
Replica Placement via Capacitated Vertex Cover∗

Sonika Arora1, Venkatesan T. Chakaravarthy2, Neelima Gupta1,
Koyel Mukherjee3, and Yogish Sabharwal2

1 Department of Computer Science, University of Delhi
sonika.ta@gmail.com, ngupta@cs.du.ac.in

2 IBM India Research Lab, New Delhi, India
{vechakra,ysabharwal}@in.ibm.com

3 Department of Computer Science, University of Maryland, College Park
koyelm@cs.umd.edu

Abstract
In this paper, we study the replica placement problem on trees and present a constant factor
approximation algorithm (with an additional additive constant factor). This improves the best
known previous algorithm having an approximation ratio dependent on the maximum degree of
the tree. Our techniques also extend to the partial cover version. Our algorithms are based on the
LP rounding technique. The core component of our algorithm exploits a connection between the
natural LP solutions of the replica placement problem and the capacitated vertex cover problem.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Approximation Algorithms, LP Rounding

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2013.263

1 Introduction

The Replica placement problem in tree networks is a well-studied problem [4, 12, 2, 1] and
several variants of it have been examined in the literature. In this paper, we study an
important version called replica placement with distances and present a first constant factor
approximation algorithm (with an additional additive constant factor) for this problem. Our
techniques also extend to the partial cover version of the problem yielding a similar result.

Replica Placement Problem. The input consists of a rooted tree (or tree network) G =
(V,E). Each leaf node represents a client and let A be the set of all clients. Let |A| = m.
The input specifies a request r(a) for each client a ∈ A. The input also includes a capacity
W . For each edge (u, v) in the tree, the input specifies a distance d(u, v). For a node u and
a client a such that u is an ancestor of a, let d(u, a) be the distance from u to a. Each client
a is associated with a quantity dmax(a), the maximum distance its request can travel. We
assume that the capacity W and the requests r(·) are integral. Furthermore, we assume that
r(a) ≤W for all clients a ∈ A and that W is polynomially bounded in the number of nodes.

A feasible solution selects a subset of nodes and places replicas on them in order to service
the requests of the clients. The solution must assign the requests of the clients to the replicas.
The request of a client a can be assigned to a node u, only if u is an ancestor of a and
d(a, u) ≤ dmax(a). Furthermore, the total request assigned to any replica must not exceed

∗ Full version of the paper is available as an arxiv preprint.

© Sonika Arora, Venkatesan T. Chakaravarthy, Neelima Gupta, Koyel Mukherjee, and Yogish
Sabharwal;
licensed under Creative Commons License CC-BY

33rd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013).
Editors: Anil Seth and Nisheeth K. Vishnoi; pp. 263–274

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62918403?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.263
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

264 Replica Placement via Capacitated Vertex Cover

the capacity W . We allow the solution to open replicas at the leaf nodes corresponding to
the clients. Our goal is to minimize the number of replicas placed.

In the partial cover version of the replica placement problem, the input also includes an
integer K ≤ m, called the partiality parameter and it suffices if some K clients are serviced.
Namely, a feasible solution selects a subset of nodes for placing replicas and a set of K clients
so that the replicas can service the set of K clients. The full cover version corresponds to
the case where K is the number of clients.

Prior Work. The replica placement problem finds applications in internet and video on
demand service delivery (see [7, 9, 4]). We refer to [12] for additional applications. The above
problem and its variants have been well-studied in the existing literature [4, 12, 2, 8, 1], from
both practical and algorithmic perspectives. From an algorithmic perspective, the full cover
version and its special cases have been addressed in prior work and approximation algorithms
have been developed.

Benoit et al. [2, 1] studied the full cover version of the replica placement problem. They
showed that it is NP-hard to approximate the problem within a factor of 3/2 even when there
are no distance constraints (i.e., dmax(a) =∞, for all clients a) and the given network is a
binary tree. They obtained the above result by showing that the above problem generalizes
the bin-packing problem. Benoit et al. [1] presented a 2-approximation for the replica
placement problem without distances. For the case with distances, they designed a greedy
algorithm with an approximation ratio of (1 + ∆), where ∆ is the maximum number of
children of any node. Regarding the replica placement problem, we are not aware of any
prior work on the partial cover versions.

Our Results and Discussion. The main goal of this paper is to study the full cover and the
partial cover versions of the replica placement problem (with distances). As discussed earlier,
the best known algorithm for the full cover version [1] has an approximation ratio of (1 + ∆),
where ∆ is the maximum number of children of any node in the tree. Clearly, the parameter
∆ could be of the order of the number of nodes in the tree. The main contribution of the
paper is a constant factor approximation algorithm (with an additional additive constant
factor) for the partial cover version.

Main Result: We present a constant factor approximation algorithm (with an addi-
tional additive constant factor) for the partial cover version of the replica placement
problem (with distances).

The algorithms of Benoit et al. [2, 1] for different versions of the replica placement
problem are primarily based on dynamic programming and the greedy method. It is not
clear how to use such techniques to derive constant factor approximation algorithms that
handle the dual aspects of distance constraints and partial covering. We should mention
that the constant factor obtained in the paper is fairly large. The constant factor can be
substantially improved via a more careful book keeping. However, for the sake of exposition
and brevity, we defer such an analysis to the full version of the paper.

Our algorithms are based on the LP rounding technique. Our main technical contribution
is to show a connection between the natural LP solutions of the replica placement problem and
the capacitated vertex cover problem. We will exploit this connection to derive approximation
algorithms for our problems. We believe our techniques can be applied to other special cases
of the capacitated set cover problem as well. The above connection and our proof techniques
are outlined below.

S. Arora, V. T. Chakaravarthy, N. Gupta, K. Mukherjee, and Y. Sabharwal 265

Relationship to Capacitated Set Cover and Proof Techniques. The capacitated set cover
problem generalizes the classical set cover problem. In this problem, we are given a set
system consisting of a universe of elements U and a collection S of subsets of the universe.
Each set S ∈ S in the collection has associated capacity w(S). A feasible solution selects a
collection of sets R ⊆ S and assigns each element a ∈ U to some set S ∈ R such that a ∈ S.
Furthermore, the solution must satisfy the property that for any selected set S, the number
of elements assigned to it does not exceed w(S).

Note that in the above problem definition we do not associate requests with the elements,
because in such generalization, it is NP-hard even to test whether a solution exists and so,
the problem is inapproximable [3]. In our problems, such an issue does not arise, since we
allow replicas to be placed at the client nodes. Clearly, the unit request case of the full cover
version of the replica placement is a special case of the capacitated set cover problem.

The capacitated vertex cover problem is the special case where each element a appears in
exactly two sets. Equivalently, we are given a multi-graph wherein each vertex has a capacity.
The solution must select a vertex cover and assign each edge to one of its end points in the
cover such that the capacity is not violated at any vertex.

The capacitated set cover problem can be approximated within a factor of O(logn) using
the work of Wolsey [11]. The problem is NP-hard to approximate within a factor of Ω(logn)
[5]. Chuzhoy and Naor [3] and Gandhi et al. [6] presented algorithms for the capacitated
vertex cover problem with an approximation ratio of 3 and 2, respectively. However, their
algorithms can handle only the case of simple graph (no parallel edges). Saha and Khuller
[10] presented a 34-approximation algorithm for the more general case of multi-graphs. Their
technique also extends to hypergraphs and yields an O(f)-approximation algorithm for the
capacitated set cover problem, where the frequency parameter f is the maximum number
of sets an element appears in. All these algorithms are based on rounding of a natural LP
formulation of the problem.

Our algorithm for the partial cover version of the replica placement problem also goes via
considering a natural LP formulation. The core component of our algorithm takes any LP
solution and carefully transforms it into a solution that can be construed as an LP solution
of a suitable instance of the capacitated vertex cover problem on multi-graphs. This allows
us to utilize the rounding procedure of Saha and Khuller [10] and obtain a constant factor
approximation algorithm for our problem.

We highlight some of the challenges involved in the above transformation. Firstly, in our
problem, a client can be assigned to an arbitrary number of nodes, whereas in the capacitated
vertex cover scenario, an edge can be assigned to only two nodes. Thus the transformation
lets us move from a set system having arbitrary frequency parameter to a setting where
the parameter is two. Secondly, the transformation converts a solution for a partial cover
setting to a full cover setting. In this context, we should note that Saha and Khuller [10]
present an algorithm for partial cover version of the capacitated set cover problem. However,
they obtain the result via a simple reduction from the partial cover version to the full cover
version via creation of a dummy set. We do not know of any such simple reduction for our
setting. Thirdly, we note that a client would be considered serviced and counted as part of
the partiality parameter K, only when the whole of its request is serviced. Despite the above
challenges, there are certain aspects of the problem that let us perform the transformation.
The first is that our problem definition allows a solution to place a replica on a client node
itself. Secondly, the set systems arising in our context enjoy some special properties because
of the structure of the tree.

FSTTCS 2013

266 Replica Placement via Capacitated Vertex Cover

2 Overview of the Main Result

The goal of this section is to establish the main result of the paper.

I Theorem 1. There exists a polynomial time constant factor approximation algorithm (with
an additional additive constant factor) for the partial cover version of the replica placement
problem.

The algorithm goes via LP rounding. Here, we shall present an intuitive and detailed
overview of the algorithm and prove the above result. In doing so, we will highlight the
different components of the algorithm. Discussion on the individual components are deferred
to the subsequent sections.

LP Formulation: We consider a natural LP formulation. We say that a solution opens
node u, if it places a replica on it. We say that a client a is attachable to a node u, if u is
an ancestor of a and dmax(a) ≤ d(u, a). Let Att(a) denote the set of all nodes to which the
client a can be attached and let Att(u) denote the set of all clients that can be attached to a
node u.

For each node u ∈ V , we introduce a variable y(u) that specifies the extent to which u is
open. For each client a ∈ A and each node u ∈ Att(a), we introduce a variable x(a, u) that
specifies the extent to which a is assigned to u.

min
∑
u∈V

y(u)∑
a∈Att(u)

x(a, u) · r(a) ≤ y(u) ·W (∀u ∈ V) (1)

∑
a∈A

∑
u∈Att(a)

x(a, u) ≥ K (2)

x(a, u) ≤ y(u) (∀a ∈ A, u ∈ Att(a)) (3)∑
u∈Att(a)

x(a, u) ≤ 1 (∀a ∈ A) (4)

y(u) ≤ 1 (∀u ∈ V) (5)

Further, we add non-negativity constraints for all the variables. Constraint (1) (called the
capacity constraint) enforces that at any node the total request assigned does not exceed
the capacity W . Constraint (2) ensures that at least K clients are served. Constraint (3)
ensures that a client can be assigned to a node only to an extent the node is open; without
this constraint, it can be shown that the LP has an unbounded integrality gap. Constraint
(4) enforces that every client is serviced to an extent of at most one. Constraint (5) requires
that a node can be opened to an extent of at most one. Consider an LP solution σ = 〈x, y〉.
The cost of an LP solution is given by the objective function: cost(σ) =

∑
u∈V y(u).

LP Rounding: It is not difficult to show that the above LP has an unbounded integrality gap
if we restrict ourselves to multiplicative approximation ratios. However, we shall show that
the above issue can be overcome by allowing additive errors and prove the following result.
We note that in the following lemma and all the subsequent lemmas, the transformations
claimed can be implemented in polynomial time.

I Lemma 2. Any LP solution σin can be transformed into an integral solution σout such
that cost(σout) ≤ c1 · cost(σin) + c2, where c1 and c2 are constants.

S. Arora, V. T. Chakaravarthy, N. Gupta, K. Mukherjee, and Y. Sabharwal 267

(a) (b)

Figure 1 (a) Transformation from arbitrary solution to feudal solution; (b) Hierarchical solution.

The above lemma implies the main result (Theorem 1). We next present an overview
of the proof of the lemma. Consider an LP solution σ = 〈x, y〉. We say that a node u is
fully-open, if y(u) = 1; it is said to be fully-closed, if y(u) = 0. The node is said to be partially
open, if 0 < y(u) < 1. We shall make a similar classification of the clients. Let a be a client
and consider the extent to which it is served under σ, namely, define ρ(a) =

∑
u∈Att(a) x(a, u).

The client a is said to be: (i) fully-serviced, if ρ(a) = 1; (ii) partially serviced, if 0 < ρ(a) < 1;
(iii) unserviced, if ρ(a) = 0. The client a is said to be serviced, if ρ(a) > 0. A node u is said
to service a client a, if x(a, u) > 0. The solution σ is said to be integrally open, if every node
is either fully-open or fully-closed. Similarly, it is said to be integrally serviced, if every client
is either fully-serviced or unserviced.

Our LP rounding procedure works in four stages and it goes via the important notion of
dual assigned solutions. A solution is said to be dual assigned, if every client is serviced by
at most two nodes. The four stages are as below:
1. Converts any LP solution σin into an integrally serviced solution σ1.
2. Converts σ1 into an integrally serviced, dual assigned solution σ2.
3. Converts σ2 into an integrally open, integrally serviced solution σ3.
4. Converts σ3 into an integral solution σout.
Intuitively, the first stage identifies the K clients to be serviced and helps us move from the
partial cover setting into a full cover setting. In an arbitrary LP solution, a client may be
serviced by any number of nodes. The scenario corresponds to the capacitated set cover
setting. On the other hand, a dual assigned solution corresponds to the capacitated vertex
cover setting. Thus, the second stage helps us move from the capacitated set cover setting to
the capacitated vertex cover setting. These two stages form the main technical component of
the paper. As far as the third stage is concerned, we invoke a rounding algorithm for the
capacitated vertex cover problem, due to Saha and Khuller [10] and obtain an integrally
open, integrally serviced solution. The only task remaining is to make the assignments (i.e.,
x(·, ·)) integral, which is performed by the last stage.

Stage 1: Integrally Serviced Solutions. We first identify groups of nodes that are ap-
proximately fully-open. Let σ = 〈x, y〉 be an LP solution. We say that a node u is rich
if y(u) ≥ 1/3. The node u is said to be poor if 0 < y(u) < 1/3. We also use a similar
terminology for the clients. A client a is said to be rich if the extent to which it is serviced is
at least 1/3, i.e., ρ(a) ≥ 1/3. The client is said to be poor if 0 < ρ(a) < 1/3. As it turns out,
it is easy to handle two types of solutions: those having only rich nodes and those having
only rich clients. For instance, in the first case, we can simply open all the rich nodes and
obtain an integrally open solution (at a three factor loss in approximation). So, the main
challenge lies in handling solutions wherein both poor nodes and poor clients are present.

FSTTCS 2013

268 Replica Placement via Capacitated Vertex Cover

Our algorithm would address the issue by applying a sequence of transformations to the given
solution. The assignments from clients to nodes can be classified into four types, based on
whether a client is rich or poor, and whether a node is rich or poor. Our first transformation
removes one of these assignments, namely the assignments from poor clients to poor nodes.
Towards that goal we next define the notion of feudal solutions. A solution σ is said to be
feudal, if poor nodes service only rich clients. See Figure 1(a). The first transformation is
stated below.

I Lemma 3. Any LP solution σin can be converted into a feudal solution σout such that
cost(σout) ≤ 1 + 2cost(σin).

The natural next step would be to remove the assignments from the rich clients to the
poor nodes, so that the poor nodes are eliminated altogether. However, we do not know
how to achieve the above task in a direct manner. Instead, our next transformation will
make progress towards that goal. Let σ = 〈x, y〉 be an LP solution. We say that a node u is
terminal, if u is not fully-closed and all its descendants are fully-closed. The solution is said
to be hierarchical, if every poor node is terminal and all the other nodes are either fully-open
or fully-closed. See Figure 1(b). In the figure, the colored nodes are fully-open, the hatched
nodes are terminal (poor) nodes and the white nodes are fully-closed. A direct implication of
the hierarchical property is that any client will be serviced by at most one poor node. Thus,
the set of clients serviced by any two poor nodes will be disjoint. Our next transformation is
stated below.

I Lemma 4. Any feudal solution σin can be converted into a hierarchical solution σout such
that cost(σout) ≤ 11 · cost(σin).

Our next transformation would convert hierarchical solutions into integrally serviced
solutions, thereby taking us from the realm of partial covering to the realm of full covering.
In doing so, the procedure would preserve the hierarchical property.

I Lemma 5. Any hierarchical solution σin can be converted into a hierarchical integrally
serviced solution σout such that cost(σout) ≤ 6 + 12 · cost(σin).

The main idea behind the above lemma is as follows. Ignoring the fully-closed nodes, the
input solution σin contains only fully-open nodes and terminal poor nodes. We consider each
fully open node u and perform a shifting procedure on the clients serviced by u. Pick any two
such clients a and b with r(a) ≤ r(b). We can decrease xin(a, u) by δ and increase xin(b, u)
by δ (for a suitable δ). Via this method, we can construct a solution σ′ such that the clients
fall into two types: (i) fully-serviced clients, which will be serviced only by fully-open nodes;
(ii) clients serviced by poor terminal nodes. In order to get a fully-serviced solution, we
need to focus only on the second type of clients. We get an integrally serviced solution by
exploiting the fact that the set of clients serviced by terminal nodes are disjoint.

Stage 2: Integrally Serviced Dual Assigned Solutions. Our next task is to obtain integrally
serviced, dual assigned solutions. Let σin = 〈xin, yin〉 be a hierarchical integrally serviced
solution, as output by Lemma 4. In σin, all the clients are fully-serviced or unserviced. Let Q
be the set of fully-serviced clients. The nodes are of only three types: fully-open, fully-closed
and poor. Let U be the set of all fully-open nodes and let P be the set of poor nodes. Any
client a ∈ Q may be serviced by multiple nodes from U , but it can be serviced by at most
one node from P . We shall focus on U and Q and apply a “cycle cancellation” procedure
to adjust the assignments of the clients to the nodes. We will not modify the extents to

S. Arora, V. T. Chakaravarthy, N. Gupta, K. Mukherjee, and Y. Sabharwal 269

which the nodes are open. This way we shall identify a subset of clients Q′ and obtain a
new solution σ′ = 〈x′, yin〉 such that any client a ∈ Q′ is serviced by at most one from U .
Thus, under σ′, all the clients in Q′ are dual-assigned (these will be serviced by at most one
fully-open node and at most one poor node). We will ensure that the number of clients left
out (namely |Q|− |Q′|) is at most |U |. We then fully open all the clients in Q−Q′ and obtain
a dual-assigned solution σout. The cost of the solution σout will be at most cost(σin) + |U |,
which is at most 2 · cost(σin). We do not know how to perform the above cycle cancellation
operation over partially open nodes and so, we focus on the fully-open nodes. Via the above
strategy, we will establish:

I Lemma 6. Any hierarchical integrally serviced solution σin can be converted into an
integrally serviced, dual assigned solution σout such that cost(σout) ≤ 2 · cost(σin).

Stage 3: Integrally Open, Integrally Serviced Solutions. Let σin be any integrally serviced,
dual assigned solution. Our next task is to convert it into an integrally open, integrally
serviced solution. Under σin, each client is either fully-serviced or unserviced. Let Q be
the set of fully-serviced clients. Each client a ∈ Q is serviced by at most two nodes. For
the ease of exposition, assume that each client a ∈ Q is serviced by exactly two nodes. We
can construct a multi-graph by taking the nodes to be the vertices. Each client a serviced
by two nodes u and v can be represented by a set of r(a) parallel edges between u and v.
The LP solution σin can be construed as an LP solution to the capacitated vertex cover
problem on the above graph. Saha and Khuller [10] present a 34-approximation LP rounding
procedure for the above problem. Using their procedure we can get an integrally open,
integrally serviced solution.

I Lemma 7. Any integrally serviced, dual assigned solution σin can be converted into an
integrally open, integrally serviced solution σout such that cost(σout) ≤ 34 · cost(σin).

Stage 4: Integral Solution. The final stage is to convert an integrally open, integrally
serviced solution σin into an integral solution σout. The only issue with σin is that the
request r(a) of a client a may be split and assigned to multiple nodes. On the other hand,
our problem definition requires that the request must be wholly assigned to a single node.
We can address the issue by using a cycle cancellation procedure similar to that of Stage 2.

I Lemma 8. Any integrally open, integrally serviced solution σin can be converted into an
integral solution σout such that cost(σout) ≤ 2 · cost(σin).

Overall Algorithm: The overall algorithm is obtained by combining the procedures given
by Lemmas 3 – 8. In this paper, we shall only prove Lemmas 3 , 4 and 6 and defer the other
ones to the full version of the paper.

3 Feudal Solutions: Proof of Lemma 3

Let σin = 〈xin, yin〉 be the given solution. Create a pool P consisting of all poor nodes. The
procedure is iterative and it works in multiple phases. Each phase would modify the current
solution into a new solution, which is fed as input to the subsequent phase. To start with,
we take the input solution to be the current solution. In each phase, we shall remove one or
more nodes from the pool. For each such node u, we will ensure that u is either rich or it
services only rich clients (or both). Each phase proceeds as follows.

FSTTCS 2013

270 Replica Placement via Capacitated Vertex Cover

Let πold = 〈x, y〉 be the current solution. With respect to πold, let H be the rich clients
and L be the poor clients. For each node u ∈ P, compute the ratio:

λ(u) = 1
yold(u)

∑
a∈Att(u)∩L

xold(a, u).

Informally, the numerator signifies the contribution towards the partiality parameter K (i.e.,
“gain") given by the poor clients, and the denominator signifies the cost of the node. Higher
the ratio, the node is better. Let u∗ be the node in P having the maximum ratio λ(·); we
call the node as the leader of the phase. The goal of the current phase is to convert u∗ into a
rich node.

Excluding u∗, arrange all the other nodes in P in an arbitrary order, say u1, u2, . . . , u`.
Let s be the least index such that

yold(u∗) +
s∑

j=1
yold(uj) ≥ 1/3.

If no such index exists (meaning yold(u∗) +
∑`

j=1 yold(uj) < 1/3), set s = `. We call the
nodes u1, u2, . . . , us as the slaves of u∗.

Let δ =
∑s

j=1 yold(uj). Construct a new solution πnew = 〈xnew, ynew〉 as follows. First
we eliminate all the assignments of poor clients onto the slaves. Namely, for each slave uj

and all clients a ∈ Att(uj) ∩ L, set xnew(a, uj) = 0. This would reduce the partiality value
(i.e., LHS of constraint (2)) and hence, the constraint would be violated. To compensate,
we increase the assignments of the poor clients to the leader as follows. For each client
a ∈ Att(u∗) ∩ L, set

xnew(a, u∗) = xold(a, u∗) (yold(u∗) + δ)
yold(u∗) .

Using the fact that λ(uj) ≤ λ(u∗), we can show that the loss in the partiality value is
compensated by the above gain. The above increase in the assignments at node u∗ may lead
to violation of constraints (1) or (3) at node u∗. To overcome the issue, we increase the
extent to which u∗ is open. Set

ynew(u∗) = yold(u∗) + δ.

All the other values of ynew(·) and xnew(·, ·) are retained as in πold.

I Lemma 9. πnew is a feasible solution.

The above claim is proved via induction by assuming that πold is feasible and then showing
that πnew is also feasible. The fact that the clients are classified into rich and poor based on
the threshold of 1/3 is used to show that no client gets serviced to an extent of more than
one. The proof is deferred to the full version of the paper.

At the end of the phase we remove the leader and the slaves from the pool. If the pool is
non-empty, we proceed to the next phase and pick a new leader. The solution constructed
πnew is taken as the current solution. On the other hand, the pool may be empty (this will
happen when all the nodes were picked as slaves, i.e., s = `). In this case, we refer to the
leader as the loner. We open loner fully and terminate the procedure.

Let us now analyze the solution output by the process. Let σin = 〈xin, yin〉 be the
solution input to the procedure and let σout = 〈xout, yout〉 be the solution output by the
procedure. Let R and P be the set of all nodes which are rich and poor with respect to σin,

S. Arora, V. T. Chakaravarthy, N. Gupta, K. Mukherjee, and Y. Sabharwal 271

respectively. The extent to which the nodes in R are open was left undisturbed and so, these
remain rich with respect to σout. The nodes in P were added to the pool and all of them got
removed as either leaders or as slaves. We ensured that all the leaders are rich when they left
the pool. Regarding the slaves, we ensured that all the poor clients got their assignments to
these nodes eliminated. It follows that the output solution is feudal.

Let us analyze the cost of the solution σout. We did not modify the extent to which the
nodes in R and the slaves are open. So, we need to consider only the leaders. Except the
loner, consider any leader u. Let δ(u) be the increase in its extent of opening; δ(u) is the
sum of extents to which the slaves of u are open under σin. A node can serve as a slave for
at most one node. Therefore,

cost(σout) ≤ cost(σin) +
∑
u∈S

yin(u),

where S is the set of all slaves. The sum in the RHS is at most cost(σin). Hence, we get
that cost(σout) ≤ 2 · cost(σin). We need to add an extra cost of one for opening the loner.
This completes the proof of Lemma 3.

4 Hierarchical Solutions: Proof of Lemma 4

The lemma is proved in two stages. The first stage converts the input feudal solution into a
sandwich solution, defined next. A solution σ is said to be a sandwich solution if for any two
poor nodes u1 and u2 such that u1 is an ancestor of u2, there exists a rich node v in between
the path connecting u1 and u2 in the given tree. We first prove the following lemma.

I Lemma 10. Any feudal solution σin can be converted into a sandwich solution σout such
that cost(σout) ≤ 5 · cost(σin).

The sandwich property can be equivalently restated as follows. For a node u, let v be the
closest ancestor which is not fully-closed; we call v as the least non-trivial ancestor of u. We
note that the above definition does not apply to the root node and any node u whose path to
the root (including root) consists only of fully-closed nodes. A solution satisfies the sandwich
property if for any poor node u having a least non-trivial ancestor v, the node v is rich.

Let σin = 〈xin, yin〉 be the given solution. We process the nodes from leaf level to the root
level; namely, a node will be processed once all its children are processed. The processing of
each node takes the current solution and produces a new solution.

The processing of a node u∗ is as follows. First consider some easy cases: (i) u∗ is
fully-closed; (ii) u∗ is rich; (iii) u∗ does not have a least non-trivial ancestor; (iv) u∗ has a
rich least non-trivial ancestor v∗. In these cases we do nothing.

The case left remaining is where both u∗ and its least non-trivial ancestor v∗ are poor.
Let p∗ be the parent of u∗ (this could be the same as v∗). Let πold = 〈xold, yold〉 be
the current solution and we will construct a new solution πnew = 〈xnew, ynew〉. We say
that a client a is critical at u∗ if u∗ services a and u∗ is the highest node that a can be
attached (i.e., d(a, p∗) > dmax(a) and so, a 6∈ Att(p∗)). We consider two cases based on
whether there exists a critical client at u∗. If there is such no such client, we perform the
following merge operation. The idea is to close u∗ fully and shift its extent of opening
and all its client assignments to the parent p∗. Compute the new solution by setting
ynew(u∗) = 0 and ynew(p∗) = yold(p∗) + yold(u∗). For each client a serviced by u∗, set
xnew(a, p∗) = xold(a, p∗) + xold(a, u∗) and set xnew(a, u∗) = 0. All other entries of the
functions ynew and xnew are retained as in πold. It can be verified that πnew is feasible.

FSTTCS 2013

272 Replica Placement via Capacitated Vertex Cover

Consider the more interesting case where some client a∗ is critical at u∗. In this case, we
cannot perform the above merge operation. We simply open the node u∗ and set ynew(u∗) = 1.
We next perform a pull procedure as follows. The procedure is iterative. Let πold = 〈xold, yold〉
be the current solution. Consider any client a such that a is serviced by some ancestor v
of u∗. We will pull the assignment of a from v and reassign it to u∗. In doing so, we must
ensure that the capacity constraint at u∗ does not get violated. Let the current capacity
utilization at u∗ be cap(u∗) =

∑
a′∈Att(u∗) r(a′)xold(a′, u∗). Compute

δ = min
{
x(a, v), W − cap(u∗)

r(a)

}
.

Set xnew(a, v) = xnew(a, v) − δ and xnew(a, u∗) = xold(a, u∗) + δ. The above operation is
performed iteratively until we can find no such client a or the capacity utilization at u∗
becomes W . If the procedure terminates under the first criterion, we call u∗ a critical node;
if it terminated under the second criterion, we call u∗ a complete node. This completes the
description of the procedure.

Let σin = 〈xin, yin〉 be the input solution and σ′ = 〈x′, y′〉 be the solution output by the
procedure. It is easy to see that σ′ satisfies the sandwich property. We compare the cost of
σ′ and σin. The merge operation preserves the cost and so, we need to bother only about
the critical and complete nodes. Let nC be the number of critical nodes and nW the number
of complete nodes. We have that

cost(σ′) ≤ cost(σin) + nC + nW .

For a client a, let θin(a) =
∑

u xin(a, u) and θ′(a) =
∑

u x
′(a, u) be the extent to which

a is serviced under σin and σ′, respectively. The above procedure does not change the extent
of service for any client and so θin(a) = θ′(a). Thus, the total volume of service extended by
the two solutions is the same:∑

a∈A

r(a)θin(a) =
∑
a∈A

r(a)θ′(a).

Clearly, the quantity nW ·W is at most the RHS, because the nW complete nodes have
capacity utilization W . Moreover, cost(σin) is at least LHS/W since a node has only
capacity W . It follows that nW ≤ cost(σin).

We now consider the quantity nC . Let u1, u2, . . . , us be the critical nodes, where s = nC .
For each 1 ≤ j ≤ s, uj has a critical client aj under σ′. Under σin, either the poor node
uj services aj or some poor node merged with uj services it. Either way aj is serviced by
some poor node under σin. Since σin is a feudal solution, θin(aj) ≥ 1/3. Let pj be the path
connecting uj and leaf node aj in the tree. Let µ(aj) the sum of extents to which the nodes
found along the above path are open in σin, i.e.,

∑
u∈pj

yold(u). By the constraint (3), we
have that µ(aj) ≥ θin(aj) and hence, µ(aj) ≥ 1/3. The pulling procedure ensures that for
any ai and aj , the paths pi and pj are disjoint. Therefore,

cost(σin) ≥
s∑

j=1
µ(aj) ≥ s/3.

This shows that nC ≤ 3cost(σin). Hence, we get that cost(σ′) ≤ 5 · cost(σin).
We now transform the sandwich solution σ′ into a hierarchical solution σout. With respect

to σ′ = 〈x′, y′〉, let R be the set of rich nodes and let P be the set of poor nodes. Of the poor
nodes, let P1 be the set of terminal nodes and let P2 be the other nodes. The sandwich property

S. Arora, V. T. Chakaravarthy, N. Gupta, K. Mukherjee, and Y. Sabharwal 273

implies that |P2| ≤ |R|. We fully open all the nodes in R and P2, and obtain a hierarchical
solution σout. We see that cost(σ′) ≥ |R|/3 and that cost(σout) ≤ 2 · |R| + cost(σ′).
Therefore, cost(σout) ≤ 7 · cost(σ′). This shows that cost(σout) ≤ 35 · cost(σin) However,
by combining the analysis of the two stages, we can derive an improved bound: cost(σout) ≤
11 · cost(σin) (details are deferred to the full version of the paper).

5 Proof of Lemma 6

Let σin be the input hierarchical integrally serviced solution. In σin, all the clients are
fully-serviced or unserviced, and the nodes are of only three type: fully-open, fully-closed and
poor. Each client can be serviced by at most one poor node. We will adjust the assignments
of the clients to the fully-open nodes and obtain a new solution wherein most of the clients
are serviced by at most one fully-open node. The following client-server setup is useful for
this purpose.

Consider a bipartite graph with a set of servers U on one side and a set of clients Q
on the other side. For a client a, all its neighboring servers are said to be accessible to a.
Each client has an integral requirement q(a) and each server has an integral capacity W . An
edge-assignment g over a subset of clients Q′ ⊆ Q is a mapping that takes as input a client
a ∈ Q′ and node u accessible to it and outputs a value g(a, u) ∈ [0, q(a)] (intuitively, it assigns
g(a, u) part of the request q(a) to u). We require that for any client a,

∑
u g(a, u) = q(a)

and for any node u,
∑

a g(a, u) ≤W . We allow q(a) and g(a, u) to be non-integral. We say
that an edge-assignment is a single policy assignment, if for any client a ∈ Q, all its request
is assigned to a single accessible server. The following lemma shows how to convert any
assignment into a single policy assignment with only a minimal loss.

I Lemma 11. There exists a polynomial time procedure that takes any edge-assignment g
over Q as input and outputs a subset of clients Q′ and an edge-assignment g′ over Q′ such
that: (i) g′ is a single policy edge-assignment over Q′; (ii) the number of ignored clients is at
most U , i.e., |Q| − |Q′| ≤ |U |.

Proof. Let G = (V,E) be the weighted bipartite graph where V = U ∪Q and E is the set
of edges between clients and their neighboring servers. The weight on an edge (a, u) ∈ E is
defined to be the assignment g(a, u). Let G+ be the graph induced on G by considering only
the edges with strictly positive weights, i.e., corresponding to which the assignments g are
non-trivial (g(a, u) > 0).

We first show that it is possible to eliminate cycles from the induced graph G+. The
main idea is to employ cycle cancelling. Consider any cycle, C, in G+. Since G is a bipartite
graph, the cycle is of even length. We partition the edges of the cycle C into two sets Ceven

and Codd by considering alternate edges in each set. We now modify the weights as follows.
Let δ be the weight of the minimum weight edge in the cycle. For every edge, (a, u) in Ceven,
we increase g(a, u) by an amount δ/q(a) and for every edge (a, u) in Codd, we decrease g(a, u)
by an amount δ/q(a). This breaks the cycle. We apply this procedure repeatedly until all
the cycles are eliminated.

We next analyze the forest G+. Let Q′ = {a ∈ Q ∩G+ : degree(a) = 1 in G+}. Note
that all these clients are already fully assigned. Now consider the forest G̃+ induced by the
vertices of U ∪ (Q \Q′) on G+. Consider any tree H in the forest. Pick an arbitrary vertex
r ∈ U ∩H and make it the root of the tree. For any vertex v of H, let `(v) denote the level
(distance from the root r) of the vertex v in the tree. Since G+ is a bipartite graph, we note
that the vertices at even level (odd level resp.) belong to U ∩H (¯Q ∩H resp.). Note that

FSTTCS 2013

274 Replica Placement via Capacitated Vertex Cover

all the leaves in the tree are in U . We now construct a one-to-one mapping from Q ∩H to
U ∩H. This is obtained by mapping every element of Q in the tree to any one of its children
arbitrarily. This shows that |Q∩H| ≤ |U ∩H|. We repeat the above procedure for every tree
in the forest G̃+. The one-to-one mapping gives us that |Q| − |Q′| ≤ |U |. This completes the
proof of the lemma. J

We can now prove Lemma 6 using the above client-server setup. Consider the input
solution σin = 〈xin, yin〉. Let U be the set of all fully-open nodes in σin and let Q be the set
of fully-serviced clients. For each a ∈ Q, let q(a) be the portion of the request of a serviced
by the nodes in U ; let q(a) =

∑
u∈U∩Att(a) r(a) · xin(a, u). Construct an edge-assignment

g: for each client a ∈ Q and u ∈ U ∩ Att(a), let g(a, u) = xin(a, u)r(a). Invoke Lemma
11 and obtain a set of clients Q′ ⊆ Q and an edge-assignment g′ over Q′. Using g′ we can
construct a new solution σout = 〈xout, yout〉 such that all the clients in Q′ are serviced by at
most one fully-open node. All these clients are dual assigned. As far as the clients in Q−Q′
are concerned, we simply fully open the leaf nodes corresponding to these clients. The new
solution σout will have cost at most cost(σin) + |Q| − |Q′|. The above lemma guarantees
that |Q| − |Q′| ≤ |U |. Since cost(σin) ≥ |U |, we have that cost(σout) ≤ 2 · cost(σin).

References
1 A. Benoit, H. Larchevêque, and P. Renaud-Goud. Optimal algorithms and approximation

algorithms for replica placement with distance constraints in tree networks. In IPDPS,
pages 1022–1033, 2012.

2 A. Benoit, V. Rehn-Sonigo, and Y. Robert. Replica placement and access policies in tree
networks. IEEE Trans. on Parallel and Dist. Systems, 19:1614–1627, 2008.

3 J. Chuzhoy and J. Naor. Covering problems with hard capacities. SIAM Journal Computing,
36(2):498–515, 2006.

4 I. Cidon, S. Kutten, and R. Soffer. Optimal allocation of electronic content. Computer
Networks, 40:205–218, 2002.

5 U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM, 45(4):634–
652, 1998.

6 R. Gandhi, E. Halperin, S. Khuller, G. Kortsarz, and A. Srinivasan. An improved approx-
imation algorithm for vertex cover with hard capacities. Journal of Computer and System
Sciences, 72(1), 2006.

7 K. Kalpakis, K. Dasgupta, and O. Wolfson. Optimal placement of replicas in trees with
read, write, and storage costs. IEEE Trans. on Parallel and Distributed Systems, 12:628–
637, 2001.

8 M.J. Kao and C.S. Liao. Capacitated domination problem. Algorithmica, pages 1–27, 2009.
9 Y.F. Lin, P. Liu, and J.J. Wu. Optimal placement of replicas in data grid environments

with locality assurance. In ICPADS, 2006.
10 B. Saha and S. Khuller. Set cover revisited: Hypergraph cover with hard capacities. In

ICALP, 2012.
11 L. Wolsey. An analysis of the greedy algorithm for the submodular set covering problem.

Combinatorica, 2(4):385–393, 1982.
12 J.J. Wu, Y.F. Lin, and P. Liu. Optimal replica placement in hierarchical data grids with

locality assurance. J. of Parallel and Dist. Computing, 68:1517–1538, 2008.

	Introduction
	Overview of the Main Result
	Feudal Solutions: Proof of Lemma 3
	Hierarchical Solutions: Proof of Lemma 4
	Proof of Lemma 6

