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Abstract
We consider the Knapsack Covering problem subject to a matroid constraint. In this problem,
we are given an universe U of n items where item i has attributes: a cost c(i) and a size s(i).
We also have a demand D. We are also given a matroid M = (U, I) on the set U . A feasible
solution S to the problem is one such that (i) the cumulative size of the items chosen is at least
D, and (ii) the set S is independent in the matroidM (i.e. S ∈ I). The objective is to minimize
the total cost of the items selected,

∑
i∈S c(i). Our main result proves a 2-factor approximation

for this problem.
The problem described above falls in the realm of mixed packing covering problems. We also

consider packing extensions of certain other covering problems and prove that in such cases it is
not possible to derive any constant factor approximations.
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1 Introduction

In this paper, we consider the problem of computing the minimum cost Knapsack cover subject
to matroid constraints. The Knapsack Cover problem (shortened as KC) is a minimization
problem that takes as input, an universe U of n elements. Each element i is equipped with a
cost c(i) and a size s(i). There is also a demand D; a feasible solution S is a collection of
items such that the cumulative size is at least D. The objective in this problem is to find the
feasible solution of minimum total cost. Thus, the KC problem is the covering version of the
(more usual) knapsack packing problem.

The main problem considered in this paper is the KC problem subject to certain constraints
that are called matroid constraints. In this scenario, in addition to the input for the KC
problem as mentioned above, we are given a matroidM = (U, I) where I ⊆ 2U is the family
of independent sets (we give the formal definition of a matroid in Section 5). A set S is
considered feasible iff (i) the cumulative size of S is at least D, and (ii) S is independent i.e.
S ∈ I.

We will denote the Knapsack Cover problem subject to a Matroid constraint as the KCM
problem.

The KC problem naturally arises in various applications where we have a certain demand
to fulfill and a certain number of options, varying in profit (i.e. size) and cost. For instance,
consider a workplace where we need a certain number of developers for a certain project; and
the project manager wants to outsource this to various teams/companies where each team
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can provide a certain number of developers at a specific cost. This is precisely the knapsack
cover problem discussed above.

Given this context, consider the following variants. Any single company can either provide
5 developers at a cost of 100 units or 6 developers at a cost of 115 units, etc. In the framework
of knapsack cover problems, we may model these different options as distinct items in the
knapsack, but with a partition matroid constraint on these distinct items. In this setting this
means that a feasible solution may pick at most one of the options from a single company;
this is precisely what we want. Another (admittedly less realistic) scenario is where different
companies have mutual incompatibilities; thus two companies may not be employed for the
same project at the same time. Again, this corresponds to matroid constraints in addition to
the demand fulfillment constraints. Thus these are all instances of the KCM problem.

The main result of this paper is the following:

I Theorem 1. There is a PTAS for the KCM problem; specifically, given any ε > 0, there
is an algorithm that runs in time nO(1/ε) and outputs a (1 + ε)-factor approximate solution.

Given that the KCM problem is a natural generalization of the KC problem, it is
instructive to compare solution approaches for the KC problem. For the knapsack cover
problem, a FPTAS is known via dynamic programming with parameter scaling. The natural
LP for the KC problem has an unbounded integrality gap. Despite this, authors [4, 3] have
shown how to achieve constant integrality gap via augmenting the natural LP with so-called
“flow-cover inequalities”. Carr et al. [4] first used such LP based relaxations and LP rounding
to provide a 2-factor approximation for the KC problem (among other capacitated covering
problems). Carnes and Shmoys [3] showed an elegant primal dual algorithm for the same LP
to also derive a 2-factor approximation.

Note that while the vanilla version of the knapsack covering problem is a covering problem,
in the KCM problem, we have both covering and packing constraints. Typically, such mixed
packing covering problems are harder to analyse as compared to pure packing or pure covering
problems. This is partially because for such problems, even checking the feasibility of the
constraint set can be a NP-hard problem. However, for the KCM problem, the feasibility
problem is indeed in polynomial time, as we show in Section 7. To the best of our knowledge
the KCM problem has not been considered earlier in literature.

2 Our Contribution & Techniques

We prove the following results:
Given the knapsack cover problem with a single matroid constraint, we show a PTAS.
Given knapsack cover with multiple matroid constraints, the feasibility problem is NP-
hard. Given this, we show a bicriteria approximation guarantee: we exhibit an algorithm
that outputs a solution of value at most that of the optimal solution OPT that is
nearly-feasible. The formal statement is given as Theorem 5 in Section 8.

Given the mixed packing/covering nature of the KCM problem, it is difficult to apply
primal dual schemas; since the dual objective function in this context have both positive and
negative coefficients. Previous literature has indeed considered primal dual schemas with
dual objective functions having coefficients of either sign (for instance, see [9]). However in
such cases, the primal dual algorithms give only approximately feasible solutions. One other
possibility to consider are combinatorial algorithms. For instance there is a simple minded
greedy algorithm for the knapsack cover KC problem, based on the cost-effectiveness c(i)/s(i)
of an element i. The algorithm proceeds as follows: it guesses the costliest element (say, of
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cost C∗)in the optimal cover OPT, and removes all the elements of cost larger than C∗. The
algorithm considers the rest of the elements in increasing order of their cost-effectiveness, i.e.
their c(i)/s(i) values, and continues selecting elements while the covering requirement is not
met. This gives a 2-factor approximation to the KC problem. However, there are certain
issues in adapting this greedy approach to the KCM problem as we illustrate below.

For the KCM problem, if we pick up elements according to non-decreasing c(i)/s(i)
values, it may happen that we cannot pick any more elements without violating the matroid
constraints and yet the cumulative size of the elements picked falls short of the requisite
demand D. For instance, this happens in the following scenario. We are given as input,
U = {1, 2, 3, 4}, with D = 4 and a cardinality matroid constraint over the whole universe
with k = 2. The items ordered by their c(·)/s(·) values are { 1−ε

1 , 2
2 ,

2
2 ,

3+ε
3 }. In this instance,

OPT would pick either {1, 4} or {2, 3}. The greedy solution would yield {1, 2} of total cost
(3− ε) but satisfying only 3 units of the demand.

There exists another ordering natural for the problem. Picking elements in decreasing
order of their s(i)’s while being feasible for the matroid constraints is the quickest way to
satisfy the knapsack covering constraint; but this may cause the cost to blow up. For the
above instance, this gives the (non-optimal) solution {3, 4} of cost (5 + ε).

One natural idea then, is to proceed along an amalgam of the two orderings. Thus, one
could start out with the knapsack greedy ordering, and then when some matroid constraint
becomes tight, start swapping or exchanging items, while ensuring an improvement in

∑
s(i)xi

towards the target demand of D. We are not able to make such ideas work as of now.
On the other hand, in order to attempt LP rounding for the KCM problem, we have

to surmount the obstacle of high integrality gap. For the KC problem, [3, 4] include the
exponentially many knapsack flow-cover inequalities to overcome the unbounded gap. In the
KCM setting, since we already have exponentially many matroid constraints, it would be
preferable not to add another collection of exponentially many constraints.

As mentioned above, the natural LP for the problem has an unbounded integrality gap
that it inherits from the LP for the KC problem. Nevertheless, we adopt a LP based approach,
where we use properties of the basic feasible solutions of the LP. In the case of cardinality
matroids, we also show a cycle cancelling approach to derive the desired result.

3 Other Results

For the special case of the KCM problem where the matroid is a partition matroid, we are
able to show a FPTAS; this uses the dynamic programming approach along with parameter
scaling. For space considerations, we defer the proof to the full version.

We consider certain other covering problems and augment such problems with matroid
constraints. We demonstrate that the above cases are the exception rather than the rule.

As a sample, we consider the problem of interval covering with a partition matroid
constraint. In this problem, we are given a collection of intervals I = {I1, I2, · · · , In} over a
time range T = {1, 2, · · · , T}. We are also given a partition P1,P2, · · · ,Pm of the intervals
in I. A feasible solution S is a collection of intervals such that (1) every timeslot in T is
covered by some interval in S and (2) there is at most one interval chosen from each Pj
(for 1 6 j 6 m). The objective is to choose the minimum number of intervals. We prove
that testing feasibility in this case is NP-hard (and so, no constant factor approximation
algorithm is possible for this problem). This is shown via a reduction from the Vertex Cover
problem; details are provided in Section 9. On the other hand, the problem considered with a
cardinality matroid (where, a feasible solution can pick at most a certain number of intervals
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from I) has a dynamic programming solution that solves it in polynomial time.
It is more likely than not that augmenting a covering problem with a matroid constraint

might render the feasibility problem NP-hard. As another instance, consider Vertex Cover.
If we were to add a cardinality constraint, then the feasibility problem is an instance of
unweighted Vertex Cover, and is NP-hard.

4 Related Work

In this paper, we consider the problem of knapsack covering subject to matroid constraints.
This naturally leads us to the question of considering more general objectives; thus we
might want to minimize an arbitrary submodular function subject to one knapsack covering
constraint and a matroid constraint. However, note that in this case, strong lower bounds
exist, even if we ignore the matroid constraint. Svitkina and Fleischer [14] prove the following:
they show that given a submodular function f(S) over a universe of size n, and a cardinality
constraint S > k, it is NP-hard to get a factor better than Ω(

√
n

logn ) for approximating the
problem. They call this the SML (Submodular Minimization with cardinality Lower bounds)
problem. Their lower bound is even stronger: it holds even for the special case of monotone
submodular functions; and they derive lower bounds for bicriteria algorithms.

In the recent past, there has been a surge of work in the area of submodular maximization
under various constraints. There have been several papers considering the problem of
maximizing a monotone submodular function subject to matroid constraints, culminating
in the breakthrough result of Vondrák [15](also see [2]). Vondrák [15] shows the optimal
(1− 1/e)-factor approximation for the problem via a continuous greedy process. Also, see
the paper by Filmus and Ward [7] who give an elegant non-oblivious local search technique
achieving the same approximation factor. In the space of non-monotone submodular functions,
a recent result of Buchbinder et al. [1] (also see [6]) gives the optimal 1/2-factor approximation
for the problem of unconstrained submodular maximization. The interested reader is referred
to a presentation by Vondrák [16] (see slide 45) for an overview of the results in the area
of submodular maximization subject to various (knapsack, matroid) constraints and their
combinations.

Another line of work considers the problem of minimizing a submodular function subject
to matroid constraints. Clearly, it does not make sense to minimize a monotone submodular
function subject to such packing constraints. Thus, research has focused on the problem of
minimizing a symmetric submodular function subject to matroid constraints. Originating from
work by Shaddin [5], Goemans and Soto [8] prove a strong result that shows that symmetric
submodular functions can be minimized subject to such constraints in polynomial time! In
fact, their result extends to a wider class of constraints called “hereditary” constraints.

Thus, given the matroid constraints in the KCM problem, it is natural to ask about
the relation between our problem and the existing literature. Here, we reiterate that
most of the problems considered in literature are mostly purely packing problems: for
instance, submodular maximization subject to matroid constraints or symmetric submodular
minimization subject to matroid constraints. Our problem does not belong to the above
frameworks because of the mixed packing covering nature of our constraints.

4.1 Organization
We present the relevant definitions in Section 5. We prove our result for the case of a
cardinality matroid in Section 6 (see Theorem 2). We build on the case of cardinality
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matroids to give the proof of Theorem 1 in Section 7. We state and prove the bicriteria
factor approximation for knapsack cover subject to multiple matroid constraints in Section 8.
We conclude with discussions and open problems in Section 9.

5 Preliminaries

Sets: In this paper, we will use the following notation: given disjoint sets A and B we will
use A+ B to serve as shorthand for A ∪ B. Vice versa, when we write A+ B it will hold
implicitly that the sets A and B are disjoint.

We will use the letter U for the universe; the universe will typically contain n elements.
Given a set A, let χ(A) denote its characteristic vector: this is a vector such that {χ(A)}i = 1
if i ∈ A and 0 otherwise.

Also given an element-wise function f with domain U , we will extend it to subsets in the
natural way: f(S) =

∑
i∈S f(i) for S ⊆ U .

Monotone: A set function f is called monotone if f(S) 6 f(T ) whenever S ⊆ T .
Submodular: A set function f : 2U → R+ over a universe U is called submodular if the
following holds for any two sets A,B ⊆ U :

f(A) + f(B) > f(A ∪B) + f(A ∩B)

Matroid: A matroid is a pairM = (U, I) where I ⊆ 2U , and
1. (Hereditary Property) ∀B ∈ I, A ⊂ B =⇒ A ∈ I.
2. (Extension Property) ∀A,B ∈ I : |A| < |B| =⇒ ∃x ∈ B \A : A+ x ∈ I
Matroids are generalizations of vector spaces in linear algebra and are ubiquitous in combin-
atorial optimization because of their connection with greedy algorithms. Typically the sets
in I are called independent sets, this being an abstraction of linear independence in linear
algebra. The maximal independent sets in a matroid are called the bases (again preserving
the terminology from linear algebra). An important fact for matroids is that all bases have
equal cardinality – this is an outcome of the Extension Property of matroids.

Any matroid is equipped with a rank function r : 2U → R+. The rank of a subset S
is defined to be the size of the largest independent set contained in the subset S. By the
Extension Property, this is well-defined. The rank function of any matroid is well-known to
be a monotone submodular function. See the excellent text by Schrijver [13] for details.

Two commonly encountered matroids are the (i) Cardinality Matroid: Given a universe U
and r ∈ N, the cardinality matroid is the matroidM = (U, I), where a set A is independent
(i.e. belongs to I) iff |A| 6 r. (ii) Partition Matroid: Given a universe U and a partition of
U as U1, · · · , Ur and non-negative integers r1, · · · , rt, the partition matroid isM = (U, I),
where a set A belongs to I iff |A ∩ Ui| 6 ri for all i = 1, 2, · · · , t.
Knapsack Cover with Matroid Constraints (KCM): We are given n items of sizes s(1), s(2),
· · · , s(n), and with costs c(1), c(2), · · · , c(n). We are also given a cumulative demand D and
a matroidM. A feasible solution is a subset F such that the cumulative size of the subset F
is at least D, and so that the set F is independent in the matroidM. The objective is to
produce a feasible solution of minimum cumulative cost.
Knapsack Cover with Cardinality Matroid (KCCard): In this variant of KCM, we are
given a number k and a specific subset A ⊆ {1, 2, · · · , n}. A feasible solution is a subset F
such that the cumulative size of F is at least D and no more than k elements are chosen
from the subset A.
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280 Knapsack Cover Subject to a Matroid Constraint

6 KCM with Cardinality Matroids

In this section, we will consider the Knapsack Cover problem subject to a cardinality matroid
constraint. Recall that in this scenario, we are given a subset A of the universe U and we
may pick at most k elements from A in a feasible solution.

We use x(A) as a shorthand for
∑
i∈A xi. The LP is as follows:

min
∑
i

ci · xi

LP1 s.t.
∑
i

si · xi > D

x(A) 6 k

∀i 0 6 xi 6 1

We will call the constraints xi > 0 and xi 6 1 as trivial; the constraints
∑
si · xi > D or

x(A) 6 k will be called the non-trivial constraints. In order that we may produce feasible
solutions to the above LP, it is necessary to check that the feasibility problem is solvable in
polynomial time. This is easy to do for the specific case of a cardinality matroid. In fact, we
will prove the result in Lemma 3 for LPs corresponding to arbitrary matroid constraints.

I Theorem 2. There is a PTAS for the KCCard problem.

Proof. Let us consider a BFS solution to the above LP. It is easy to see that since there
are two non-trivial constraints on the x′is, in a BFS solution, at most 2 variables will be set
fractionally, and the other variables will be set integrally. Also note that the only way that a
BFS solution may have two fractional variables is if both the constraints

∑
si · xi > D and

x(A) 6 k are tight.
Renaming variables, let the fractional variables be x1 and x2. Since the other variables

are integral, the following equalities hold: s1x1 + s2x2 = D′ and x1 + x2 = k′ where k′ is an
integer. Clearly because of the constraints 0 6 xi 6 1 we have that 0 6 k′ 6 2. If k′ = 0,
then x1 = x2 = 0, contrary to their being fractional. Likewise if k′ = 2, then x1 = x2 = 1,
again a contradiction. Thus, the only case is that k′ = 1. Thus D′ is a convex combination
of s1 and s2. Without loss of generality, let s1 > D′ > s2. Since the constraint x(A) 6 k is a
packing constraint, we will not be able to pick both of x1 and x2. We will simply pick x1
(this makes the constraint

∑
sixi > D feasible), and set x2 to be 0.

Thus, in this process we have raised at most 1 fractional variable.
We now use the idea (in the manner of [12]) of pruning. Let cmax be the item of highest

cost in OPT. Although we do not know this item, we can guess this item by running through
the n possibilities for such an item. Using this guess, we can remove items i from the LP
that have ci > cmax. Thus, in the above process, when we raise x1 from its current fractional
value to 1, we increase the cost of our solution by at most cmax. Thereby the total cost of
the solution generated is OPT + cmax 6 2OPT.

In order to achieve a (1 + ε)-factor approximation for any ε > 0, we may guess all the
items in OPT of cost at least ε · OPT. Note that there can be at most 1/ε such items.
Let S denote this set of items, of total cost C(S). Remove the items of S from the input
instance to derive a modified instance. Thus, the modified instance has its parameters D and
k appropriately reduced. Note that if S is indeed the set of items in OPT of cost at least
ε ·OPT, then the optimal cost of the modified instance is at most OPT− C(S).

Since we remove all the items of S from the LP, for every item i still remaining in
the LP, it holds that ci 6 ε · OPT. As before, the total cost of our solution is at most
(OPT− C(S)) + ε ·OPT + C(S) = (1 + ε)OPT.
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Thus the algorithm considers all possible sets S of size 1/ε, and for each choice of S,
solves the LP for the modified instance. The total run-time of the algorithm is nO(1/ε). J

Alternative Proof

The proof given above considers the BFS of the LP and proves certain properties of the BFS
solution; in this sense, it is akin to iterative rounding (see [11]). However, one can provide
another proof of the fact that any optimal solution to LP1 can be modified to an optimal
solution that contains at most two fractional variables. This proof goes via cycle cancelling.

In the normal usage of cycle cancelling, the “weight”(i.e. the LP values) is shifted between
two variables. However, in the current scenario, we will need to shift the weight between
three variables. This is the primary reason why we have two fractional variables.

In fact, the (more combinatorial styled) cycle cancelling technique applied to LP1 shows
that any feasible solution can be modified in this manner.

Suppose we are given a solution x to LP1, and wlog rename the variables so that the
fractional variables are x1, x2, · · · , xm. Given these fractional variables, we will attempt to
change only the first 3 variables, by amounts δ1, δ2, and δ3 (and leave the other variables -
fractional or integral - unchanged). Thus the values of the variables x1, x2, x3 will become
(x1 + δ1), (x2 + δ2), (x3 + δ3). It is required that this operation does not violate the knapsack
cover constraint or the cardinality constraint. We also want that in this process, the objective
function does not degrade. These conditions translate to the following inequalities for
δ1, δ2, δ3:

δ1 + δ2 + δ3 = 0
s1δ1 + s2δ2 + s3δ3 > 0
c1δ1 + c2δ2 + c3δ3 6 0

Since the system is homogeneous, the (0, 0, 0) solution is always feasible. However, in order
to perform cycle cancelling, we want a non-zero δi vector.

We may eliminate the variable δ3 from the above system of inequations to get:

(s1 − s3)δ1 + (s2 − s3)δ2 > 0
(c1 − c3)δ1 + (c2 − c3)δ2 6 0

The pertinent question is whether this system of inequalities always has a non-zero
solution in (δ1, δ2). The two inequalities correspond to two halfplanes in R2. The halfplanes
are intersecting - for instance, the point (0, 0) lies on both of them. But the intersection of
two halfplanes is an unbounded region, so has a non-zero vector in it.

For instance, if s1 = s3 and c1 = c3, we would need to set δ2 = 0, but we may set δ1 = 1
(and consequently, δ3 is set to −1).

While this method works for the cardinality matroid (where we have a single constraint
corresponding to the matroid constraint), we do not know how to make this work for an
arbitrary matroid.

7 KCM with arbitrary Matroids

In this section, we extend the result in Theorem 2 to arbitrary matroids. Let us recall the
problem: the universe U consists of n items, each item with attributes costs c(i) and sizes
s(i). There is a minimum coverage demand D. We are also given a matroidM = (U, I). A
feasible solution S to the KCM is one that satisfies the knapsack covering constraints and
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Guess cmax, the costliest element in OPT.
for each guess of c = cmax do

A← {i : c(i) > cmax}
Augment LP2 with constraints xi = 0, ∀i ∈ A
Solve LP2; let the two fractional variables be x1 and x2
If s1 > s2, raise x1 to 1, x2 = 0;
else x1 = 0, x2 = 1.
Let this solution be denoted by Sc.

end for
Output the subset Sc with the minimum cost

Figure 1 Main Algorithm.

such that S ∈ I. Let r(·) denote the rank function of the matroid M . Then the LP for the
KCM problem stands as follows:

min
∑
i c(i) · xi

LP2 : s.t.
∑
i s(i) · xi > D

∀S x(S) 6 r(S)
∀i 0 6 xi 6 1

Firstly, we show that we can solve the feasibility problem in polynomial time.

I Lemma 3. The feasibility problem for LP2 is solvable in polynomial time.

Proof. Note that the feasibility problem may be converted into the following problem:

LP3 : max
∑
i s(i) · xi

∀S x(S) 6 r(S)
∀i 0 6 xi 6 1

But this is precisely the maximum independent set question in a matroid and is well known
to be solvable in polynomial time [13]. J

We are now ready to prove Theorem 1.

Proof (of Theorem 1). Let x∗ denote a BFS solution to LP2. Let there be ` fractional
variables in the solution x∗. We will call any constraint that is not of the form xi > 0 or
xi 6 1 as “nontrivial". We will consider the non-trivial constraints that are satisfied with
equality by the solution x∗. Given that there are ` fractional (and hence n − ` integral)
variables, we have that precisely ` non-trivial constraints are tight. Moreover, this collection
of tight constraints are linearly independent. We will also assume the following normal form
for the tight constraints provided by a BFS. If a variable xi is integral (either 0 or 1) in
the solution x∗, we will consider the corresponding equation xi = 0 or xi = 1 as being tight.
Thus, by virtue of linear independence of the tight constraints in a BFS, any non-trivial tight
constraint has to contain at least one fractional variable.

There are two cases: either the constraint
∑
i s(i)xi > D is tight or is not. Let us consider

the situation where this constraint is not tight. Thus the ` tight constraints are all of the
form x(S) 6 r(S) for some subset S. It is a well known property (for instance, see [11]) that
the sets corresponding to these tight constraints may be assumed to form a chain.

We record this as a claim and for completeness, we prove this here. This proposition uses
the fact that the rank function of a matroid is submodular.
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I Claim 4. The linearly independent tight constraints x(S) = r(S) can be assumed to form
a chain. Thus, if there are ` linearly independent tight constraints, then the corresponding
sets may be relabeled S1, S2, · · · , S` such that Si ⊂ Si+1 for all 1 6 i 6 (`− 1).

Proof. Consider any two tight constraints corresponding to sets S1 and S2. Thus, x(S1) =
r(S1) and x(S2) = r(S2). Consider the following chain of inequalities:

r(S1) + r(S2) tight= x(S1) + x(S2) = x(S1 ∩ S2) + x(S1 ∪ S2)

6 r(S1 ∩ S2) + r(S1 ∪ S2)
submodular

6 r(S1) + r(S2)

Thus equalities hold throughout the chain, and so x(S1 ∩ S2) = r(S1 ∩ S2) and x(S1 ∪
S2) = r(S1 ∪ S2). This means that S1 ∪ S2 and S1 ∩ S2 also are tight sets. Note that
χ(S1) + χ(S2) = χ(S1 ∩ S2) + χ(S1 ∪ S2). So, if S1 and S2 are such that S1 \ S2 6= ∅ and
S2 \S1 6= ∅, then we can replace one of the sets S1 or S2 in our system of linearly independent
equations by S1 ∩ S2 and S1 ∪ S2. Repeating this process ensures that a maximal collection
of linearly independent tight constraints form a chain. J

The sets Si may not be equal since that would violate the linear independence of the
corresponding constraints. Also, an earlier observation implies that Si+1 \ Si has to contain
at least one fractional variable (and, bottoming out, this holds true for S1 \ ∅ = S1 too).
However since x(Si+1)− x(Si) is an integer, there has to be at least 2 fractional variables in
Si+1 \ Si. But since the sets Si+1 \ Si are disjoint (for 1 6 i 6 (`− 1) we thereby collect at
least 2` fractional variables. Since we started the argument with ` fractional variables, this
implies that ` > 2`, which is impossible since ` > 1.

Thus, the constraint
∑
s(i)xi > D has to be tight. But we can again decompose the tight

constraints of the form x(S) 6 r(S) as a chain of (`− 1) constraints. A similar argument like
the one above gives that there are at least 2(`− 1) fractional variables. Thus ` > 2(`− 1),
and we get that ` 6 2. Since

∑
s(i)xi > D is tight, this implies that there is precisely one

tight constraint of the form x(S) 6 r(S). Now we are back to the cardinality case, and we
can mimic the proof of Theorem 2, and we thereby prove that LP3 has at most 2 fractional
variables.

Let the fractional variables be x1 and x2 (modulo renaming of variables). The tight
constraint

∑
s(i)xi > D simplifies to s1x1 + s2x2 = D′. Also we have that x1 + x2 = k′ for

some integral k′. Since 0 < xi < 1 for all i = 1, 2, the only possibility is that k′ = 1. This
implies that D′ is a convex combination of s1 and s2, and thus, one of these quantities is at
least as large as D′; wlog, let s1 > D′. Thus, we can raise the variable x1 to 1 and reduce the
variable x2 to 0. This change in the variables x1 and x2 may potentially make the solution
infeasible for the LP. To this end, let us consider the constraints in which the variables x1
or x2 appear. First, note that the constraint

∑
s(i)xi > D is kept feasible, because of the

choice of the fractional variable to raise. Now consider any matroid constraint x(S) 6 r(S).
If S contains both of items x1 and x2, then feasibility for this constraint is maintained (since
x1 + x2 is not changed). Suppose that S contains only the item x1. Then the constraint
x(S) 6 r(S) could not have been tight in the BFS solution x∗. This is because r(S) is an
integer whereas x(S) contains just a single fractional variable and cannot be an integer.
Thus, raising x1 to 1 does not violate feasibility for this constraint. If S contains only the
item x2, the argument is simpler: the value of x2 is lowered, and so feasibility is maintained
for the packing constraint x(S) 6 r(S).
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Finally, given an ε > 0, we prune items of the input by guessing the elements of high-cost
(i.e. elements of cost > ε · OPT) and modifying the input instance as in Theorem 2; this
gives us the (1 + ε)-factor guarantee. J

8 Multiple Matroids

In this section, we consider the knapsack cover problem subject to multiple matroid constraints;
call this the KCMM problem. In this problem, in addition to the knapsack cover constraint∑
s(i)xi > D, we have t ∈ N matroid constraints. Given the matroidsMi for 1 6 i 6 t, let

ri denote the rank function for matroidMi. The IP for this problem is as follows:

min
∑
i c(i) · xi

IP4 : s.t.
∑
i s(i) · xi > D

∀S, t x(S) 6 rt(S)
∀i xi ∈ {0, 1}

The feasibility problem for this IP is the Matroid Intersection problem. For t > 3, this is
NP-hard: for instance, the Hamiltonian Circuit problem is a special case of the intersection
of 3 matroids.

This leads to the hardness of approximation of the KCMM problem: for t > 3, it is
impossible to achieve any factor approximation for the KCMM problem. We show that this
obstacle can be overcome by considering bicriteria approximation algorithms. The main
result of this section is that the KCMM problem allows good bicriteria approximations.

I Theorem 5. There is a bicriteria approximation algorithm for the KCMM problem that
outputs a solution S that satisfies the following properties: (i) c(S) 6 c(OPT), (ii) S satisfies
all the matroid constraints and (iii) s(S) > θ(Dt ).

Proof. Consider the auxiliary IP parametrized by a quantity β. This IP is obtained by
interchanging the roles of the objective and the knapsack cover constraint in IP4.

max
∑
i s(i) · xi

IP5 : s.t.
∑
i c(i) · xi 6 β

∀S, t x(S) 6 rt(S)
∀i xi ∈ {0, 1}

Thus we have converted the mixed packing covering problem IP4 into a purely packing
problem IP5. The objective in the problem IP5 is a submodular function (in fact a linear
function) and the problem is to maximize this function subject to 1 knapsack (packing)
constraint and t matroid constraints. There are efficient algorithms [10] that show O(t)-factor
approximations for this problem; denote this procedure by P .

We run the procedure P for various values of β in decreasing order; for each value of β,
P gives an approximate solution to IP5. We stop when the objective value of the solution
returned by P is D/θ(t). Let this solution be S. We return S as the solution to IP4 and the
corresponding value of β is the objective value.

If there is a feasible solution F to IP4 of objective value β′, then F is a feasible solution
to IP5 (with β = β′) of objective value at least D. This is because F is a feasible solution to
IP4; so

∑
i∈F s(i) > D. So, procedure P on IP5 with β = β′ produces a solution F ′ that has

value
∑
i∈F s(i) > D/θ(t).

This proves the result.
J
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9 Discussion & Open Problems

In this paper we considered a mixed packing-covering problem called the KCM problem. We
showed that it admits a PTAS. We note that the same result applies if we replace the matroid
constraints by so-called polymatroid constraints (where the constraints are x(S) 6 f(S) for
an arbitrary submodular function f instead of the rank function).

However, we do not expect (even) constant factor approximations for most covering
problems with matroid constraints. This is because the feasibility problem for such a covering
problem with a matroid constraint may be NP-hard.

As an instance, let us consider the interval cover problem mentioned in Section 3. We will
reduce the Vertex Cover problem to an interval cover instance, with a partition matroid. Let
the input instance be G = (V,E) and a number k; the decision problem is to find if G has a
vertex cover of size at most k. The interval cover instance is constructed as follows. For every
vertex v ∈ V , there is a long interval Iv; for different vertices v and v′ the corresponding
intervals are disjoint. Given an edge e = (u, v), there are two short intervals corresponding to
the edge Ie,u and Ie,v. The span of Ie,u for an edge e incident on the vertex u is contained
within the interval Iu. The various intervals Ie,u for different e’s incident on u are all disjoint
(and contained in Iu). The partition matroid constraints are as follows: out of all the intervals
Iu (u ∈ V ), we are allowed to pick at most k; and out of the intervals Ie,u and Ie,v (for
e = (u, v)) we are allowed to pick at most 1. Suppose there is a vertex cover S ⊂ V of size
at k in G. Then our feasible solution for the interval cover problem will be constructed as
follows: pick interval Iu for u ∈ S. Since S is a vertex cover, every edge e has one of its
endpoints in S. Thus at least one of the short intervals Ie,u or Ie,v is not required, since the
overlapping long interval Iu (or Iv) is picked. Thus the other short interval corresponding
to e may be picked, while preserving the partition matroid constraint for Ie,u and Ie,v. In
the other direction, consider a feasible solution F for the interval cover instance. For any
edge e, at most one of the short intervals Ie,u, Ie,v may be in the feasible solution. Thus
for the short interval that is absent, say, Ie,u, the long interval Iu has to be present in the
solution. This means that the set of u’s such that the interval Iu belongs to the solution F
forms a vertex cover. Since feasibility stipulates at most k of the long intervals be selected,
this means that we are able to extract a vertex cover of size at most k.

Despite feasibility being the principal obstacle for covering problems with matroid
constraints, some open problems do remain. The principal open question is the following.
In Section 8, we considered the case of t matroid constraints along with a knapsack cover
constraint. However, note that for t = 2, the feasibility problem is in polynomial time (this
is the Matroid Intersection problem for two matroids). So, a constant factor approximation
algorithm is not ruled out for t = 2.

Our solution to the KCM problem involves solving multiple LP’s. The knapsack cover
(KC) problem has efficient greedy algorithms. Therefore, a natural question is whether the
KCM problem has efficient greedy algorithms.

Our results do not rule out a FPTAS for the KCM problem. In fact, we are able to show
FPTASes for the case of the KCM problem with a partition matroid. Is there a FPTAS for
the KCM problem for arbitrary matroids?
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ations suggested by the anonymous reviewers. The submission version contained only a
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of the same technique also yields a PTAS (that is now included as Theorem 1). The same
reviewer also observed that the results essentially carry over to polymatroid constraints.
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