
Clustering With Center Constraints
Parinya Chalermsook1 and Suresh Venkatasubramanian2

1 Max-Planck-Institut für Informatik, Germany
2 School of Computing, University of Utah, USA

Abstract
In the classical maximum independent set problem, we are given a graph G of “conflicts” and
are asked to find a maximum conflict-free subset. If we think of the remaining nodes as being
“assigned” (at unit cost each) to one of these independent vertices and ask for an assignment
of minimum cost, this yields the vertex cover problem. In this paper, we consider a more
general scenario where the assignment costs might be given by a distance metric d (which can
be unrelated to G) on the underlying set of vertices. This problem, in addition to being a
natural generalization of vertex cover and an interesting variant of the k-median problem, also
has connection to constrained clustering and database repair.

Understanding the relation between the conflict structure (the graph) and the distance struc-
ture (the metric) for this problem turns out to be the key to isolating its complexity. We show
that when the two structures are unrelated, the problem inherits a trivial upper bound from
vertex cover and provide an almost matching lower bound on hardness of approximation. We
then prove a number of lower and upper bounds that depend on the relationship between the
two structures, including polynomial time algorithms for special graphs.

1998 ACM Subject Classification H.3.3 Clustering, F.2.2 Nonnumerical Algorithms and Prob-
lems

Keywords and phrases Clustering, vertex cover, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2013.401

1 Introduction

Let G = (V,E) represent a set of conflicts between pairs of elements in V and d : V ×V → R
be a metric capturing the cost of assigning one vertex to another. In this paper, we consider
the following problem, called minimum edge-weighted independent set (mwis) [18]:
I Problem 1.1 (mwis). Find an independent set of vertices S ⊂ V such that the assignment
cost

∑
v∈V \S mins∈S d(v, s) is minimized.

This problem is a natural generalization of vertex cover (when d(x, y) ≡ 1 for all
x, y ∈ V), and arises naturally in two distinct applications.

Constrained clustering. In a typical application of clustering, the goal is to group close-by
objects into a small number of groups. Often the user has domain information about the data
in the form of pairs of items that either should be linked together (must-link) or should
not (cannot-link). Such a clustering problem is called constrained clustering[3] and has
been studied extensively.

In general, these constraints are provided by users and it can be difficult to make clear
judgments about whether two points should be in the same cluster or not, since this depends
on the larger context of the clustering. An easier decision is to decide whether two points
can serve as cluster representatives at the same time or not. Intuitively, if two points are
close to each other, then we might expect one or the other to be a cluster center, but not

© Parinya Chalermsook and Suresh Venkatasubramanian;
licensed under Creative Commons License CC-BY

33rd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013).
Editors: Anil Seth and Nisheeth K. Vishnoi; pp. 401–412

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62918426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.401
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

402 Clustering With Center Constraints

both. This is less constraining than a must-link or cannot-link constraint: two points
connected by a constraint can lie in the same cluster or in different clusters, as long as they
are not both cluster centers at the same time.

This center-constrained clustering problem is captured by the above formulation. G

captures the constraints, and d is the underlying distance function used for clustering. The
goal is now to find a set of cluster centers that are not in conflict such that the total cost
of assigning points to cluster centers is minimized (here the cost of a cluster is the sum of
distances from points to the cluster representative - this is the standard k-median-type cost
function). One attractive feature of this formulation is that it does not require us to specify
the number of clusters, or in fact any parameter.
Database Repair. In a database, integrity constraints like functional dependencies are used
to enforce semantic consistency of the data. A simple example of a functional dependency
is a key: if two tuples have the same value for a key attribute, they must be identical in
all attributes. For any database and set of such integrity constraints, a conflict is a pair of
tuples that does not satisfy the integrity constraint1.

When a database with conflicts is encountered, one approach to rectify the problem is
to repair the database by changing tuples to eliminate conflicts. For example if a database
had tuples a = (1, 2) and b = (1, 3), but the first attribute was required to be a key, then
the database could be repaired either by modifying the first component of a or the second
component of b. But each of these possibilities incurs a cost that we would want to keep as
low as possible.

Now if we construct a graph where each tuple is a vertex, there is an edge between two
tuples if they are in conflict with respect to integrity constraints, and a distance function
d captures the cost of changing one tuple to another, the problem of database repair is
precisely mwis. This problem was first formulated by Kolahi et al.[18] and NP-hardness was
established via its generalization of vertex cover.

1.1 Our Contributions
In this paper, we study mwis in its many forms. Our results reveal that the interaction
between the conflict graph and the distance measure plays an important role in determining
the complexity of the problem. Because of the problem’s similarity to clustering (and
k-median in particular) one might expect that techniques that have been used to deal with
k-median and related problems might be useful in attacking mwis and potentially give a
good approximation algorithm. Our first result shows that this is, in fact, impossible. More
formally, we show that there is no polynomial time approximation algorithm that guarantees
the approximation ratio of O(dmax

dmin
), unless P = NP. This matches the approximation ratio

given by the vertex cover heuristic up to a constant factor.
Our proof uses the fact that the graph G and metric d can be completely unrelated to

each other, and this suggests that establishing a relationship between G and d could make
the problem easier. We have two ways to establish consistency between d and G.

Metric induced by graph (w-mwis): Given graph G = (V,E) and weights w : E → R,
the metric d is defined as the shortest path metric of (G,w). We denote this problem by
w-mwis.
Graph induced by metric (d-mwis): Given a metric d, the conflict graph G is
defined to be the induced unit-disk graph: E(G) = {uv : d(u, v) ≤ 1}. This problem is
abbreviated by d-mwis.

1 In general, many different kinds of integrity constraints (but not all!) admit pairs of conflicting tuples.

P. Chalermsook and S. Venkatasubramanian 403

Table 1 Summary of Our Results. All hardness results are proved under the assumption of
P 6= NP. VC refers to vertex cover.

w-mwis d-mwis

Bound General Unweighted Tree- Planar General Rd

Width

Upper 2dmax
dmin

[18] VC[18] Poly ?? 2dmax
dmin

[18] (O(1/ε), 1− ε)

Lower Ω(dmax
dmin

) VC Poly NP-hard Ω(dmax
dmin

)

It turns out that d-mwis captures the class of instances that usually arise in practice,
especially when d has low dimensional structure (e.g. Euclidean space or metric of bounded
doubling dimension), so algorithmic results for d-mwis are interesting from a practical point
of view.

d-mwis is hard to approximate in a general metric. Therefore we consider the d-mwis
problem in Rd and prove that it is NP-hard even when d = 2 (and even in the bi-criteria
setting). We also show a constant factor bi-criteria approximation algorithm, in the following
sense: If C is the minimum possible clustering cost which guarantees that centers are of
distance at least 1 apart, our algorithm always outputs a solution of cost O(C/ε) while
ensuring that the centers are “almost feasible”, i.e. the distance between each pair is at least
(1− ε). Our algorithm combines tools from clustering and computational geometry.

Similarly, w-mwis remains hard in general weighted graphs and so we further investigate
two directions. In the first direction, we consider the unweighted graph, i.e. w(e) = 1 for all
e ∈ E(G), and observe that the problem is computationally equivalent to vertex cover,
so it is hard to approximate to within a factor of (2 − ε) assuming UGC [17], 1.36 hard
assuming P 6=NP [10], and admits slightly better than 2 approximation [14, 16]. In the second
direction, we restrict the underlying graph structure, showing that in graphs having bounded
treewidth, d-mwis is polynomial time solvable, while it is still NP-hard in planar graphs.

Finally, a special case of mwis captures the k-median problem which has received a lot of
attention in approximation algorithms [20, 8, 1]. That is, when graph G is simply a union of
disjoint cliques, the problem generalizes k-median problem and is a special case of matroid
median problem, a more general variant of the classical k-median problem [9, 13, 19]. We
summarize these results in Table 1.
Organization. We show our hardness results in Section 3. Results related to d-mwis and
w-mwis are presented in Section 4 and 5 respectively. The connection between mwis and
the classical k-median problem is deferred to the full version.

2 Preliminaries

Vertex Cover: Given a graph G = (V,E), a set C ⊆ V is a vertex cover of G if any
edge uv ∈ E satisfies {u, v} ∩ C 6= ∅. The minimum vertex cover problem asks for the
minimum cardinality vertex cover of G. A set S ⊆ V is an independent set of G if any pair
u, v ∈ S satisfies uv 6∈ E(G). S is an independent set iff V \ S is a vertex cover.
Tree Decomposition: A tree decomposition of graph G is a tree T and collection of subsets
of nodes X = {Xt}t∈V (T) with the following properties:

V (G) =
⋃
t∈V (T)Xt.

For any edge uv ∈ E(G), there exists t ∈ V (T) such that both u and v lie in Xt.
For any v ∈ V (G), if v ∈ Xt ∩Xt′ for t, t′ ∈ V (T), then v ∈ Xt′′ for any t′′ that lies on
the unique path from t to t′ in T .

FSTTCS 2013

404 Clustering With Center Constraints

The width of a tree decomposition is denoted by maxt∈V (T) (|Xt| − 1), and the treewidth
of a graph is the minimum possible k such that there is a tree decomposition of width k for
G. Bodlaender [4] presented a linear time algorithm that constructs a tree decomposition of
width k if the treewidth of a graph is at most k.
Bi-criteria Approximation: Let β < 1. We say that an algorithm for d-mwis is an (α, β)
approximation if it returns the solution S of open facilities whose cost is at most OPT, i.e.∑
v∈V d(S, v) ≤ αOPT and for each pair u, v ∈ S, we have d(u, v) ≥ β.

3 Hardness of Approximation

In this section, we prove the following theorem.

I Theorem 1. Unless P = NP, d-mwis and w-mwis have no polynomial time O(∆/δ)
approximation algorithms, where ∆ = max d(x, y) and δ = min d(x, y).

The reduction starts from the hardness of approximation result for 3SAT. We will use
the following tight result due to Hastad.

I Theorem 2 ([15]). Fix any ε > 0 and assume that P 6= NP . Given a 3SAT formula, it is
hard to distinguish between the following two cases in polynomial time:

(Yes-Instance:) There is an assignment that satisfies every clause.
(No-Instance:) Any assignment satisfies at most 7/8 + ε fraction of the clauses.

Construction: We will construct an instance of w-mwis and argue later that it can be
thought of as an instance of d-mwis as well. We use a reduction idea introduced by Feige et
al. [12]. This reduction has been a powerful tool in transforming any constraint satisfaction
problem (CSP) into graph G such that the size of maximum independent set of the graph is
“proportional” to the value of the input CSP, i.e. the maximum fraction of clauses that can
be simultaneously satisfied.

Consider an instance Φ of 3SAT with n variables {x1, . . . , xn} and m clauses C1, . . . , Cm,
as given by the above theorem. We show how to construct graph G = (V,E). For each clause
Ci, we create a set Vi containing 7 vertices, where each such vertex represents a satisfying
assignment for clause Ci. Now vertex set V can be defined as V =

⋃m
i=1 Vi, so |V | = 7m.

We proceed to define the set of edges E. We connect every pair of vertices in Vi by an
edge, so each set Vi is a clique of 7 vertices. The distance between two vertices u, v ∈ Vi is
defined as d(u, v) = 1. Then we say that any two vertices u ∈ Vi, v ∈ Vj where i 6= j are
conflicting if there is a variable x` in the formula Φ that belongs to both clauses Ci and Cj
such that the assignment of u and v set x` = 0 and x` = 1 respectively. Then for any two
conflicting vertices u ∈ Vi and v ∈ Vj , we connect an edge uv with distance d(u, v) = ρ where
ρ is a parameter. It is easy to verify that d is indeed a metric.

Analysis: It can be argued that in the Yes-Instance, there is a solution of cost at most
6m, while in the No-Instance the cost must be at least 7mρ/10. So we get a gap of Ω(ρ).
We omit details in this extended abstract.

4 Graph Induced by Metric (d-mwis)

The main result in this section is a (1/ε, 1 − ε) bi-criteria approximation algorithm for
Euclidean space. The idea of this algorithm follows the LP rounding algorithm for k-median

P. Chalermsook and S. Venkatasubramanian 405

of Charikar et al [8]. The “natural” LP requires independent set constraints, and these yield
an unbounded integrality gap even for the line metric. Hence, we need a stronger LP.

First, we argue that the problem already becomes non-trivial in R2 even if we only desire
a bi-criteria approximation algorithms.

I Theorem 3. d-mwis is NP-hard even in R2. Moreover, finding (1, 1− ε) approximation
is also NP-hard for any ε < 1/2.

The proof follows by showing a reduction from vertex cover on coin graphs (which is NP-
hard [5])and is deferred to the full version. We also note that the problem in 1-dimensional
Euclidean space is polynomial time solvable by a simple dynamic program.

4.1 Geometric LP Relaxation
Since the independent set constraints cause large LP integrality gap, we use the LP with
clique point constraints, as used successfully in many geometric packing problems (see,
e.g., [11, 7, 6]). We have variables x(u) to indicate the fact that the facility is open at u and
variables y(u, v) which say that the client at v is served by a facility at u. We first formulate
the linear program, denoted by (LP).

(LP)

min
∑

u,v∈V (G)

d(u, v)y(u, v)

s.t
∑

u:d(u,p)<1/2

x(u) ≤ 1 (∀p ∈ R2)

y(u, v) ≤ x(u) ∀u, v ∈ V (G)∑
v∈V (G)

y(u, v) ≥ 1 ∀u ∈ V (G)

(LP’)

min
∑

u,v∈V (G)

d(u, v)y(u, v)

s.t.
∑
u:p∈ru

x(u) ≤ 1 (∀p ∈ P)

y(u, v) ≤ x(u) ∀u, v ∈ V (G)∑
v∈V (G)

y(u, v) ≥ 1 ∀u ∈ V (G)

The first set of constraints ensure that we do not open conflicting centers, while the
second set of constraints force the LP to only assign clients to facilities that are open. Notice
an important property of this LP that, once vector x is fixed, the values of y that minimize
the LP cost can be computed efficiently, so we will sometimes refer to any LP solution as x,
instead of (x,y). The following lemma says that this LP is a valid formulation for mwis.

I Lemma 4. Any integral vector x is feasible for (LP) if and only if the set S = {u : x(u) = 1}
is a feasible solution to d-mwis.

Proof. First, assume that x is integral but not feasible for (LP), so it must violate some
constraint

∑
p:d(u,p)<1/2 x(u) > 1 for some point p. We will argue that the solution S is not

feasible. Since x is integral, there must be at least two vertices u, u′ such that x(u) = x(u′) = 1
and that d(u, p), d(u′, p) < 1/2, implying that d(u, u′) ≤ d(u, p)+d(p, u′) < 1. Since u, u′ ∈ S,
the set S is not feasible for mwis.

Now assume that the set S defined this way is not feasible for mwis. We will argue
that x violates some constraint of (LP). Since S is not feasible, there must be two facilities
u, u′ ∈ S such that d(u, u′) < 1. We pick the point p to be at the middle of the line segment
connecting u and u′, so we must have d(u, p), d(u′, p) < 1/2, so the LP constraint is violated
at point p. J

From now on, we think of each vertex u ∈ V (G) as a geometric object, i.e. a ball ru of
radius 1/2, and therefore the first set of LP constraints can also be seen as

∑
u:p∈ru x(u) ≤ 1.

FSTTCS 2013

406 Clustering With Center Constraints

If we consider the arrangement formed by the balls, then in each cell of this arrangement, for
each point p in the cell, the sum

∑
d(u,p)<1/2 x(u) is a fixed constant. Hence, we need only

choose one representative point in each cell to verify the constraints. Since the arrangement
of balls in d dimensions has complexity nO(d) (by using a simple lifting map argument) and
can be computed in similar time, we can write a new polynomial sized LP, denoted by (LP’).

I Lemma 5. Vector x is feasible for (LP) if and only if it is feasible for (LP’).

Proof. We only need to show that a feasible solution x for (LP’) is always feasible for (LP).
Suppose not. Then there must be a point p ∈ P such that

∑
u:p∈ru x(u) > 1, and since the

set of ru containing p is maximal, there is a point p′ ∈ P such that the same collection of
disks contains p′. Hence, the constraint of (LP’) is violated at p′, a contradiction. J

4.2 LP Rounding Algorithm
Let ε be a parameter. We present (O(1/ε), 1− ε) approximation algorithm. In the first step,
we perform the clustering process as used in Charikar et al.[9] where clients are grouped into
many clusters. Each cluster contains, roughly speaking, clients that will be served by the
same facility. In the second step, we open facilities in some of these clusters. The property
of the geometric LP guarantees that the opened clusters are “far”.

Step 1: Clustering and Preprocessing. We define for each vertex v ∈ V (G), the quantity
C̄v =

∑
u d(u, v)y(u, v). The term C̄v represents the “fractional connecting cost” of v, and

we can write OPT =
∑
v∈V (G) C̄v. So our goal is to use this term to bound the actual cost

created by our algorithm.
First, we say that a vertex v ∈ V (G) is heavy if C̄v ≥ ε/10; otherwise, the vertex v is

called light. Denote the sets of heavy and light vertices by V h and V l respectively. So we
can partition vertices in V (G) into V (G) = V h ∪ V l, which will be handled separately by
our algorithm: To deal with light vertices, we order the vertices in V l by their values C̄v in
increasing order, i.e. V l = {v1, v2, . . . , vn′} such that C̄v1 ≤ C̄v2 ≤ . . . ≤ C̄vn′ . Initially, we
define C = ∅. We process the vertices in this order, starting from v1. When vi is processed,
we consider Vi =

{
vi′ ∈ V l : d(vi, vi′) ≤ 3C̄vi

}
and check if there is another j : j < i such

that vj ∈ C and Vi ∩ Vj 6= ∅. If there is no such cluster, we add vi to the collection of cluster
centers C; otherwise, we say that vertex vi is assigned to center vj .

When the above process finishes, we obtain a collection of cluster centers C. The following
observations follow immediately.

I Observation 4.1. For any vertex vi ∈ V l, either vi ∈ C or vertex vi is assigned to some
other vertex vj ∈ C. In the second case, d(vi, vj) ≤ 3C̄vi + 3C̄vj .

I Observation 4.2. For any Vi, Vj ∈ V, we have Vi ∩ Vj = ∅.

For each cluster center vj ∈ C, we define the combined demand Dj to be the number
of vertices assigned to vj , including vj itself. Observe that

∑
j∈C Dj = |V l|. From now on,

we will think of vj as the representative of all clients assigned to it, and we will only try to
open facilities to serve vj . Now our goal is to solve the following new problem, instead of the
original one: Given a collection of clients C, the goal is to open the non-conflicting centers
among the vertices in C so as to minimize the demand-weighted cost

∑
vj∈C Djd(S, vj).

We ensure that the solution of this new problem can be turned into that of the old one
without paying much cost, as stated in the following lemma.

P. Chalermsook and S. Venkatasubramanian 407

I Lemma 6. Let S ⊆ C ∪ V h be any subset of vertices that is maximal, w.r.t. V h in the
sense that any vertex u ∈ V h either belongs to S or is in conflict with some other vertex
u′ ∈ S. Then we have

∑
v∈V (G) d(S, v) ≤ O(1/ε)OPT +

∑
vj∈C Djd(S, vj)

Proof. Recall that V (G) = V l ∪ V h. Since S is maximal, we know that the connecting cost
of any vertex is never more than one. We first analyze the connecting cost of vertices in V h.
Consider vertex v ∈ V h. Since C̄v ≥ ε/10, we have d(S, v) ≤ 1 ≤ 10C̄v/ε. Summing over all
v ∈ V h, we get

∑
v∈V h d(S, v) ≤ 10

∑
v∈V h C̄v/ε ≤ (10/ε)OPT.

Now we bound the connecting cost of vertices vi in V l. If vertex vi is the center of some
cluster, i.e. vi ∈ C, we have the connecting cost d(vi, S). Otherwise from Observation 4.1,
vi is assigned to some cluster center vj ∈ C, j < i, so the connecting cost from vi to the
nearest opened facility is at most d(S, vi) ≤ d(vi, vj) + d(S, vj). Since j < i, it must be
the case that C̄vi ≥ C̄vj , so we have d(vi, vj) ≤ 3C̄vi + 3C̄vj ≤ 6C̄vi . Finally, we have
d(S, vi) ≤ 6C̄vi +d(S, vj) in this case, so if we sum over all vertices vi that have been assigned
to vj , we would obtain the bound 6

∑
i:vi assigned to vj C̄vi +Djd(S, vj).

Summing over all vertices gives
∑
v∈V l d(v, S) ≤ 6

∑
v∈V l C̄v +

∑
vj∈C Djd(S, vj). J

Step 2: Opening the Facilities. For each vj ∈ C, we simply open facility vj . Then, we
process heavy vertices in V h in arbitrary order, and we open a facility if it does not conflict with
any other already opened facility (remark that the conflicts might have been created already
by opening all vertices vj ∈ C, but we avoid creating more conflict). This algorithm ensures
that the resulting set S of opened facilities is a maximal set with respect to V h, and observe
that

∑
vj∈C d(S, vj) = 0. So invoking Lemma 6 implies that

∑
v∈V (G) d(S, v) ≤ O(OPT/ε).

It only remains to analyze the distance between centers in S, which is done in the following
lemma.

I Lemma 7. Let S be the set of facilities opened by the algorithm. Then, for any pair
u, v ∈ S, d(u, v) ≥ 1− ε.

Proof. Notice that we only need to analyze the pair of vertices in S that were once the
clusters in C (because other vertices are added arbitrarily in a way that ensure no conflict).
We will need the following claim.
I Claim 4.1. For all vi ∈ C, we have

∑
u∈Vi x(u) ≥ 2/3

Proof. In fact, this claim can be seen as just a simple application of Markov’s inequality: The
term C̄vi is simply an expectation of connecting cost of vi, where vi is connected to u with
probability x(u). To be more formal, we write C̄vi =

∑
v y(v, vi)d(v, vi). Since

∑
v y(v, vi) =

1, the terms {y(v, vi)v} can be seen as distribution µ such that Ev∼µ[d(v, vi)] = C̄vi . Applying
Markov’s inequality, the probability that d(v, vi) > 3C̄vi is at most 1/3, or in other words,∑
v:d(v,vi)≤3C̄vi

y(v, vi) ≥ 2/3. This implies that
∑
v:d(v,vi)≤3C̄vi

x(v) ≥ 2/3, as desired. J

Now consider vi, vj ∈ C and assume (for contradiction) that d(vi, vj) < 1− ε. Consider
a point p whose distance to vi and vj are equal, so we have d(p, vi) = d(p, vj) < 1/2− ε/2.
By triangle inequality, for any u ∈ Vi, the distance d(u, p) ≤ d(u, vi) + d(vi, p) ≤ 1/2− ε/2 +
3ε/10 < 1/2 (also because d(u, vi) ≤ 3C̄vi ≤ 3ε/10.)

So the balls ru contain point p for all u ∈ Vi. By similar arguments, balls rv contain
point p for all v ∈ Vj , and this implies that

∑
u:p∈ru x(u) ≥

∑
u∈Vi x(u) +

∑
u∈Vj x(u) ≥ 4/3,

from the claim and Observation 4.2; this contradicts the fact that the LP is feasible. Notice
that point p may not belong to P, but from the fact that P contains important points, we
must have another point p′ ∈ P such that

∑
u:p′∈ru x(u) > 4/3. J

FSTTCS 2013

408 Clustering With Center Constraints

5 Metric Induced by Graphs (w-mwis)

Recall that in the w-mwis problem, we are given a graph G together with weight function
w : E(G)→ R≥0. Metric d is then defined as an induced shortest path metric on (G,w). In
this section, we consider special cases of w-mwis when w = 1 and when the treewidth of
graph G is bounded.

5.1 Unweighted Graphs

In this section, we consider the metric induced by unweighted graph (i.e. w(e) = 1 for all
e ∈ E(G)) and prove that the problem is again equivalent to vertex cover; the proof is
simple and deferred to the full version.

I Theorem 8. Unweighted w-mwis is computationally equivalent to Vertex Cover. More
formally, for any ρ, there is an algorithm that gives a ρ-approximation to w-mwis on G if
and only if there is a ρ-approximation to Vertex Cover G.

One corollary of the above theorem is that, w-mwis becomes NP-hard even in planar
graphs, and there is a PTAS when the graph is unweighted (this follows from the fact that
the minimum vertex cover problem admits a PTAS in planar graphs [2]).

I Corollary 9. mwis is NP-hard on unweighted planar graphs.

5.2 Algorithm for weighted trees

In this section, we consider d-mwis on trees and give a polynomial time algorithm for
computing the optimal solution. Let (T,w) be the input where T is a tree and w : E(T)→ R
is a weight function. Recall that Vertex Cover is solvable in polynomial time on trees, and
since Vertex Cover is equivalent to w-mwis when w = 1, our algorithm can be thought
of as a strengthened version of vertex cover algorithm to handle a more general problem.

First we show some structural properties that suggest our dynamic programming. The
solution for mwis can be described by a set S of centers that are open, and given such set
S, we can naturally define an assignment function α : V (G)→ S that assigns each vertex
v ∈ V (G) to its closest opened center. Let T denote the tree instance with the corresponding
induced metric dT : V (T)× V (T)→ R. We root the tree at arbitrary vertex r ∈ V (T), and
define, for each vertex v ∈ V (T), the subtree Tv as the subtree of T rooted at v (including v
itself). The following lemma characterizes the properties of the optimal solution on the tree.

I Lemma 10. Let S∗ be the set of opened centers in the optimal solution and α∗ : V (T)→ S∗

be the corresponding assignment. The following properties hold:
For two vertices u, v ∈ V (T) such that v is a parent of u in the tree, if α∗(v) ∈ Tu then
α∗(u) = α∗(v).
For any two vertices u, v, we have dT (α∗(u), u) ≤ dT (α∗(v), u)

Proof. To prove the first property, assume this is not the case. Then there must be
another vertex w ∈ Tv ∩ S∗ such that dT (w, u) < dT (α∗(v), u), but this implies that
dT (w, v) = dT (w, u) + dT (u, v) < dT (α∗(v), u) + dT (u, v) = dT (α∗(v), v), a contradiction.
The second property is obvious from the definition of α∗. J

P. Chalermsook and S. Venkatasubramanian 409

Algorithm
Define the subproblem C(v, x) as the minimum possible assignment cost of vertices in the
subtree Tv with the constraint that vertex v is assigned to an opened center x (which may
not necessarily belong to Tv). The optimal solution we are looking for is stored in the entry
C(r, α∗(r)) (which can be enumerated once the entries are computed correctly). The table
entries are computed from the leaf to the root of the tree. The base case is defined on the
leaves of the tree simply by: For each leaf v ∈ V (T), we define C(v, x) = dT (v, x).

Now fix an entry C(v, x). We show how to compute C(v, x) once the subproblems have
been computed. Let v1, . . . , v` be the children of v in the tree. For each child vi such that
x 6∈ Tvi , we define the set of possible center candidates for vi as

Γvi,x = {x} ∪ {y ∈ Tvi : yx 6∈ E(T), dT (vi, y) ≤ dT (vi, x) and dT (v, y) ≥ dT (v, x)}

Otherwise, if x ∈ Tvi , define Γvi,x = {x}. Then we can write our recurrence as:

C(v, x) = dT (v, x) +
∑̀
i=1

min
y∈Γvi,x

C(vi, y)

It follows from Lemma 10 that restricting our choices to Γvi,x still includes the optimal
solution, so we only need to show that a feasible solution can be constructed from the table
entries.

Correctness
We show that given the table entries C(v, x) for all v, x ∈ V (T), we can reconstruct a feasible
solution that assigns vertices in Tv with total cost C(v, x). This can be argued by induction
on the tree structure as summarized in the following lemma.

I Lemma 11. For each table entry C(v, x), we can construct a corresponding partial solution
S∗(v,x) (where S∗(v,x) is the set of opened centers) such that the assignment cost inside the subtree
Tv is bounded by

∑
u∈Tv dT (S∗(v,x), u) ≤ C(v, x). Moreover S∗(v,x) ⊆ Tv ∪ {x}, x ∈ S∗(v,x), and

S∗(v,x) is an independent set in T .

Proof. We will prove this lemma by induction on the distance of vertices from the leafs (i.e.
in order from leafs to root). The base case when v is a leaf is trivial: We can simply define
S∗(v,x) = {x} for all x ∈ V (T), so this is clearly an independent set where x ∈ S∗(v,x) and
S∗(v,x) ⊆ Tv ∪ {x}. Now consider a vertex v with children v1, . . . , v` and assume that the
induction hypothesis holds for C(vi, y) for any vi and y. Our goal is to show that it holds
for C(v, x).

For each i ∈ [`], let yi ∈ Γvi,x be the vertex such that C(vi, yi) is minimized, so we
can write C(v, x) as C(v, x) = dT (v, x) +

∑`
i=1 C(vi, yi). We construct solution S∗(v,x) by

S∗(v,x) = {x}∪
⋃`
i=1 S

∗
(vi,yi), so it is immediate that x ∈ S∗(v,x). It only remains to show that (i)

S∗(v,x) is an independent set, (ii) S∗(v,x) ⊆ Tv∪{x}, and (iii) that
∑
u∈Tv dT (S∗(v,s), u) ≤ C(v, x).

To prove (i), assume (for contradiction) that there is an edge wiwj for wi ∈ S∗(vi,yi) and
wj ∈ S∗(vj ,yj) for some i 6= j. If both wi ∈ Tvi and wj ∈ Tvj , then it is impossible to have an
edge between them, so there must be one of them that lies outside its tree. Assume that
wi 6∈ Tvi (the other case is symmetric), we must have wi = yi because S∗(vi,yi) ⊆ Tvi ∪ {yi}.
And since yi ∈ Γvi,x ⊆ Tvi ∪{x}, the only possibility for yi to be outside of Tvi is that yi = x.
We now do case analysis.

FSTTCS 2013

410 Clustering With Center Constraints

If wi 6∈ Tvi but wj ∈ Tvj , either (wi = v and wj = vj) or wi ∈ Tvj . The latter is
impossible because it would force Γvj ,x = {x} (because x ∈ Tvj), and hence both wi = x

and wj belong to S∗(vj ,yj) by induction hypothesis, contradicting the fact that S∗(vj ,yj)
is independent. For the former case, wj = vj implies that wj 6∈ Γvj ,x, and in particular
wj 6= yj . Now since S∗(vj ,yj) is computed from {yj} ∪

⋃
v′
r
S∗(v′

r,y
′
r) where vertices v′r are

children of vj , we must have wj in some set S∗(v′
r,y

′
r). This is only possible if wj = y′r for

some r, a contradiction to the fact that wj 6∈ Γv′
r,yj

.
If wi 6∈ Tvi and wj 6∈ Tvj , then wi = yi and wj = yj , but since yi ∈ Tvi ∪ {x}, we
must have wi = x; similarly, since yj ∈ Tvj ∪ {x}, it must be the case that wj = x, a
contradiction.

Next, we turn to prove (ii). Assume for contradiction that S∗(v,x) 6⊆ Tv ∪ {x}. Denote by
z ∈ S∗(v,x) \ (Tv ∪ {x}). Since S∗(v,x) is obtained from the union of S∗(vi,yi) and {x}, it must
be the case that z ∈ S∗(vi,yi) for some i, and since yi is the only node outside of Tvi , we have
z = yi 6= x. This implies that yi 6∈ Γi,x, a contradiction.

Finally, to prove (iii), we write C(v, x) as C(v, x) = dT (v, x) +
∑`
i=1 C(vi, yi), where

C(vi, yi) ≥
∑
u∈Tvi

dT (S∗(vi,yi), u) by induction hypothesis. Since x ∈ S∗(v,x), we have that
dT (S∗(v,x), v) ≤ dT (v, x). Moreover, for each u ∈ Tvi , dT (S∗(v,x), u) ≤ dT (S∗(vi,yi), u) because
S∗vi ⊆ S

∗
v , and

∑
u∈Tvi

dT (S∗(vi,yi), u) ≤ C(vi, yi) by induction hypothesis. This implies

∑
u∈Tv

dT (S∗(v,x), u) = dT (S∗(v,x), v)+
∑
i

∑
u∈Tvi

dT (S∗(v,x), u) ≤ dT (v, x)+
∑̀
i=1

C(vi, yi) = C(v, x)

J

5.3 Extension to Graphs of Bounded Treewidth
In this section, we extend the algorithm on trees to give polynomial time algorithm for graphs
of bounded treewidth. The key ideas remain the same as the tree case, but the algorithm and
analysis are more involved. For a subset S ⊆ V (G), denote by G[S] an induced subgraph
of G on vertices in S. Let (T,X) be a tree decomposition of G and assume that the tree
is rooted at an arbitrary vertex r ∈ T . Assume that the treewidth of G is at most w, so
we have |Xt| ≤ w for each t ∈ T . For each vertex t ∈ T , we define G(t) to be an induced
subgraph of G on nodes

⋃
t′∈Tt Xt′ , i.e. G(t) = G[

⋃
t′∈Tt Xt′]. These subgraphs define our

subproblems.
For each t ∈ V (T), a feasible partial assignment for t is a function γ : Xt → V (G) such

that there is no edge in the induced subgraph G[{γ(v) : v ∈ Xt}]. This partial assignment
is used to memorize the closest opened centers to vertices in Xt, i.e. γ(v) is supposed to
represent the node in the optimal solution S∗ that is closest to v. We now state a lemma
similar in spirit to Lemma 10 (with proof deferred to a full version).

I Lemma 12. Let S∗ be the set of opened centers in the optimal solution and α∗ be the
corresponding assignment. Let t, t′ ∈ V (T) be two vertices such that t is a parent of t′. Then
the following properties hold:

If α∗(v) ∈ G(t′) for some v ∈ Xt, then α∗(u) = α∗(v) for some u ∈ Xt′ .
For any vertex u ∈ V (G(t′)), if α∗(u) 6∈ G(t′), then α∗(u) = α∗(v) for some v ∈ Xt.

Algorithm: Now we show the algorithm that solves w-mwis optimally in time nO(w). The
algorithm is suggested by the above lemma. For each t ∈ V (T) and feasible partial assignment
γ : Xt → V (G), the table entry C(t, γ) stores the minimum possible assignment cost inside

P. Chalermsook and S. Venkatasubramanian 411

G(t) such that vertex v ∈ Xt is assigned to γ(v) for all v ∈ Xt. The optimal solution we
want is in the entry C(r, γ∗) where γ∗ is a restriction of α∗ on Xr.

To compute the entry C(t, γ), consider the children t1, . . . , t` of t in the tree. For each
i ∈ [`], we define the set Γi,γ as the set of all possible partial assignments γ′ : Xt′ → V (G)
that satisfy the following properties:
1. For all v ∈ Xt ∩Xti , we have γ′(v) = γ(v).
2. If γ(v) ∈ G(ti) for some v ∈ Xt, then γ′(u) = γ(v) for some u ∈ Xti .
3. For any vertex u ∈ G(ti), if γ′(u) 6∈ G(ti), then γ′(u) = γ(v) for some v ∈ Xt.
4. There is no edge γ(v)γ′(v′) ∈ E(G) for any v, v′ ∈ Xt ∪Xti .

The number of possible functions γ′ is at most nw (each vertex in Xti has at most n
possibilities of γ′), so this is polynomial time computable if the treewidth of G is at most a
constant. Now the table entry C(t, γ) can be computed as follows. The base case of C(t, γ)
when t is a leaf can be computed easily by C(t, γ) =

∑
v∈Xt d(v, γ(v)). Otherwise, for any

t, γ such that t has t1, . . . , t` as its children, we can write the recurrence:

C(t, γ) =
∑̀
i=1

min
γ′∈Γi,γ

C(ti, γ′)−
∑
v∈Xt

(nv − 1)d(v, γ(v))

where nv is the number of j such that v ∈ Xtj . Notice that nv does not depend on the
choices of γ.

Correctness: The proof of the following lemma uses similar ideas as in the tree case but
more complicated.

I Lemma 13. For any vertices t ∈ V (T) and feasible partial assignment γ for t, we can
construct a partial solution S∗(t,γ) such that the total assignment cost inside G(t) is bounded
by ∑

u∈V (G(t))

d(S∗(t,γ), u) ≤ C(t, γ)

Moreover, S∗(t,γ) ⊆ V (G(t)) ∪ {γ(u) : u ∈ Xt}, γ(Xt) ⊆ S∗(t,γ) and S∗(t,γ) is an independent
set in G.

Acknowledgement. We thank the FSTTCS reviewers for many useful comments, espcially
for suggesting a simplified connection between our problem and the standard k-median
problem.

References
1 Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and

Vinayaka Pandit. Local search heuristics for k-median and facility location problems. SIAM
J. Comput., 33(3):544–562, 2004.

2 Brenda S. Baker. Approximation algorithms for np-complete problems on planar graphs.
J. ACM, 41(1):153–180, January 1994.

3 Sugato Basu, Ian Davidson, and Kiri Lou Wagstaff. Constrained clustering: Advances in
algorithms, theory, and applications. Chapman & Hall/CRC, 2009.

4 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.

FSTTCS 2013

412 Clustering With Center Constraints

5 M.R. Cerioli, L. Faria, T.O. Ferreira, and F. Protti. On minimum clique partition and
maximum independent set on unit disk graphs and penny graphs: complexity and approx-
imation. Electronic Notes in Discrete Mathematics, 18(0):73 – 79, 2004.

6 Parinya Chalermsook and Julia Chuzhoy. Maximum independent set of rectangles. In
Claire Mathieu, editor, SODA, pages 892–901. SIAM, 2009.

7 Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for maximum indepen-
dent set of pseudo-disks. Discrete & Computational Geometry, 48(2):373–392, 2012.

8 Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor
approximation algorithm for the k-median problem. J. Comput. Syst. Sci., 65(1):129–149,
2002.

9 Moses Charikar and Shi Li. A dependent lp-rounding approach for the k-median problem.
In Automata, Languages, and Programming, pages 194–205. Springer, 2012.

10 Irit Dinur and Shmuel Safra. The importance of being biased. In Proceedings of the thiry-
fourth annual ACM symposium on Theory of computing, STOC ’02, pages 33–42, New
York, NY, USA, 2002. ACM.

11 Alina Ene, Sariel Har-Peled, and Benjamin Raichel. Geometric packing under non-uniform
constraints. In Tamal K. Dey and Sue Whitesides, editors, Symposium on Computational
Geometry, pages 11–20. ACM, 2012.

12 Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. Interactive
proofs and the hardness of approximating cliques. J. ACM, 43(2):268–292, 1996.

13 MohammadTaghi Hajiaghayi, Rohit Khandekar, and Guy Kortsarz. Local search algo-
rithms for the red-blue median problem. Algorithmica, 63(4):795–814, 2012.

14 Eran Halperin. Improved approximation algorithms for the vertex cover problem in graphs
and hypergraphs. SIAM J. Comput., 31(5):1608–1623, 2002.

15 Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, July 2001.
16 George Karakostas. A better approximation ratio for the vertex cover problem. ACM

Transactions on Algorithms, 5(4), 2009.
17 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within

2-epsilon. J. Comput. Syst. Sci., 74(3):335–349, 2008.
18 Solmaz Kolahi, Laks V. S. Lakshmanan, Jonathan Leung, Divesh Srivastava, and Suresh

Venkatasubramanian. Data cleaning 2.0: Scalable generation of association-preserving
repairs. Manuscript., 2013.

19 Ravishankar Krishnaswamy, Amit Kumar, Viswanath Nagarajan, Yogish Sabharwal, and
Barna Saha. The matroid median problem. In Dana Randall, editor, SODA, pages 1117–
1130. SIAM, 2011.

20 Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. In Dan
Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, STOC, pages 901–910. ACM,
2013.

	Introduction
	Our Contributions

	Preliminaries
	Hardness of Approximation
	Graph Induced by Metric (d-mwis)
	Geometric LP Relaxation
	LP Rounding Algorithm

	Metric Induced by Graphs (w-mwis)
	Unweighted Graphs
	Algorithm for weighted trees
	Extension to Graphs of Bounded Treewidth

