
PTAS for Ordered Instances of Resource
Allocation Problems ∗

Kamyar Khodamoradi1, Ramesh Krishnamurti1, Arash Rafiey1,
and Georgios Stamoulis2

1 Simon Fraser University, Burnaby, Canada
{kka50,ramesh,arashr}@sfu.ca

2 IDSIA/USI/SUPSI, Manno-Lugano, Switzerland
georgios@idsia.ch

Abstract
We consider the problem of fair allocation of indivisible goods where we are given a set I of m
indivisible resources (items) and a set P of n customers (players) competing for the resources.
Each resource j ∈ I has a same value vj > 0 for a subset of customers interested in j and it
has no value for other customers. The goal is to find a feasible allocation of the resources to the
interested customers such that in the Max-Min scenario (also known as Santa Claus problem) the
minimum utility (sum of the resources) received by each of the customers is as high as possible
and in the Min-Max case (also known as R | |Cmax problem), the maximum utility is as low as
possible.

In this paper we are interested in instances of the problem that admit a PTAS. These in-
stances are not only of theoretical interest but also have practical applications. For the Max-Min
allocation problem, we start with instances of the problem that can be viewed as a convex bi-
partite graph; there exists an ordering of the resources such that each customer is interested
(has positive evaluation) in a set of consecutive resources and we demonstrate a PTAS. For the
Min-Max allocation problem, we obtain a PTAS for instances in which there is an ordering of
the customers (machines) and each resource (job) is adjacent to a consecutive set of customers
(machines). Next we show that our method for the Max-Min scenario, can be extended to a
broader class of bipartite graphs where the resources can be viewed as a tree and each customer
is interested in a sub-tree of a bounded number of leaves of this tree (e.g. a sub-path).

1998 ACM Subject Classification G.2.2 Graph Theory, G.1.2 Approximation

Keywords and phrases Approximation Algorithms, Convex Bipartite Graphs, Resource Alloca-
tion

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2013.461

1 Introduction and Problem Definition

A bipartite graph H = (P, I) with white vertices P and black vertices I is convex, if there is
an ordering π of the vertices in I such that the neighborhood of each vertex in P consists of
consecutive vertices, i.e., the neighborhood of each vertex in P forms an interval. Convex
bipartite graphs are well known for their nice structures and both theoretical and practical
properties. Many hard (i.e. NP-complete) optimization problems become polynomial-time
solvable or even linear-time solvable in convex bipartite graphs while remaining hard for
general bipartite graphs [6].

∗ Fourth author supported by the Swiss National Foundation project 200020-122110/1

© Kamyar Khodamoradi, Ramesh Krishnamurti, Arash Rafiey, and Georgios Stamoulis;
licensed under Creative Commons License CC-BY

33rd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013).
Editors: Anil Seth and Nisheeth K. Vishnoi; pp. 461–473

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62918434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.461
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

462 PTAS for Ordered Instances of Resource Allocation Problems

We consider the problem of allocating indivisible items (resources) to a set of players
(customers) in a convex bipartite graph below.

Problem Description. We are given a convex bipartite graph H = (P, I) together with an
ordering π of the vertices of I, where P is a set of n players and I is a set of m items. We
consider the problem of allocating the indivisible items from I to the set P . Each player
p ∈ P has a utility function fp(j) = vj > 0 for each item j ∈ [m] (vj is a positive integer).
This represents the value of item j for player p. If p is adjacent to item j then its value
for p is vj , otherwise its value is zero. The goal is to find a maximum t and a partition
I1 ∪ I2 ∪ · · · ∪ In = I of the items such that for every 1 ≤ j ≤ n, Ij is a subset of items
adjacent to player pj and the items in Ij have a total value at least t in the max-min case
and a total value at most t in the min-max case.

The interval case arises naturally in energy production applications where resources
(energy) can be assigned and used within a number of successive time steps (i.e. the energy
produced at some time step is available only for a limited amount of time corresponding to
an interval of time steps) and the goal is a fair allocation of the resources over time, i.e. an
allocation that maximizes the minimum accumulated resource we collect at each time step.
In other words, we would like to have an allocation that guarantees the energy we collect at
each time step is at least t, a pre-specified threshold. See also [19] for some applications in
on-line scheduling.

Related work. For the general Max-Min fair allocation problem, where a given item does
not necessarily have the same value for each player, no “good” approximation algorithm is
known. In [5], by using similar ideas as in [13], an additive ratio of maxi,j vij is obtained,
which can be arbitrarily bad. A stronger LP formulation, the configuration LP, is used to
obtain a solution at least opt/n in [3]. Subsequently, [2] provided a rounding scheme for this
LP to obtain an objective function value no worse than O(opt√

n(log3 n)). In [17], an O(
√

log logn
n logn)

approximation factor, close to the integrality gap of the configuration LP, was shown. In the
restricted case, where vij ∈ {0, vj} for i ∈ [n] and j ∈ [m], there is an O(log log logn

log logn) factor
approximation algorithm [3] for the Max-Min allocation problem. Furthermore, there is a
simple 1

2 inapproximability result for both the restricted case, as well as the general case
(where an item does not necessarily have the same value for each player) [5]. Feige proved
that the integrality gap of the configuration LP is a constant [8]. In [1] an integrality gap
of 1

5 was shown for the same LP which was later improved to 1
4 . The authors provide a

local search heuristic with an approximation guarantee of 1
4 which is not known to run in

polynomial. Later, it was shown in [16] that the local search can be done in nO(logn) time. In
[10] the authors provided a constructive version of Feige’s original nonconstructive argument
based on Lovász Local Lemma, thus providing the first constant factor approximation for
the restricted Max-Min fair allocation problem. They provide an α-approximation algorithm
for some constant α where an explicit value of α is not provided. Thus there is still a gap
between the 1

2 inapproximability result and the constant α approximability result in [10].
Several special cases of the Max-Min fair allocation problem have been studied. The case

where vij ∈ {0, 1,∞} is shown to be hard in [12] and a trade off between running time and
approximation guarantee is established. In [4] the authors consider the case in which each
item has positive utility for a bounded number of players D, and prove that the problem is
as hard as the general case for D ≤ 3. They also provide a 1

2 inapproximability result and a
1
4 approximation algorithm for the asymmetric case when D ≤ 2. The authors also provide a
simpler LP formulation for the general problem and devise a polylogarithmic approximation

K. Khodamoradi, R. Krishnamurti, A. Rafiey, and G. Stamoulis 463

algorithm that runs in quasipolynomial time. The same result has been obtained in [7],
which includes a 1

2 approximation when D ≤ 2, thus matching the bound proved in [4]. In
[21], the author provides a PTAS for a (very) special case of the problem considered in this
paper, namely, when the instance graph of the problem is a complete bipartite graph. In [14]
a 1

2 -approximation algorithm was developed for a subclass of instances considered in this
paper. See also [18], [15] for other special cases that our results generalize.

The R | |Cmax problem, as it is known in standard scheduling notation, is an important
class of resource allocation problems. In this problem, we have machines (the players) and
jobs (the items). Each job can be executed on any machine that belongs to a subset of
machines (the subset depends on the job). Furthermore, the time required to process the job
depends on the machine it executes on. We seek an assignment of jobs to machines such that
the makespan is minimized. For the R | |Cmax problem, a 2-approximation algorithm based
on a characterization of the extreme point solutions of a linear programming relaxation of
the problem is given [13]. The authors also provide a 3

2 inapproximability result. So far, all
efforts to improve either of the bounds have failed. In a very recent result [20], it is shown
that the restricted version of R | |Cmax admits an α approximation guarantee for α strictly
less than 2. This result is an estimation result i.e. it estimates the (optimal) makespan of
the restricted R | |Cmax within a factor of α = 33

17 + ε for some arbitrary small positive ε.
In this paper we consider the restricted case of the R | |Cmax problem where the processing
time of each job for the subset of machines is the same.

Outline Of Our Results. Our results can be summarized as follows:
1. We present a PTAS for the restricted Max-Min fair allocation problem when the instance

of the problem is a convex bipartite graph (each player sees an interval of items). Notice
that this instance of the problem is (strongly) NP-complete, as it contains complete
bipartite graphs as a special case (each player is adjacent to all the items), which is known
to be strongly NP-complete [9].

2. We modify our approach for the Min-Max allocation problem to obtain a PTAS for the
R | |Cmax problem when the machines a job can run on are consecutive in some ordering
(form an interval).

3. In the Max-Min fair allocation, we show how our techniques can be extended to a bigger
class of bipartite graphs. In a convex bipartite graph the items adjacent to a player form
an interval or, equivalently, a path. In this extension, we consider the case where the
items are the vertices of a tree and each player is interested in (has positive evaluation
for) items that lie in a sub-tree with bounded number of leaves of the tree. We show that
our algorithm can be modified to obtain a PTAS, though the run time increases as a
polynomial of the number of leaves.

To obtain the PTAS for the instances considered in this paper, we first use scaling to
classify the items into small and big items. Because the items adjacent to a player are
consecutive, we can construct a solution comprising small items efficiently. We then add the
big items to the solution efficiently to construct the total solution.

2 Preprocessing the Input

Consider the convex bipartite graph H = (P, I) together with an ordering π of the vertices
in I. For every vertex p ∈ P let [`p, rp] be the interval of the items adjacent to p. Based on
the ordering π, we define the following ordering on the vertices in P :

FSTTCS 2013

464 PTAS for Ordered Instances of Resource Allocation Problems

p1 p2 p3

0.4 1 0.2 1 0.4

Figure 1 An example of an instance in which Hall’s condition is satisfied for t = 1 but the optimal
solution value is not greater than 0.4.

p is ordered before q whenever `p < `q, or `p = `q and rp ≤ rq (breaking ties
arbitrarily). According to ordering π, if p ∈ P is adjacent to i ∈ I and q ∈ P is
adjacent to j ∈ I with p < q and j < i then p is also adjacent to j.

By a feasible assignment we mean an assignment such that each item is assigned to
exactly one player that has non-zero evaluation for that item.

I Definition 1 (t-assignment). A t-assignment, t ≥ 0, is a feasible assignment such that
every player p receives a set of items Ip ⊆ [`p, rp] with total value at least t.

Given a particular instance H = (P, I) of the problem, we perform some steps that
simplifies the input instance. For a positive integer t, we may assume that the value of each
item is at most t. If item j has value vj > t then we set vj to t without loss of generality. By
a proper scaling, i.e. dividing each value by t, we may assume that the value of each item is
in [0, 1]. Observe that a t-assignment becomes a 1-assignment. We do a binary search to find
the largest value of t for which each player receives a set of items with total value at least t.
The binary search is carried out in the interval [0, 1

n

∑
j∈I vj] where 0 is an absolute lower

bound, and 1
n

∑
j∈I vj is an absolute upper bound of the optimal solution respectively.

For a subset P ′ ⊆ P of players, let N(P ′) be the union of the set of all neighbors of the
players in P ′. For an interval [i, j] of the items, let P [i, j] be the set of players whose entire
neighborhood lies in [i, j]: P [i, j] = {p ∈ P : N(p) = [`p, rp] ⊆ [i, j]}. For a subset I ′ ⊆ I of
items, let v(I ′) denote the sum of the values of all the items in I ′. By private neighborhood
of a player p we mean all the items that are adjacent only to p. We note that in every
1-assignment, for every subset P ′ ⊆ P of players, the value of the items in its neighborhood
should be at least |P ′|. In other words, ∀P ′ ⊆ P : v(N(P ′)) ≥ |P ′|. If the value of each
item is 1 then this condition is the well known Hall’s condition [11], a condition sufficient
and necessary for a bipartite graph to have a perfect matching. From now on we refer to the
above condition as Hall’s condition. Lemma 2 shows that in order to check Hall’s condition
for H it suffices to check it for every interval of items, and so Hall’s condition in our setting
becomes Condition (1) below:

∀ [`, r] ⊆ [1,m] : v([`, r]) ≥ |P [`, r]|. (1)

I Lemma 2. In order to check Hall’s condition for H it suffices to verify Condition (1). In
other words, it suffices to check Hall’s condition for every set of players P [`, r], [`, r] ⊆ [1,m].

Note that the value v([1,m])
n is an upper bound on the optimal value. In Figure 1 Hall’s

condition is satisfied but the optimal value is 0.4. This shows the integrality gap of the ILP
formulation for the problem is more than 2. Thus, a different approach is required to get
even a 1

2 approximate solution.

K. Khodamoradi, R. Krishnamurti, A. Rafiey, and G. Stamoulis 465

For any integer k ≥ 3, we let 1
k be the error parameter. For each instance for which there

is an optimal 1-assignment, we seek an assignment such that each player receives a set of
items with total value at least 1− 1

k , k ≥ 3. We call an item small if its value is less than 1
k ,

otherwise it is considered a big item. We further round the values of the big items as follows.
If vj (the value of item j) is in the interval [1

k (1 + 1
k)i, 1

k (1 + 1
k)i+1) then it is replaced by

1
k (1 + 1

k)i+1. After the rounding, there are at most K = d log k
log(1+ 1

k)e distinct values more
than 1

k . Using straightforward calculus, one can show that K is no more than k1.4. For i,
1 ≤ i ≤ K let qi+1 = 1

k (1 + 1
k)i+1. For subset I ′ of I let vs(I ′) denote the value of the small

items in I ′.
In what follows let p1, p2, . . . , pn be the ordering of the players and let m be the number

of items in H. We also assume the following because it is a necessary condition for having
an optimal 1-assignment.
Assumption: A 1-assignment (an optimal 1-assignment) assigns to each player pi a set of
big items with total value 1−wi for some “deficit” wi, 0 ≤ wi ≤ 1, and produces an instance
H ′ of the problem for which Hall’s condition is satisfied, i.e. for every interval [`, r] of items,
vs([`, r]) ≥

∑
pi∈P [`,r] wi , that is, the deficit wi of player pi must be compensated for with

small items.

3 Structural Properties and the Algorithm

We start with a crucial lemma that will constitute the core of our algorithms. Intuitively, the
lemma says that if a 1-assignment exists, then there exists another “almost” 1-assignment
with a very particular structure.

I Lemma 3. Suppose there exists an optimal 1-assignment for H in which player pn (last
player) receives a set S of items from N(pn), containing αi, 1 ≤ i ≤ K big items with value
qi and a set of small items with total value at least α0

k and less than α0+1
k such that v(S) ≥ 1.

Then we obtain (in polynomial time) an assignment such that:
1. for every i ≥ 1 the items with value qi are the rightmost ones in the neighborhood of pn.
2. pn gets a set of consecutive small items from right to left (in the ordering) of the interval

N(pn) with value at least α0−1
k .

3. The existence of a 1-assignment for the rest of H is preserved.

Proof. Proof of 1. Suppose there are two big items x1, x2, x1 < x2, with the same value
in the neighborhood of pn such that x1 ∈ S and x2 6∈ S. Then item x2 is either assigned
to some player pi < pn by the optimal solution or it is not assigned to any player. If x2 is
not assigned to any player by the optimal 1-assignment then we can include it instead of
x1. If x2 is assigned to pi in the optimal 1-assignment then x1 is also adjacent to pi by the
ordering property and we can assign x1 to pi and x2 to pn.
Proof of 2. We note that we may look at the optimal 1-assignment as follows. The optimal
1-assignment assigns a set of big items to each player pi with total value 1− wi, 0 ≤ wi ≤ 1
in the first step. After this step, we have an instance of the fair allocation problem where
each player pi, 1 ≤ i ≤ n is allocated a set of small items with total value at least wi.
Because the solution consists of only small items we have di

k ≤ wi ≤
di+1
k for some integer

di, 0 ≤ di ≤ k − 1. Since there is an optimal 1-assignment, Hall’s condition is satisfied for
each set of players. Also by Lemma 2, Hall’s condition needs to be verified only for each
interval of items. For every interval [`, r] of the items, we have Condition (2) below:

v([`, r]) ≥
∑

pi∈P [`,r]

wi (2)

FSTTCS 2013

466 PTAS for Ordered Instances of Resource Allocation Problems

Let S(pn) be the set of items obtained as follows. Start from rpn , the last item in the
neighborhood of pn, and add the small items one by one from right to left to set S(pn), as
long as v(S(pn)) < wn − 1

k . Then, we add the next rightmost small item to the set S(pn)
as well (so v(S(pn)) ≥ wn − 1

k). Let `s(pn) be the index (according to the ordering) of the
leftmost item added to S(pn). Note that we may need to add all of the small items to S(pn).
Observe that wn − 1

k ≤ v(S(pn)) < wn since the last item added to S(pn) has value less
than 1

k . By assigning S(pn) to pn and removing it from H, Condition (2) is still satisfied
for each interval of items in the rest of the graph. Observe that since Hall’s condition is
satisfied, vs(N(pn)) ≥ wn. On the other hand, v(S(pn)) < wn. We assign S(pn) to pn, and
we observe that the items in S(pn) are consecutive. We will show that for the rest of the
players and items, Hall’s condition is still satisfied.
Proof of 3. Let H ′ = H \ (S(pn) ∪ {pn}) be the reduced instance we derive after assigning
items in S(pn) to player pn. Note that the neighborhood of each player in H ′ is an interval.
Consider an interval [`, r]H′ in H ′ such that PH′ [`, r] 6= ∅ in H ′. If [`, r]H′ ∪ S(pn) is not an
interval in H then Hall’s condition is satisfied for [`, r]H′ as otherwise [`, r]H′ = [`, r]H and
Hall’s condition would not be satisfied in H. So we assume [`, r]H′ ∪ S(pn) forms an interval
in H. Consider the set of items [`, r]H′ ∪ S(pn) in H (an interval in H). We note that S(pn)
corresponds to interval [`s(pn), rpn

] in H. First we notice that ` ≤ `s(pn) (i.e. ` is to the
left of `s(pn)). This follows from the ordering of the players based on the left end points of
their intervals. Thus we have [`, r]H′ ∪ S(pn) = [`, r]. Moreover P [`, r] = P [[`, r]H′] ∪ {pn}.
Therefore we have v([`, r]H′) + v(S(pn)) = v[`, r] ≥

∑
pi∈P [`,r] wi. Since v(S(pn)) < wn, we

have v([`, r]H′) ≥
∑
pi∈P [[`,r]H′] wi. J

The Algorithm: We first observe that if an optimal 1-assignment assigns a set of items
containing αi items with value qi to player pn then by Lemma 3 we may assume that these
αi big items are the rightmost big items of value qi in the neighborhood of pn.

Before we proceed, we need the following definition of the right-most vectors (intuitively
vectors that satisfy the conditions of Lemma 3).

I Definition 4 (Right-most Ordering). Let V = (α0, α1, α2, ..., αK) be a vector of non-negative
integers. For a given interval of items [`, r] ⊆ [1,m] let S([`, r]) be all the sets of items
S ⊆ [`, r] that are consistent with V i.e. S ∈ S([`, r]) if the vector of items that represents S
is exactly V . There might be several different sets S in [`, r] consistent with V . We say that
S is a right-most set of items in [`, r] if

for each i, 1 ≤ i ≤ K, S contains the rightmost αi big items with value qi from [`, r].
the small items in S are the rightmost consecutive small items from [`, r].

Observe that such a set S in our setting is unique. Moreover, when we say that a vector
of non-negative integers V is the right-most for a given interval [`, r], we interpret it as the
unique S ∈ S([`, r]) with the properties listed above.

At each step i, 1 ≤ i ≤ n of the algorithm we keep track of the right-most vectors of
items assigned to the players pn−i+1, pn−i+2, . . . , pn as well as the subgraph left for the rest
of the players. We call such a vector an assigned vector and there might be several such
assigned vectors at step i. Each assigned vector Ai = (β0, β1, . . . , βK) at step i indicates
that all together βj items of value qj , 1 ≤ j ≤ K and a set of S′ of small items with value β0

k

can be assigned to players pn−i+1, pn−i+2, . . . , pn, i.e. Ai represents an assignment to the
players pn−i+1, pn−i+2, . . . , pn.

In order to keep track of the right-most assigned vectors and subgraphs we construct
an n× d matrix M . Here d = (K + 1)mK+1 is the number of all possible assigned vectors

K. Khodamoradi, R. Krishnamurti, A. Rafiey, and G. Stamoulis 467

that arise from the initial vector V = (z0, z1, z2, ..., zK) representing all the items (recall that
m = |I|). Each entry of M contains one bit (which is either 0 or 1) and an n×m adjacency
matrix. In particular, M [i, j] = 1 if assigning some right-most vector indexed by j to player
pn−i+1 makes this vector “active” in the next round (i.e., it potentially can lead to a valid
assignment for all players, therefore should be considered). Moreover, with abuse of notation,
we say that M [i, j] = H ′ ⊆ H where H ′ is the subgraph that arises by ignoring the items
from the newly assigned vector j and players after pn−i. Once we consider player pn−i+1
we consider a right-most vector Vi = (α0, α1, . . . , αK) (in the neighborhood of pn−i+1) with
value at least 1 − 1

k that includes all the items in the private neighborhood of pn−i+1 (as
otherwise they will not be used later). Then we look at an entry M [i− 1, j′] = 1, where j′
represents the right-most vector (β0, β1, . . . , βK) and we set M [i, j] = 1, where j corresponds
to vector Vi = (α0 + β0, α1 + β1, . . . , αk + βK). Moreover M [i, j] = H ′ ⊆ H where H ′ is the
subgraph that arises by ignoring the items from the current assigned vector and ignoring the
players pn−i+1, pn−i+2, . . . , pn. Note that several possible configurations may set an entry to
one. This subgraph is obtained from the set of items corresponding to Vi and the subgraph
from M [i− 1, j′].

Algorithm for Convex Case

At step i (at the beginning i = 1):
1. The current player for consideration is pn−i+1. Let Ai be the current set of all right-most

assigned vectors i.e. Ai = {j ∈ [d] : M [i− 1, j] = 1} (A1 = ∅). For each A ∈ Ai do:
a. Consider all the minimal right-most vectors Vi = (α0, α1, α2, ..., αk) representing items

from N(pn−i+1) in the subgraph induced by the current assigned vector A (this
subgraph can be simply found by consulting the corresponding entry in the matrix M)
such that:

1− 1
k ≤

α0
k +

∑j=K
j=1 αjqj

all the items corresponding to this vector are in the neighborhood of pn−i+1
Vi includes all the private neighbors of pn−i+1 (items adjacent only to pn+1−i)
If the value of the items in the private neighborhood of pn−i+1 is at least 1 − 1

k

then let Vi be the vector of all the items in the private neighborhood of pn−i+1
Observe that each vector Vi represents a unique set of items since it is a right-most
vector.

b. If there is no such Vi, report NO assignment and exit.
c. For every such vector Vi (at step i) we consider the assigned vector Vi = Ai + Vi
(observe that, given Vi, the assigned vector Vi is uniquely defined):

Set M [i, j] = 1 where j is the column corresponding to this assigned vector Vi.
Update the entry in M [i, j] corresponding to the subgraph induced by players
p1, p2, . . . , pn−i by using the previous entry of the corresponding subgraph at step
i−1 and the current set of items in vector Vi (at Step 1 we use the adjacency matrix
of H).

Step (c) above keeps track of the remaining subgraph for the rest of the players.
2. Set i = i+ 1 and go to (1).
3. Assign the items in the neighborhood of p1 (corresponding to one of the subgraph remained

containing p1) and trace back M to obtain an assignment for the rest of the players.

In order to retrieve an actual assignment (last step of the algorithm) we proceed as
follows: at step n when we consider player p1 there should be at least one vector of items
with value 1− 1

k in the neighborhood of p1). We assign the items that are uniquely defined

FSTTCS 2013

468 PTAS for Ordered Instances of Resource Allocation Problems

by such a vector to player p1. To continue with the rest of the players we may find useful to
include the index j at a step i that caused a particular assigned vector at the next step i+ 1
be set to 1. With this, when we allocate a particular vector of items to player pn−i we know
how to trace back a feasible assignment. In other words, whenever we set M [i, j] = 1 in the
body of the algorithm we also store which assigned vector j′ from row i− 1 is responsible for
setting M [i, j] = 1 at step i.

I Lemma 5. Let H be an instance of the problem with n players and m items. Suppose
there is an optimal 1-assignment for H. Then the Algorithm assigns (in polynomial time) to
each player a set of items with value at least 1− 2

k .

Proof. First by definition of right-most vector, the value of set S corresponding to vector Vi
is at least 1− 2

k . This is true because 1− 1
k ≤

α0
k +

∑j=K
j=1 αjqj and the value of the small

items in S is at least α0−1
k .

Second we need to show that the number of assigned vectors Ai at step i is at most
(K + 1)mK+1. According to Item (2) of Lemma 3 we can take the small items consecutively
from right to left. This allows us to look at the small items as a number of blocks of size 1

k

when they are considered from right to left. Therefore we may assume there are K + 1 types
of items resulting in at most mK+1 different possible assigned vectors. When the graph
induced by players pn−i+1, pn−i+2, . . . , pn and their neighborhood is a complete bipartite
graph then the number of possible assignments (number of 1’s in the row i of M) is bounded
by (K + 1)mK+2. Moreover, since each right-most assigned vector uniquely defines a set of
items S, this means that at each step the entry of M [i, j] that corresponds to the subgraph
induced for the rest of the players (p1, . . . , pn−i) is unique. So, the size of the matrix M is
O(nmK+2) and each entry of M contains an m× n adjacency matrix.

Note that each assigned vector at step i represents at least one assignment to the players
pn−i+1, pn−i+2, . . . , pn such that each of them receives at least 1 − 2

k . We claim that if
we keep track of at most (K + 1)mK+2 different possible ways of assigning the items to
the players pn, pn−1, ..., pn−i+1 then according to Lemma 3 we guarantee the existing of a
1-assignment for the players p1, p2, . . . , pn−i using the remaining items.

Suppose there exists i, 1 ≤ i ≤ n, such that there is no vector Vi in Step 1.b. Then we
show that there is no optimal 1-assignment. We use induction on i. Note that i is more than
1 as otherwise there are not enough items in the neighborhood of pn and clearly there is no
optimal 1-assignment. We show that i > 2. If i = 2 then according to the selection of the
items in Step (1) for player pn we include all the private neighbors of pn, and all the possible
vectors V1 considered for player pn are right-most. Hence by Lemma 3 the existence of the
1-assignment should be preserved for the rest of the players, a contradiction.

Let i ≥ 3. At step i − 1 the algorithm considers a vector Vi−1 from N(pn−i+2), and
together with an assigned vector Ai−2 from row i− 2 of M , it creates a new entry for row
i− 1. If the algorithm should have recorded some other assignment different from the ones
in the entry of M at row i− 1 then it means some big item x (of value qj) and not in the
items represented by Ai−2 + Vi−1 (or a set X of small items with total value β

k) is assigned
to a player pt, n − i+ 2 ≤ t and some item x′ (of value qj) from the of items represented
by Ai−2 + Vi−1 (or a set Y of small items with total value β

k represented by Ai−2 + Vi−1)
is assigned to pn−i+1. Note that x < x′. However, since pn−i+1 is adjacent to x′, it is also
adjacent to x and hence we can exchange x and x′. In other words, as far as player pn−i+1 is
concerned, the items from the right-most assigned vector are the ones that can be assigned
to the players pn−i+2, pn−i+3, . . . , pn. J

K. Khodamoradi, R. Krishnamurti, A. Rafiey, and G. Stamoulis 469

I Theorem 6. Let H be an instance of the problem with n players and m items. Then for
k ≥ 3 there exists a (1− 3

k+1)-approximation algorithm with running time O(n2mK+2).

Proof. According to Lemma 5, each player receives a set of items with value at least 1− 2
k ,

once we round the value of the items. Because of the rounding, this value should be divided
by 1 + 1

k . Therefore each player receives a set of items with value at least 1 − 3
k+1 . The

size of the matrix M in Lemma 5 is O(nmK+1) and each entry of M contains an m × n
adjacency matrix. Therefore the running time of the algorithm is O(n2mK+2). J

4 Min-Max Allocation Problem (R | |Cmax)

Problem Description: We are given a set M of identical machines and a set J of jobs. Each
job j has a same processing time pj on a subset of machines and it has processing time ∞ on
the rest of the machines. The goal is to find an assignment of the jobs to the machines, such
that the maximum load among all the machines is minimized. Formally, we have a bipartite
graph H = (M,J,E) where M is a set of machines and J is a set of jobs, and E denotes
the edge set. There is an edge in E between a machine and a job if the job can be executed
on that machine. We consider the case where each job can be executed on an interval of
machines:

Assumption: We have an ordering M1,M2, ...,Mn of machines such that each job can be
executed on consecutive machines (an interval of machines).

We denote the interval of job Ji by [`i, ri]. We assume that Ji is before Jj , i < j whenever
`i < `j or `i = `j , ri ≤ rj . We denote this ordering by π. The ordering π has the following
property: if Mi is adjacent to Jr, and Mj for j > i is adjacent to Js, s < r then Mi is
also adjacent to Js. By scaling down the value of the processing time, we may assume that
0 ≤ pi ≤ 1.

Consider the error parameter 1
k for an integer k ≥ 2. The goal is to find an assignment

such that each machine receives a set of jobs with total processing time at most 1 + 1
k , k ≥ 2,

when there exists an optimal 1-assignment. We say a job is small if its value is less than
1
k , otherwise it is called a big job. Now we further round the values of the jobs as follows.
If vj (the value of item j) is in the interval [1

k (1 + 1
k)i, 1

k (1 + 1
k)i+1) then it is replaced by

1
k (1 + 1

k)i. Using this method, we obtain at most K = d log k
log(1+ 1

k)e distinct values more than
1
k . For 1 ≤ i ≤ K let qi = 1

k (1 + 1
k)i.

We use the usual classification of the jobs into big and small, together with rounding step
as in the case of Max-Min allocation. For subset J ′ of jobs let w(J ′) (ws(J ′)) be the sum of
the processing times of all the jobs (small jobs) in J ′. For every subset M ′ of machines let
J [M ′] be the set of jobs whose entire neighborhood lies in set M ′. A necessary condition for
having a maximum load at most 1 is that for every subset M ′ of machines w(J [M ′]) ≤ |M ′|.
In order to check this condition, we need to check it for every interval of machines. For
interval [i, j] of machines Mi,Mi+1, ...,Mj , we look at all the jobs that are executed only on
machines Mi,Mi+1, . . . ,Mj and if the sum of the processing time of all these jobs is greater
than j − i+ 1 then the condition is violated. For interval [`, r], ` ≤ r, let J [`, r] be the set of
jobs that can be executed only on a subset of the machines in this interval. By argument
similar to that used in the proof of Lemma 2, Condition 3 is given below. For simplicity we
refer to the condition ∀ [`, r] ⊆ [1, n] : w(J [`, r]) ≤ r − `+ 1 as Hall’s condition.

Assumption: A 1-assignment (an optimal 1-assignment) is an assignment that assigns to
each machine Mi a set of big jobs with total value 1 − wi, 0 ≤ wi ≤ 1 and it produces an

FSTTCS 2013

470 PTAS for Ordered Instances of Resource Allocation Problems

instance H ′ of the problem for which the Hall’s condition (with respect to the small jobs) is
satisfied, i.e. for every interval [`, r] of machines, vs(J [`, r]) ≤

∑i=r
i=` wi.

Let N0[`, c] be an ordered set of small jobs in the neighborhood of M`, obtained as follows.
We first add all the jobs in J [`, `] one by one from left to right (according to ordering π). In
step j, 1 ≤ j ≤ c, we add to N0[`, c] all the small jobs from J [`, `+ j] \ J [`, `+ j − 1] one by
one from left to right.

Let Ni[`, c], i ≥ 1 be an ordered set of jobs with value qi obtained as follows. We first
add to Ni[`, c] all the jobs with value qi from J [`, `] one by one from left to right. In step j,
1 ≤ j ≤ c, we add to Ni[`, c] all the jobs with value qi from J [`, `+ j] \ J [`, `+ j − 1] from
left to right.

I Lemma 7. Suppose there exists an optimal 1-assignment for H in which machine M1 (the
first machine in the ordering) receives a set S of jobs from N(M1), containing αi, 1 ≤ i ≤ K,
big jobs with value qi, and a set of small jobs with total value at least α0

k and less than α0+1
k ,

such that v(S) ≤ 1. Then we obtain (in polynomial time) an assignment such that:
1. for every i ≥ 1, the jobs with value qi are the first αi’s jobs in Ni[1, c] for some c > 1.
2. M1 gets a set of consecutive small jobs from N0[1, c] with value less than α0+2

k and the
existence of a 1-assignment for the rest of H is preserved.

Let N(M [`, r]) (a set of jobs) denote the neighborhood of machines M`,M`+1, . . . ,Mr.

I Definition 8 (Left-most Ordering-R | |Cmax). Let V = (α0, α1, α2, ..., αK) be a vector
of non-negative integers. Let V represent a set S of jobs from N(M [`, r]) containing αi,
1 ≤ i ≤ K big jobs of value qi and a set of small jobs with total value at least α0

k and at
most α0+1

k . We say vector V is a left-most vector if:
for each i, 1 ≤ i ≤ K, S contains the first αi jobs with value qi from Ni[`, r].
the small jobs in S are the first set of consecutive small jobs from N0[`, r].

Let n be the number of machines and m be the number of jobs and set d = (K + 1)mK+1.
Identical with the Max-Min case, we consider a matrix M with the same properties. The
algorithm is similar to the one in the Max-Min case of Section 3 (with the necessary
adjustments).

I Lemma 9. Suppose there exists an optimal 1-assignment for H. Then there exists a
polynomial time assignment that assign all the jobs to the machines without exceeding the
maximum load 1 + 2

k .

I Theorem 10. Let H be an instance of the problem with n machines and m jobs. Then for
k ≥ 3 there exists an (1 + 3

k+1 + 2
k2)-approximation algorithm with running time O(nmK+2).

5 Max-Min problem when the Items are in a Tree

In this section we consider instances of the problem when the items are the vertices of a tree
T and each player is interested in a sub-tree of T with at most d leaves for some constant d.
This class of instances contain, the class of convex bipartite instance, as a special case. We
notice that if the items are vertices of a tree T and each player is interested in a sub-tree of
T then we get the general instances of the problem. To see this we just need to assume T is
a star.

K. Khodamoradi, R. Krishnamurti, A. Rafiey, and G. Stamoulis 471

Problem Description: We are given a bipartite graph H = (P, T) where P is a set of
n players and T is a tree where each node of T is an item. We consider the problem of
allocating the indivisible items from I to the set P . Each player p ∈ P has a utility function
fp(j) = vj > 0 for each item j ∈ [m] (vj is a positive integer). This represents the value
of item j for player p. If p is adjacent to item j then its value for p is vj , otherwise its
value is zero. For each players p the set of items adjacent to p forms a sub-tree of T with at
most d leaves (d is a constant number). The goal is to find a maximum t and a partition
T1 ∪ T2 ∪ · · · ∪ Tn = T of the items (on T) such that for every j, 1 ≤ j ≤ n, Tj is a subset of
items adjacent to player pj and the items in Tj have a total value at least t.

Indexing the tree: The spine of T is a longest path in T . Let SP = v1, v2, . . . , vq be a
spine of T . The index of a vertex x in T is the smallest i such that vi is the closest vertex to
x. For two vertices x, y of T we say x is before y, (we write x ≺ y) if the index of x is less
than the index of y. When x, y have the same index i, then x ≺ y if x is closer to vi than
y, and no other vertex z in the (x, y)-path is closer to vi than x (note that the (x, y)-path
is unique since T is a tree). In all other cases the order between x and y is arbitrary. The
index of subtree P is the index of the vertex with the smallest index among the vertices in
P . We say subtree P is before subtree Q and we write P ≺ Q if the index of P is less than
the index of Q and if P and Q have the same index then the last vertex of P in the ordering
≺ lies inside Q.

Ordering the players: We order the players based on their sub-trees, i.e. p is before q if
P ≺ Q where P,Q are the sub-trees corresponding to p, q.

For subtree T ′ of T let P [T ′] denote the set of players whose entire neighborhood lies in
T ′. Let p1, p2, ..., pn be an ordering of the players. For player pn, let `1(pn), `2(pn), . . . , `t(pn),
t ≤ d be the leaves of N(pn) where `i(pn) ≺ `j(pn), 1 ≤ i < j ≤ t. Let x ∈ N(pn) be the
item with the smallest index.

I Definition 11. Let S be a subset of items in N(pn) with value qi for an 1 ≤ i ≤ K.
We say S is good if there exist β1, β2, . . . , βt such that

∑j=t
j=1 βj = |S| and S comprises of

the last βj , (for every 1 ≤ j ≤ t) items with value qi on the path from x to `j(pn) in the
sub-tree N(pn).
Let S be a subset of small items in N(pn). We say S is good if there exist items
`1, `2, . . . , `t, `j � `j(pn), 1 ≤ j ≤ t such that S comprises of all the small items on the
path from `j + 1 to `j(pn) in the sub-tree N(pn).

Analogous to Lemma 3 and Theorem 5 we have the Lemma 12 and the Theorem 13
below.

I Lemma 12. Suppose there exists an optimal 1-assignment for H such that player pn
receives a set S of items from N(pn) where S contains αi, 1 ≤ i ≤ K big items with value qi
and some small items with total value at least α0

k and less than α0+1
k such that v(S) ≥ 1.

Then there exists an assignment in which pn gets a set S′ of items such that for every
1 ≤ i ≤ K, there are exactly αi big items with value qi in S′ forming a good set and the
small items in S′ form a good set with total value at least α0−1

k . Moreover, the existence of a
1-assignment for the rest of H is preserved.

I Theorem 13. Let H be an instance of the problem with n players and m items. Then for
k ≥ 3 there exists an (1− 3

k+1)-approximation algorithm with running time O(nmd·K+2).

FSTTCS 2013

472 PTAS for Ordered Instances of Resource Allocation Problems

6 Conclusion and Future Work

In all instances of the problem considered in this paper, a proper ordering has played an
important role. However we do not know a dichotomy classification for the instances of the
problem that admit a PTAS. We ask for a dichotomy of the following form:

If H belongs to class X of bipartite graphs then there is a PTAS for Max-Min
allocation problem otherwise there is no PTAS.

Acknowledgments. We would like to thank Monaldo Mastrolilli for many useful discussions
and for proposing this problem to us.

References
1 A. Asadpour, U. Feige, and A. Saberi. Santa claus meets hypergraph matchings. In

APPROX-RANDOM, pages 10–20, 2008.
2 A. Asadpour and A. Saberi. An approximation algorithm for max-min fair allocation of

indivisible goods. In STOC, pp. 14–121. ACM, 2007.
3 N. Bansal and M. Sviridenko. The santa claus problem. In STOC, pages 31–40. ACM,

2006.
4 M. Bateni, M. Charikar, and V. Guruswami. Maxmin allocation via degree lower-bounded

arborescences. In STOC. ACM, 2009.
5 I. Bezáková and V. Dani. Allocating indivisible goods. SIGecom Exchanges, 5(3):11–18,

2005.
6 A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph classes: a survey. Society for Industrial

and Applied Mathematics (SIAM), Philadelphia, PA, USA, 1999.
7 D. Chakrabarty, J. Chuzhoy, and S. Khanna. On allocating goods to maximize fairness. In

FOCS, pages 107–116, 2009.
8 U. Feige. On allocations that maximize fairness. In SODA, pp. 287–293. ACM-SIAM, 2008.
9 M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman, 1979.
10 B. Haeupler, B. Saha, and A. Srinivasan. New constructive aspects of the lovász local

lemma. J. ACM, 58(6):28, 2011.
11 P. R. Halmos and H. E. Vaughan. The marriage problem. American Journal of Mathematics,

pages 214–215, 1950.
12 S. Khot and A. K. Ponnuswami. Approximation algorithms for the max-min allocation

problem. In APPROX-RANDOM, pages 204–217, 2007.
13 J. K. Lenstra, D. B. Shmoys, and É. Tardos. Approximation algorithms for scheduling

unrelated parallel machines. In FOCS, pages 217–224. IEEE, 1987.
14 M. Mastrolilli and G. Stamoulis. Restricted max-min fair allocations with inclusion-free

intervals. In J. Gudmundsson, J. Mestre, and T. Viglas, editors, COCOON, volume 7434
of Lecture Notes in Computer Science, pages 98–108. Springer, 2012.

15 G. Muratore, U. M. Schwarz, and G. J. Woeginger. Parallel machine scheduling with nested
job assignment restrictions. Oper. Res. Lett., 38(1):47–50, 2010.

16 L. Polacek and O. Svensson. Quasi-polynomial local search for restricted max-min fair
allocation. In ICALP, 2012.

17 B. Saha and A. Srinivasan. A new approximation technique for resource-allocation problems.
In ICS, pages 342–357. Tsinghua University Press, 2010.

18 U. M. Schwarz. A PTAS for scheduling with tree assignment restrictions. CoRR,
abs/1009.4529, 2010.

K. Khodamoradi, R. Krishnamurti, A. Rafiey, and G. Stamoulis 473

19 J. Sgall. Randomized on-line scheduling of parallel jobs. J. Algorithms, 21(1):149–175,
1996.

20 O. Svensson. Santa claus schedules jobs on unrelated machines. In STOC, pp. 617–626,
2011.

21 G. Woeginger. A polynomial-time approximation scheme for maximizing the minimum
machine completion time. Operation Research Letters, 20(4):149–154, 1997.

FSTTCS 2013

	Introduction and Problem Definition
	Preprocessing the Input
	Structural Properties and the Algorithm
	 Min-Max Allocation Problem ()
	Max-Min problem when the Items are in a Tree
	Conclusion and Future Work

