, then so is Min-Cost-Hom(Γ′,∆). And, if CSP(Γ′) is not
NP-hard, then it is in P. This follows from [1].

If |
(
D
2
)
∩ Γ′| = 3, then (Γ′,∆) is of tournament pair type or Min-Cost-Hom(Γ′,∆) is

NP-hard. This follows from [24, Theorem 12].
If |
(
D
2
)
∩ Γ′| < 2, then, by Lemma 36, we know that there is ω ∈ fPol(3)(Γ′,∆) that

is (a1, a2, a3)-dominating for some {a1, a2, a3} = D. If {a1, a2} 6∈ Γ′, then by Lemma 37
we know that either |

(
D
2
)
∩ Γ′| = 2 (a contradiction) or (Γ′,∆) is of semilattice type or

of tournament pair type, or Min-Cost-Hom(Γ′,∆) is NP-hard. Otherwise {a1, a2} ∈ Γ′.
Since |

(
D
2
)
∩ Γ′| < 2 it must hold that {a1, a3} 6∈ Γ′ and {a2, a3} 6∈ Γ′. In this case, since

{a1, a2, a3} is shrinkable to {a1, a2}, it holds that either (Γ′,∆) is of tournament pair type
or Min-Cost-Hom(Γ′,∆) is NP-hard.

The only remaining case is |
(
D
2
)
∩ Γ′| = 2. In this case the result follows from Lemma 39,

Lemma 40 and Lemma 41. J
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