
Decidability Results on the Existence of
Lookahead Delegators for NFA
Christof Löding and Stefan Repke

Lehrstuhl für Informatik 7, RWTH Aachen, Aachen, Germany

Abstract
In this paper, we study lookahead delegators for nondeterministic finite automata (NFA), which
are functions that deterministically choose transitions by additionally using a bounded lookahead
on the input word. Of course, the delegator has to lead to an accepting state for each word that
is accepted by the NFA. In the special case where no lookahead is allowed, a delegator coincides
with a deterministic transition function that preserves the language.

Typical decision problems are to decide whether a delegator with a given fixed lookahead
exists, or whether a delegator with some bounded lookahead exists for a given NFA. In a paper
of Ravikumar and Santean from 2007, the complexity and decidability of these questions have
been tackled, mainly for the case of unambiguous NFA. In this paper, we revisit the subject and
provide results for the case of general NFA. First, we correct a complexity result from the above
paper by showing that the existence of delegators with fixed lookahead can be decided in time
polynomial in the number of states. We use two player games on graphs as a tool to obtain
the result. As second contribution, we show that the problem becomes PSPACE-complete if
the bound on the lookahead is a part of the input. The third result provides a bound on the
maximal required amount of lookahead. We use this to show that the (previously open) problem
of deciding the existence of a bounded lookahead delegator is also PSPACE-complete.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases Automata, Lookahead Delegators, Safety Games

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2013.327

1 Introduction

We revisit questions on the decidability of so called lookahead delegators for nondeterministic
finite automata (NFA) that have been studied in [9]. A lookahead delegator for an NFA is
a function that deterministically chooses one of the possible transitions for the next input
symbol, based on a bounded lookahead in the input. The run that is constructed in this
way by the delegator for an input word should be accepting if the input word belongs to the
language accepted by the NFA.

Motivated from the composition of e-services that are modeled by finite automata,
lookahead delegators have been studied in [4] in a slightly different context. In the setting of
[4], instead of a single NFA, a tuple of deterministic finite automata (DFA) or NFAs is given,
and the delegator has to decide for each input symbol by which subset of the automata
this symbol has to be processed, such that in the end, all automata finish with a successful
run. Given a bound k on the allowed lookahead, [4] presents an algorithm to compute a
k-lookahead delegator (if one exists) for a tuple of DFAs. The algorithm is exponential in k
and the number of DFAs in the list.

By taking the product of the tuple of the given automata, in which a transition nonde-
terministically chooses a subset of the automata that move on the next input symbol, the
setting can be reduced to the question on lookahead delegators for a single given NFA. This

© Christof Löding and Stefan Repke;
licensed under Creative Commons License CC-BY

33rd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013).
Editors: Anil Seth and Nisheeth K. Vishnoi; pp. 327–338

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62918413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.327
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


328 Decidability Results on the Existence of Lookahead Delegators for NFA

version of the problem has been analyzed in [9]. There are two main questions concerning the
existence of lookahead delegators. For a given bound k on the lookahead, the decidability
of the existence of a k-lookahead delegator is clear, because there are only finitely many
possible candidates for a given NFA. So, for a given (or a fixed) k, the main question is the
complexity of deciding the existence of a k-lookahead delegator (and computing one if it
exists). If the bound is not given, the question is whether there exists some k such that a
given NFA has a k-lookahead delegator.

In this paper, we will reconsider the three versions of the decision problem that were
defined in [9, Section 4]:
a) k-Delegator for a fixed number k ∈ N: decide for a given NFA A whether A has a

k-lookahead delegator.
b) Delegator: decide for a given NFA A and k ∈N whether A has a k-lookahead delegator.
c) Bounded-Delegator: decide for a given NFA A whether A has a bounded lookahead

delegator.

These problems have been solved for the restricted case of unambiguous NFAs in [9,
Theorems 2 to 4]: A polynomial time algorithm is given for k-Delegator, Delegator is
shown to be in co-NP, and Bounded-Delegator is shown to be in PSPACE.

We study these problems here for the case of general NFAs. Our main contributions are
as follows. We provide an algorithm that decides k-Delegator in time polynomial in the
number of states of a given NFA (and computes a k-lookahead delegator, if one exists) where
k and the input alphabet are fixed. This generalizes [9, Theorem 2] from unambiguous to
arbitrary NFAs.1 As a main tool, we use two person games on graphs. This formulation of
the problem yields a simple algorithm and correctness proof.

We furthermore show that the more general problem Delegator, where the allowed
lookahead k is a part of the input, is PSPACE-complete. The algorithm that runs in
polynomial space is different from the one based on games for a fixed k, which is exponential
in k and thus doubly exponential in the binary representation of k.

Finally, we prove that if an NFA A has a k-lookahead delegator for some k, then it also
has a K-lookahead delegator for a bound K that is singly exponential in the size of A. This
shows the decidability of the problem Bounded-Delegator which was left open in [9] and
in [4]. In combination with the result for Delegator, we also obtain PSPACE-completeness
of this problem.

The remainder of the paper is structured as follows. Section 2 introduces basic terminology
and results for later use. Then, in Sections 3, 4 and 5, we present solutions to the three
problems k-Delegator, Delegator, and Bounded-Delegator, respectively.

2 Preliminaries

Let N = {0,1, . . .} be the set of non-negative integers. By ∣S∣, we denote the cardinality of a
set S. An alphabet Σ is a finite set of symbols. For i ∈N, Σi denotes the set of all sequences
of Σ-symbols of length i. An element w ∈ Σi is called a word and ∣w∣ = i is its length. The
empty word, denoted by ε, is the unique word of length ∣ε∣ = 0. Let Σ≤k = ⋃

k
i=0 Σi for k ∈N

and Σ∗ = ⋃
∞
i=0 Σi. A subset L ⊆ Σ∗ is called a language. For languages L1, L2 ⊆ Σ∗, let

L1L2 = {w1w2 ∣w1 ∈ L1 ∧w2 ∈ L2} be their concatenation.

1 We note here that this corrects an error of [9, Theorem 5], which states that the problem is PSPACE-hard
for arbitrary NFAs. The proof uses a reduction from an inclusion problem of the form L(A) ⊆ L0 for a
fixed language L0 and an NFA A. However, this problem is not PSPACE-hard.



C. Löding and S. Repke 329

q0 q1 q2

a

a a, b

bb

a

(a) NFA A with accepting states F = {q2}

w (aw)−1L0 w−1L0 w−1L1

ε L0 ∪L1 L0 L1

a L0 ∪L1 ∪L2 L0 ∪L1 L2

aa L0 ∪L1 ∪L2 L0 ∪L1 ∪L2 L0

ab L2 L2 L2

b L2 L2 L2

(b) Left quotients of A (correct choices of the
successor according to Lemma 3 are underlined)

Figure 1 NFA and its left quotients.

Automata. A nondeterministic finite automaton (NFA for short) A = (Q,Σ,∆, q0, F )

consists of a finite set of states Q, an alphabet Σ, a transition relation ∆ ⊆ Q×Σ×Q, and an
initial state q0 ∈ Q as well as a set F ⊆ Q of accepting states. For a given input word w ∈ Σ∗,
a run starting in q0 is a sequence q0q1 . . . q∣w∣ of states such that (qi−1, ai, qi) ∈ ∆ for each
i ∈ {1, . . . , ∣w∣} where w = a1 . . . a∣w∣. We say that A accepts w if it has an accepting run from
q0, i.e., with last state accepting: q∣w∣ ∈ F . The language L(A) ⊆ Σ∗ consists of those words
that are accepted by A.

For the rest of the paper, let A = (Q,Σ,∆, q0, F ) be an NFA. We assume that each state
q ∈ Q is reachable from q0 and that each state has at least one outgoing transition for each
letter (missing transitions can be added to a sink state).

Lookahead Delegators. A k-delegator has to choose a transition from ∆ deterministically
by looking ahead on the next k input symbols. It is further required to still accept L(A).

I Definition 1. For k ∈ N, a k-lookahead delegator for A (or k-delegator for short) is a
function f ∶ Q ×ΣΣ≤k → Q such that
a) (q, a, f(q, aw)) ∈ ∆ for each q ∈ Q, a ∈ Σ, and w ∈ Σ≤k, and
b) f∗(q0,w) ∈ F for each w ∈ L(A), where we define f∗ ∶ Q × Σ∗ → Q as follows: for

w = a0 . . . a∣w∣, let qi = f(qi−1, ai . . . amin(∣w∣,i+k)) for 0 < i ≤ ∣w∣, and let f∗(q0,w) = q∣w∣.

Note that our notion of k-lookahead follows [4, 3] by counting the additional lookahead
whereas in [9], this is understood as (k+1)-lookahead as they count the current input symbol
as a part of the lookahead. Hence, in the setting of Definition 1, a 0-lookahead delegator
for an NFA can be identified with a deterministic subset of the transitions such that the
same language is accepted. We say that A has a bounded lookahead delegator if it has a
k-lookahead delegator for some k ∈N.

I Example 2. For the alphabet Σ = {a, b}, consider the NFA A depicted in Figure 1a
which accepts the language L(A) = {aa} ∪Σ∗{b, aaa}. The only nondeterministic choice of a
transition is at state q0 for symbol a. A function f ∶ Q ×ΣΣ≤2 → Q is a 2-delegator for A if
f(q0, aa) = q1 and f(q0, aaa) = q0. For all other cases, it suffices that f is consistent with ∆,
i.e., (q0, a, f(q0, aw)) ∈ ∆ for w ∈ Σ≤2. Example 4 will justify why this yields a 2-delegator.

Left Quotients. For u ∈ Σ∗ and L ⊆ Σ∗, let u−1L = {v ∈ Σ∗ ∣ uv ∈ L} be the left quotient of
u with L. This is the language containing each word that completes u to a word in L. Note
that the composition of left quotients can be written as concatenation: v−1(u−1L) = (uv)−1L.
Further, we abbreviate L = L(A) and Lq = L(Aq) for the language of A where q is taken as
the initial state.

FSTTCS 2013



330 Decidability Results on the Existence of Lookahead Delegators for NFA

We now present a technical lemma that occurs as a key ingredient in the proofs and
algorithms of the following three sections. A similar statement can be found in [9, Lemma 7]
using a notion called blindness. It gives a language-theoretical characterization of the main
property a k-delegator has to fulfill when it selects a transition. That is, whenever an
a-successor p has to be chosen for some lookahead w and state q, then (aw)−1Lq = w

−1Lp,
i.e., awv ∈ Lq iff wv ∈ Lp for all v ∈ Σ∗. Note that the inclusion (aw)−1Lq ⊇ w

−1Lp holds
generally, since (q, a, p) ∈ ∆.

I Lemma 3. A has a k-delegator iff there exists a set Q′ ⊆ Q such that q0 ∈ Q
′ and for each

q ∈ Q′, a ∈ Σ, w ∈ Σk, there exists p ∈ Q′ such that (q, a, p) ∈ ∆ and (aw)−1Lq = w
−1Lp hold.

Proof. For the direction from left to right, let f be a k-delegator and Q′ be the set of
states reachable by f from q0 with full lookahead, i.e., the smallest set such that q0 ∈ Q′

and f(q, aw) ∈ Q′ for each q ∈ Q′, a ∈ Σ, and w ∈ Σk. For a contradiction, assume
there are q ∈ Q′, a ∈ Σ, and w ∈ Σk such that (aw)−1Lq ≠ w−1Lp for all p ∈ Q′ with
(q, a, p) ∈ ∆. Since q is reachable from q0, fix a word u ∈ Σ∗ such that f leads to q and
assume w.l.o.g. that q is the first state on that run with the above property. Let p = f(q, aw).
Then, there is a word v ∈ (aw)−1Lq ∖ w

−1Lp, i.e., awv ∈ Lq but wv ∉ Lp. Hence, we have
that f∗(q0, uawv) = f

∗(q, awv) = f∗(p,wv) ∉ F whereas uawv ∈ L in contradiction to the
definition of a k-delegator.

For the other direction, we construct a k-delegator f from a set Q′ with the above
properties. For each q ∈ Q, a ∈ Σ, and w ∈ Σ≤k, we set f(q, aw) = p as follows.
a) If ∣w∣ = k and q ∈ Q′, then p ∈ Q′ becomes some state such that (q, a, p) ∈ ∆ and
(aw)−1Lq = w

−1Lp as directly guaranteed by the property.
b) If ∣w∣ < k and aw ∈ Lq, then there is an a-successor p ∈ Q of q such that w ∈ Lp.
c) If ∣w∣ < k and aw ∉ Lq, then fix some arbitrary a-successor p ∈ Q of q.
Note that the case ∣w∣ = k and q ∉ Q′ cannot occur due to the above property. It easily follows
by the definition of f∗ that f∗(q0, v) ∈ F if v ∈ L. Hence, f is a k-delegator for A. J

I Example 4. Let us reconsider the NFA A of Example 2 from the perspective of Lemma 3.
Since q0 is the initial state, a set Q′ satisfying the property of Lemma 3 must contain q0.
The only nondeterministic choice happens at q0 with letter a. The two a-successors of q0
are q0 itself and q1. The left quotients that are relevant for Lemma 3 are listed in Figure 1b
for some example words w, where Li stands for Lqi . For w = ε, one can see that neither the
language w−1L0 nor w−1L1 is equivalent to (aw)−1L0 which indicates, according to Lemma 3,
that there is no 0-delegator for A. The row for w = a shows analogously that there is also
no 1-delegator. When the lookahead is increased to 2, then the condition of Lemma 3 is
finally fulfilled. For w = aa, the left quotients are the same if and only if a delegator chooses
q0 as a-successor of q0. The remaining two lines show that the choice does not matter for
w ∈ {ab, b}.

3 Fixed Lookahead

In this section, we present for an arbitrary fixed number k ∈N an algorithm for the problem
k-Delegator, which is to decide the existence of a k-delegator for a given NFA A (and to
compute such a delegator if it exists). The special case 0-Delegator corresponds to deciding
whether the NFA A can be turned into an equivalent DFA just by removing transitions of
the NFA. The polynomial time decidability of this very problem has already been mentioned
in the survey article [2, Theorem 15] without a proof.



C. Löding and S. Repke 331

The rough idea behind our approach is to construct a game that simulates the delegation.
The two players play a sequence of actions in alternation. One player has to choose the
letters of an input word while the other has to choose appropriate transitions. The goal of
the player in charge of the transitions is to play an accepting run if a word contained in the
language L(A) is formed by the player in charge of the input.

Before we proceed with the detailed definition of this game, we first introduce some
terminology concerning 2-player games which follows [5].

Games. Formally, a safety game G = (V,V0,E,S) is played between Player 0 and Player 1,
and consists of
a) a finite directed graph (V,E),
b) a partition of the vertices into sets V0 ⊆ V for Player 0 and V1 = V ∖ V0 for Player 1, and
c) a set S ⊆ V of safe vertices.
A play in G is a finite or infinite sequence v0v1v2 . . . of vertices. It starts in some initial
vertex v0 ∈ V and then, for all vi, there has to be an edge (vi, vi+1) ∈ E to its successor vi+1
which is chosen by Player 0 if vi ∈ V0 or by Player 1 if vi ∈ V1. Then, the safety condition
states that the play is won by Player 0 if all vertices are safe: vi ∈ S for all i. Otherwise
Player 1 wins the play. We note here that usually a player that cannot move (because there
are no outgoing edges) loses. For our purpose, the above condition is more natural, that is,
if a maximal play is finite because it ends in a vertex without outgoing edges, then Player 0
wins if all vertices of the play are safe, independent of whether the last vertex is in V0 or in
V1. One can obtain the standard setting by adding self-loops to terminal vertices of Player 0.

For σ ∈ {0,1}, let V ′
σ = {v ∈ Vσ ∣ (v, v

′) ∈ E for some v′ ∈ V } be the set of non-terminal
vertices of Player σ. A strategy for Player σ is a function s ∶ V ∗V ′

σ → V that chooses a
successor vertex vi+1 = s(v0 . . . vi) with (vi, vi+1) ∈ E for each finite play v0 . . . vi ∈ V

∗V ′
σ

ending in a non-terminal vertex vi of Player σ. We say that s is winning from a vertex
v0 if Player σ wins every maximal play v0v1v2 . . . resulting from this strategy, i.e., with
vi+1 = s(v0 . . . vi) for every vi ∈ V ′

σ. Finally, we say that Player σ can win G from a vertex v0
if he has a winning strategy from there.

Safety games are determined, i.e., either Player 0 or Player 1 has a winning strategy
(see [5]). Further, the respective Player σ can always win with a positional strategy s,
which means that the choice of the next move only depends on the current vertex, i.e.,
s(v0 . . . vi) = s(u0 . . . uj) holds for any two finite plays v0 . . . vi, u0 . . . uj ∈ V

∗V ′
σ with vi = uj .

We then consider a strategy as a function s ∶ V ′
σ → V .

Delegation Game. Now, we can define our game GA,k according to the main idea explained
at the beginning of this section, where Player 1 has to give the input word and Player 0
has to choose transitions. The positions of the game store the corresponding information: a
lookahead of k letters (or less if the play goes towards the end of the input word) provided
by Player 1, and the current state of A reached by Player 0. The goal of this construction is
to show later in Lemma 7 that A has a k-delegator if and only if Player 0 has a winning
strategy. Since this strategy will occur to be positional, we can directly use it as a function
that deterministically chooses transitions, i.e., as a delegator.

The main challenge is now to create a safety game the number of states of which is
polynomial in the number of automaton states. The winning condition should express that
the state of Player 0 is accepting if the input word played by Player 1 is in the language,
which depends not on the current position alone but on the whole play instead. Naïvely, one
can implement this as a safety condition by additionally keeping track of the set of reachable

FSTTCS 2013



332 Decidability Results on the Existence of Lookahead Delegators for NFA

states by the input played by Player 1. However, this leads to a blowup that is exponential
in the size of the automaton.

To solve this problem, we modify our game in such a way that Player 1 also has to
choose a transition for each input, but after Player 0 has chosen one. We show that, since
Player 0 has to make the choice of the transition first, the additional information on the
transition chosen by Player 1 does not help Player 0 (because basically, Player 0 has to choose
a transition according to Lemma 3, which only depends on the current state of Player 0).
This means that in this modified game, a winning strategy for Player 0 still corresponds to a
k-delegator.

To summarize, the game GA,k goes as follows. First, Player 1 gives the initial content of
the lookahead. Then, both players play in alternation. Player 0 chooses a transition for the
next input letter. Afterwards, Player 1 also chooses a transition for it and simultaneously
removes this input symbol (as both players have just processed it) and appends a new
letter to the content of the lookahead, or he does not refill it if the input word should end.
Consequently, a game position encodes the content of the lookahead as well as one state for
each player. The safety condition for Player 0 now simply states that such vertices have to
be avoided, where the state of Player 1 is accepting and the state of Player 0 is non-accepting
although the lookahead is empty.

I Definition 5. Given an NFA A and k ∈ N, we define the two player safety game GA,k =
(V,V0,E,S) as follows:

a) V = {⊺} ∪ ({0,1} ×Σ≤k+1 ×Q ×Q), (initial vertex and simulation vertices)

b) V0 = ({0} ×Σ≤k+1 ×Q ×Q),
c) E ⊆ V × V containing the following edges:

i) (⊺, (0,w, q0, q0)) for w ∈ Σ≤k+1, (initiate buffer)

ii) ((0, aw, q, p), (1, aw, q′, p)) for (q, a, q′) ∈ ∆ and w ∈ Σ≤k,
(Player 0 applying transition)

iii) ((1, aw, q′, p), (0,wb, q′, p′)) for (p, a, p′) ∈ ∆, w ∈ Σk, and a, b ∈ Σ,
(Player 1 applying transition, removing leftmost symbol, and refilling lookahead)

iv) ((1, aw, q′, p), (0,w, q′, p′)) for (p, a, p′) ∈ ∆, w ∈ Σ≤k, and a ∈ Σ,
(Player 1 applying transition and removing leftmost symbol without refilling)

d) S = V ∖ {(0, ε, q, p) ∣ q ∉ F ∧ p ∈ F}. (Player 0 has to avoid F × F )

The number of vertices of GA,k is in O((k + 1) ⋅ ∣Σ∣k+1 ⋅ ∣Q∣2) which is polynomial in ∣Q∣
and ∣Σ∣ for a fixed k. It is easy to see that the game can be constructed in time polynomial
in the number of vertices.

I Example 6. Let us reconsider the NFA A of Example 2. A part of the 1-delegator game
GA,1, that is reachable from the initial vertex ⊺, is depicted in Figure 2, in such a way that
for Player 1, only one edge is enabled from each vertex whereas for Player 0, all successors are
considered. This deterministic choice corresponds to a positional strategy for Player 1. The
strategy always forces the play to an unsafe vertex no matter how Player 0 reacts. Hence,
it is a positional winning strategy for Player 1 in GA,1 from ⊺. We show next that this is
because there exists no 1-delegator for A (cf. Example 4).

I Lemma 7. Player 0 has a positional winning strategy for GA,k from ⊺ iff A has a k-
lookahead delegator.



C. Löding and S. Repke 333

⊺

0, . . . , q0, q0 0, aa, q0, q0

1, aa, q0, q0

0, . . . , q0, ⋅ 0, a, q0, q1

1, a, q0, q1

0, ε, q0, q2

1, a, q1, q1

0, ε, q1, q2

0, . . . , q0, ⋅

1, aa, q1, q0

0, . . . , q1, ⋅ 0, aa, q1, q0

1, aa, q2, q0

0, . . . , q2, ⋅ 0, a, q2, q1

1, a, q0, q1

0, . . . , q2, ⋅

0, . . . , q1, ⋅

0, . . . , q0, q0

Figure 2 The (partial) 1-delegator game GA,1 showing a positional winning strategy for Player 1
(circled vertices belong to Player 0, boxed ones to Player 1, and doubly circled vertices are unsafe).

Proof. The key observation is that for (a strategy of) Player 0, it is not important to known
which states Player 1 chooses since Lemma 3 states that left quotients are important rather
than exact states. As long as the property is fulfilled locally, Player 1 can dually be assumed
w.l.o.g. to just copy the choices of his opponent.

For the left to right direction, suppose Player 0 has a positional winning strategy s. We
show the existence of a k-delegator for A by proving that the condition from Lemma 3 is
satisfied. For this purpose, let Q′ be the set consisting of all states q ∈ Q such that a vertex
of the form (0, aw, q, q), with a ∈ Σ and w ∈ Σk, can be reached with s for some sequence
of moves of Player 1. Since trivially q0 ∈ Q

′, it remains to show that for each such vertex,
there is a successor (1, aw, p, q) with (aw)−1Lq = w−1Lp. Assume, to the contrary, that
(aw)−1Lq ≠ w

−1Lp for each p ∈ Q with (q, a, p) ∈ ∆. Then, no matter which p is chosen by
Player 0, there is a word v ∈ (aw)−1Lq ∖w

−1Lp, i.e., awv ∈ Lq but wv ∉ Lp. Player 1 can win
from (1, aw, p, q) by continuing to play the word v since there is a sequence of states that
accepts awv from q but none that accepts wv from p. This contradicts the property that s
is a winning strategy for Player 0.

For the other direction, suppose A has a k-delegator f . We can naturally use it to define a
positional winning strategy s ∶ V ′

0 → V for Player 0 where s(0, aw, q, p) = (1, aw, f(q, aw), p).
One can easily see by the construction of GA,k and s that q = f∗(q0, x) holds whenever
a terminal vertex (0, ε, q, p) is reached after Player 1 has played a complete word x ∈ Σ∗.
Player 0 wins because p ∈ F implies x ∈ L and hence, q ∈ F . J

By combining Lemma 7 with the linear-time determinacy of safety games (see [5, Theo-
rem 4.1]), we get the main result of this section. Linear-time determinacy means that for
the winning player, there exists a positional winning strategy which can be computed in
linear time (using a fixed-point algorithm that successively identifies the vertices from which
Player 0 is losing, starting with the set of unsafe vertices).

Consequently, the existence of a k-lookahead delegator for A can be decided in time
O((k + 1) ⋅ ∣Σ∣k+1 ⋅ ∣Q∣2) for a given NFA A = (Q,Σ,∆, q0, F ) and a positive number k. This
yields polynomial running time for a fixed k that we consider in this section.

FSTTCS 2013



334 Decidability Results on the Existence of Lookahead Delegators for NFA

I Corollary 8. For each k ∈N, the problem k-Delegator can be solved in polynomial time.

This generalizes [9, Theorem 2] where polynomial time decidability of k-Delegator for
each fixed k is shown for unambiguous NFA.

As explained in Section 1, we consider the input to be a single NFA whereas in the
original motivation, the input consists of several DFAs. It is shown in [7] that the problem
0-Delegator is EXPTIME-complete in the original setting. This is caused by the fact that
the construction of a product of the DFAs yields an NFA that is exponentially larger.

4 Given Lookahead

We now consider the complexity of the problem Delegator, where an NFA and a bound k
are given. Note that for deciding whether A has a k-lookahead delegator, the game-based
approach from the previous section yields an algorithm that runs in time that is doubly
exponential in the binary representation of k. However, using a different algorithm, we can
show that the problem can be solved in polynomial space. The idea of the algorithm is to
check whether the property of Lemma 3 holds. The main problem in checking this condition
in polynomial space is that we cannot enumerate all words w ∈ Σk because their length is
exponential in the binary representation of k.

We therefore first introduce transition profiles, which can be used to circumvent this
problem. Intuitively, a transition profile of a word w for a given NFA A describes the possible
state transformations induced by w on A, that is, the transition profile for w contains all
pairs of states (p, q) such that there is a w-labeled path from p to q.

I Definition 9. For an NFA A and a word w ∈ Σ∗, we define the transition profile ∆w ⊆ Q2:

(q, q) ∈ ∆ε for each q ∈ Q,
(q, p) ∈ ∆a ⇔ (q, a, p) ∈ ∆ for each q, p ∈ Q, a ∈ Σ,
(q, p) ∈ ∆wa ⇔ ∃r ∈ Q ∶ (q, r) ∈ ∆w and (r, p) ∈ ∆a for each q, p ∈ Q, a ∈ Σ, w ∈ Σ∗.

The main idea for checking the condition of Lemma 3 in polynomial space is to use
transition profiles that are induced by words of length k, instead of working directly with
the words. This is justified by the simple observation that words with the same profile also
have the same left quotient.

I Lemma 10. Let x, y ∈ Σ∗ be such that ∆x = ∆y. Then, x−1Lq = y−1Lq for all q ∈ Q.

Proof. A trivial consequence of Definition 9 is that ∆xw = ∆yw for all w ∈ Σ∗. Then,

w ∈ x−1Lq ⇔ xw ∈ Lq ⇔ ∃p ∈ F ∶ (q, p) ∈ ∆xw

⇔ ∃p ∈ F ∶ (q, p) ∈ ∆yw ⇔ yw ∈ Lq ⇔ w ∈ y−1Lq. J

I Theorem 11. The problem Delegator is in PSPACE.

Proof. Let an NFA A (with the usual components) and k be given. We show that for each
Q′ ⊆ Q, there is a nondeterministic PSPACE algorithm that checks whether the property of
Lemma 3 is satisfied. Savitch’s theorem (see [8, Theorem 7.5]) implies that there is also a
deterministic PSPACE algorithm.

So let Q′ ⊆ Q with q0 ∈ Q. The algorithm tests for each q and each a, whether for each
word w ∈ Σk there is an a-successor p of q such that (aw)−1Lq = w

−1Lp. As mentioned above,
we cannot enumerate all words w ∈ Σk because their length is exponential in the binary



C. Löding and S. Repke 335

representation of k. Instead, we work with the transition profiles induced by the words w.
Each such transition profile is of size polynomial in A and contains sufficient information
to test (aw)−1Lq = w

−1Lp. Lemma 10 allows us to restrict the test to transition profiles, as
words with the same transition profile induce the same left quotient.

We now describe the algorithm. Given Q′, q ∈ Q′, and a ∈ Σ, the algorithm proceeds as
follows. For each transition profile τ ∈ 2Q×Q:
a) Check if τ = ∆w for some word w of length k. If it is the case, do the following. Otherwise,

move on to the next transition profile.
b) Let p1, . . . , pn be the a-successors of q in Q′. For i ∈ {1, . . . , n}, let Ri = {p ∈ Q ∣ (pi, p) ∈ τ}

be the set of states that are reached from pi in the profile τ . Let R = ⋃1≤i≤nRi. Note
that LRi = w

−1Lpi and LR = (aw)−1Lq, where for S ⊆ Q, we let LS = ⋃s∈S Ls.
c) Check if there is an index i ∈ {1, . . . , n} such that LR = LRi .
If the last test fails (meaning that there is no such index i), then Q′ does not satisfy the
property of Lemma 3. If the test passes for all q, all a, and all the relevant transition profiles
(those passing the first test), then Q′ has the desired property and thus, A has a k-lookahead
delegator.

It remains to verify that the steps of the algorithm can be carried out in polynomial space.
The first test uses the idea of checking reachability in a directed graph in logarithmic space.
In our setting, we use a counter for counting up to k (note that the number of bits needed
for the counter corresponds to the size of the binary representation of k), and successively
guess k steps to reach the transition profile τ . That is, we start with the transition profile
∆ε of the empty word. In each step, we guess a letter b ∈ Σ and extend the current transition
profile ∆v to ∆vb. After k steps, we check whether the resulting profile ∆w is equal to τ .
At each moment, we only need to store the counter and the intermediate transition profile,
which requires polynomial space.

The second step just computes (in LOGSPACE) some sets from the transition profile τ .
The third step requires us to test n equivalences LR = LRi , where the languages are given

by NFAs with the sets R and Ri as initial states, respectively. Since equivalence of NFAs
can be tested in polynomial space (see [1]), this step is also in PSPACE. J

I Theorem 12. The problem Delegator is PSPACE-complete.

Proof. The upper bound follows from Theorem 11.
For the lower bound, let M be some polynomially space bounded Turing machine that

solves a PSPACE-hard problem. We show that the word problem for M can be reduced to
the problem of the existence of a bounded lookahead delegator. The word problem for M is
to decide for a given word whether M accepts w, which is clearly PSPACE-hard because M
solves a PSPACE-hard problem.

Let h be the polynomial for the space bound of M . Given a word w, we construct an
NFA A that has a (2h(n) + 2)-lookahead delegator iff M rejects w, where n = ∣w∣.

As usual, we encode configurations of M by words of the form κ = usv, where uv is the
content of the tape of M , and s the current control state. The head of M in configuration
usv is on the first position of v. We can assume that ∣uv∣ = h(n). A computation of M is
then encoded by a word of the form #κ0#κ1# . . . κ`#, where κ0 is the initial configuration of
M on w, each κi+1 is the successor configuration of κi, and κ` is an accepting configuration.

The core of the reduction is an NFA Aw that accepts a word if it does not encode an
accepting computation of M on w (see [1, Lemma 10.2] for such a construction for regular
expressions instead of NFAs). For this purpose, Aw uses a product of automata testing the
following properties:

FSTTCS 2013



336 Decidability Results on the Existence of Lookahead Delegators for NFA

a) The word is not of the required form #κ0#κ1# . . . κ`# where each κi is of the form
uisivi with ∣uivi∣ = h(n).

b) The first configuration is not the initial configuration of M on w.
c) The last configuration is not an accepting configuration.
d) There is an i such that κi+1 is not the M -successor configuration of κi.
The first three properties can be easily checked by DFAs of size linear in h(n). The last
property can be checked by an NFA that guesses at some symbol # that this corresponds to
the index i, and then guesses a position j in κi and tests whether κi+1 has been updated in a
wrong way at position j (to detect this, the three symbols at positions j − 1, j, and j + 1 are
sufficient). The size of such an NFA is also linear in h(n) (it needs to count up to h(n) for
finding the corresponding cell j in κi+1). All the automata can be constructed in logarithmic
space from M and w. The automaton Aw is the product of these four automata that accepts
if one of its components accepts. Note that Aw has a (2h(n)+2)-lookahead delegator because
it is sufficient to know the next two configurations to decide which transition to take in the
NFA for the last property.

Further, note that Aw accepts all words if there is no accepting computation of M on w.
And if there is such an accepting computation, then Aw does not accept the word encoding
this computation.

We now embed Aw into an NFA A to obtain the desired reduction. Let Σ be the alphabet
of Aw, and let X,Y,Z be new letters. Define the languages

L1 ∶=X
∗
⋅L(Aw) ⋅ {Y,Z} and L2 ∶=X

∗
⋅Σ∗

⋅ {Y }.

Note that L2 ⊆ L1 iff L(Aw) = Σ∗ iff M rejects w.
We construct A to accept the language X ⋅ (L1 ∪L2). For this purpose, A nondeterminis-

tically chooses from its initial state on the first X to either go to an automaton A1 for L1 or
to an automaton A2 for L2. The automaton A1 is a simple extension of Aw by an X-loop at
the beginning and transitions for processing the last Y or Z. The automaton A2 just consists
of an X-loop, followed by a Σ-loop, followed by a transition for Y into an accepting state.

Now assume that M rejects w. Then, L2 ⊆ L1, as noted above, and a lookahead delegator
for A can always choose the transition going to A1 from the initial state. We already noted
that Aw has a (2h(n) + 2)-lookahead delegator. Overall, we obtain a (2h(n) + 2)-lookahead
delegator for A in this case.

Now assume that M accepts w and that A has a k-lookahead delegator f for some k.
Consider the decision of f on the lookahead word Xk. If f moves to A1, then pick the word
v encoding the accepting computation of M on w, followed by the letter Y . A1 does not
accept this word and therefore, f cannot be a k-lookahead delegator because XkvY ∈ L.

If f moves to A2, then consider any word v accepted by Aw followed by Z. Then,
XkvZ ∈ L1 but A2 only accepts words ending with Y . Hence, also in this case, f cannot be
a k-lookahead delegator.

This shows that A has a k-lookahead delegator for some k iffM rejects w. Furthermore, k
can be chosen as 2h(n) + 2. J

We note that in [9, Theorem 3], it is shown that the problem Delegator for unambiguous
NFA is contained in co-NP.

5 Bounded Lookahead

We now turn to the problem of deciding, given an NFA A, whether there exists a k such
that A has a k-delegator, that is, we consider the problem Bounded-Delegator. We show



C. Löding and S. Repke 337

that if A has some k-delegator, then A also has some K-delegator for a number K that is
singly exponential in the size of A. In the combination with the results from Section 4, we
then obtain that Bounded-Delegator is PSPACE-complete, too.

The proof showing that there is this bound K uses a technique inspired by [6], where two
player games with lookahead for one of the players are considered. In our setting, the main
idea is the following. If the lookahead K is big enough, then each word that can occur as
lookahead contains an infix that can be pumped such that the considered lookahead word
can be extended to a word of length k (with k and K as explained above where we assume
w.l.o.g. k > K). On this longer lookahead word of length k, one can query the existing
delegator and use the same decision for a delegator with the smaller lookahead K.

The required pumping argument that we just mentioned is formalized by an extension of
Lemma 10 where we use transition profiles (cf. Definition 9) again.

I Lemma 13. Let x, y, z ∈ Σ∗ be such that ∆x = ∆xy. Then, (xyz)−1Lq = (xyiz)−1Lq for
all q ∈ Q and i ∈N.

Proof. An easy induction shows that ∆xy = ∆xyi for all i ∈N. Consequently, ∆xyz = ∆xyiz

holds and the claim follows directly by Lemma 10. J

Using a simple counting argument, we can show that each word of a certain length has a
decomposition xyz as in Lemma 13.

I Lemma 14. For the bound K = 2∣Q∣
2
, each word w ∈ ΣK can be decomposed as w = xyz

with y ≠ ε and ∆x = ∆xy.

Proof. A word of length 2∣Q∣
2
has 2∣Q∣

2
+ 1 prefixes. Two different prefixes must have the

same transition profile since there are at most 2∣Q∣
2
transition profiles. This implies the

existence of the claimed decomposition. J

We now combine Lemma 13 and Lemma 14 to prove that the bound K = 2∣Q∣
2
is the

maximal “useful” lookahead.

I Theorem 15. A has a K-lookahead delegator if it has a bounded lookahead delegator.

Proof. Let f be a k-delegator for A where k > K w.l.o.g. We show that the property on
the right hand side of Lemma 3, which holds for k by assumption, also holds for K for the
same set Q′ ⊆ Q. To this end, we have to show that for every q ∈ Q′, a ∈ Σ, and w ∈ ΣK ,
there is some p ∈ Q′ with (q, a, p) ∈ ∆ and (aw)−1Lq = w

−1Lp. We know that there is a
decomposition w = xyz with y ≠ ε and ∆x = ∆xy. Choose i ∈ N and a proper prefix y′ of
y such that ∣xyiy′∣ = k. Let y′′ be such that y = y′y′′. Finally, we pick some p ∈ Q′ with
(q, a, p) ∈ ∆ such that (axyiy′)−1Lq = (xy

iy′)−1Lp the existence of which is guaranteed by
Lemma 3 for k-lookahead. With Lemma 13, we can now show that the desired property
holds for K-lookahead:

(axyz)−1Lq = (axyi+1z)−1Lq (Lemma 13)
= (axyiy′y′′z)−1Lq (y = y′y′′)
= (y′′z)−1((axyiy′)−1Lq) (composition of left quotients)
= (y′′z)−1((xyiy′)−1Lp) (Lemma 3 for k-lookahead)
= (xyiy′y′′z)−1Lp (composition of left quotients)
= (xyi+1z)−1Lp (y = y′y′′)
= (xyz)−1Lp (Lemma 13) J

FSTTCS 2013



338 Decidability Results on the Existence of Lookahead Delegators for NFA

Since the bound K is singly exponential in the number of states of A and therefore has a
binary representation that is polynomial in the size of A, Theorem 11 implies that Bounded-
Delegator also is in PSPACE. Furthermore, our reduction showing that Delegator
is PSPACE-hard also shows that Bounded-Delegator is PSPACE-hard (see proof of
Theorem 12).

I Corollary 16. The problem Bounded-Delegator is PSPACE-complete.

In [9, Theorem 4], it is shown that Bounded-Delegator is in PSPACE for unambiguous
NFA. This result is generalized by Corollary 16. However, the NFA constructed in the proof
of Theorem 12 for the PSPACE lower bound is ambiguous, in general, and therefore, our
completeness result does not extend to unambiguous automata.

6 Conclusion

We have shown that the existence of a k-lookahead delegator for an NFA A can be decided
in O((k + 1) ⋅ ∣Σ∣k+1 ⋅ ∣Q∣2), where Σ is the input alphabet, and Q the state set of the given
NFA. In particular, for a fixed k, the problem can be solved in polynomial time. We have
furthermore shown that the problem becomes PSPACE-complete if the bound is either a
part of the input or no bound is given. This gives a complete picture for the complexities of
the decision problems for lookahead delegators for NFA.

As further research, we would like to analyze whether our techniques can be extended to
decide the existence of lookahead delegators for some classes of infinite state automata (like
counter or pushdown automata), as it has been considered in [3].

Acknowledgements. With thanks to the anonymous reviewers for their detailed feedback.

References
1 Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of

Computer Algorithms. Addison-Wesley, New York, 1974.
2 Thomas Colcombet. Forms of Determinism for Automata (Invited Talk). In STACS 2012,

volume 14 of LIPIcs, pages 1–23. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.
3 Zhe Dang, Oscar H. Ibarra, and Jianwen Su. Composability of Infinite-State Activity

Automata. In ISAAC, pages 377–388, 2004.
4 Cagdas Evren Gerede, Richard Hull, Oscar H. Ibarra, and Jianwen Su. Automated compo-

sition of e-services: lookaheads. In ICSOC, pages 252–262, 2004.
5 Erich Grädel. Back and Forth Between Logics and Games. In Lectures in Game Theory

for Computer Scientists, pages 99–145. Springer, 2011.
6 Michael Holtmann, Lukasz Kaiser, andWolfgang Thomas. Degrees of Lookahead in Regular

Infinite Games. Logical Methods in Computer Science, 8(3), 2012.
7 Anca Muscholl and Igor Walukiewicz. A Lower Bound on Web Services Composition.

Logical Methods in Computer Science, 4(2), 2008.
8 Christos H. Papadimitriou. Complexity Theory. Addison Wesley, 1994.
9 Bala Ravikumar and Nicolae Santean. On the Existence of Lookahead Delegators for NFA.

Int. J. Found. Comput. Sci., 18(5):949–973, 2007.


	Introduction
	Preliminaries
	Fixed Lookahead
	Given Lookahead
	Bounded Lookahead
	Conclusion

