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Abstract
We study the following summarization problem: given a parallel composition A = A1 ‖ . . . ‖
An of labelled transition systems communicating with the environment through a distinguished
componentAi, efficiently compute a summary Si such that E ‖ A and E ‖ Si are trace-equivalent
for every environment E. While Si can be computed using elementary automata theory, the
resulting algorithm suffers from the state-explosion problem. We present a new, simple but subtle
algorithm based on net unfoldings, a partial-order semantics, give some experimental results using
an implementation on top of Mole, and show that our algorithm can handle divergences and
compute weighted summaries with minor modifications.
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1 Introduction

We address a fundamental problem in automatic compositional verification. Consider a
parallel composition A = A1 ‖ . . . ‖ An of processes, modelled as labelled transition systems,
which is itself part of a larger system E ‖ A for some environment E. Assume that Ai is
the interface of A with the environment, i.e., A communicates with the outer world only
through actions of Ai. The task consists in computing a new interface Si with the same set
of actions as Ai such that E ‖ A and E ‖ Si have the same behaviour. In other words, the
environment E cannot distinguish between A and Si. Since Si usually has a much smaller
state space than A (making E ‖ A easier to analyse) we call it a summary.

We study the problem in a CSP-like setting [13]: parallel composition is by rendez-vous,
and the behaviour of a transition system is given by its trace semantics.

It is easy to compute Si using elementary automata theory: we first compute the transition
system of A, whose states are tuples (s1, . . . , sn), where si is a state of Ai. Then we hide
all actions except those of the interface, i.e., we replace them by ε-transitions (τ -transitions
in CSP terminology). We can then eliminate all ε-transitions using standard algorithms,
and, if desired, compute the minimal summary by applying e.g. Hopcroft’s algorithm. The
problem of this approach is the state-space explosion: the number of states of A can grow
exponentially in the number of sequential components. While this is unavoidable in the worst
case (deciding whether Si has an empty set of traces is a PSPACE-complete problem, and
the minimal summary Si may be exponentially larger than A1, . . . ,An in the worst case, see
e.g. [11]) the combinatorial explosion happens already in trivial cases: if the components
A1, . . . ,An do not communicate at all, we can obviously take Si = Ai, but the algorithm we
have just described will need exponential time and space.
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226 Computation of Summaries Using Net Unfoldings

We present a technique to palliate this problem based on net unfoldings (see e.g. [4]).
Net unfoldings are a partial-order semantics for concurrent systems, closely related to event
structures [22], that provides very compact representations of the state space for systems
with a high degree of concurrency. Intuitively, an unfolding is the extension to parallel
compositions of the notion of unfolding a transition system into a tree. The unfolding is
usually infinite. We show how to algorithmically construct a finite prefix of it from which
the summary can be easily extracted. The algorithm can be easily implemented re-using
many components of existing unfolders like Punf and Mole. However, its correctness
proof is surprisingly subtle. This proof is the main contribution of the paper. However, we
also evaluate the algorithm on some classical benchmarks [2]. We then show that – with
minor modifications – the algorithm can be extended so that the summary obtained contains
information about the possible divergences, that is whether or not after a given finite trace
of the interface Ai it is possible that A evolves silently forever (i.e. without using any action
of Ai). And finally, we show how to extend the algorithm to deal with weighted systems: Si
then also gives for each of its finite traces the minimum cost in A to execute this trace.

Related work. The summarization problem has been extensively studied in an interleaving
setting (see e.g. [10, 21, 23]), in which one first constructs the transition system of A and
then reduces it. We study it in a partial-order setting.

Net unfoldings, and in general partial-order semantics, have been used to solve many
analysis problems: deadlock [18, 15], reachability and model-checking questions [6, 3, 14, 4, 1],
diagnosis [7], and other specific applications [17, 12]. To the best of our knowledge we are
the first to explicitly study the summarization problem.

Our problem can be solved with the help of Zielonka’s algorithm [24, 19, 9], which
yields an asynchronous automaton trace-equivalent to A. The projection of this automaton
onto the alphabet of Ai yields a summary Si. However, Zielonka’s algorithm is notoriously
complicated and, contrary to our algorithm, requires to store much additional information
for each event [19]. In [8], the complete tuple S1, . . . ,Sn is computed – possibly in a weighted
context – with an iterative message-passing algorithm that transfers information between
components until a fixed point is reached. However, termination is only guaranteed when
the communication graph is acyclic.

2 Preliminaries

Transition systems. A labelled transition system (LTS) is a tuple A = (Σ, S, T, λ, s0) where
Σ is a set of actions, S is a set of states, T ⊆ S × S is a set of transitions, λ : T → Σ is a
labelling function, and s0 ∈ S is an initial state. An a-transition is a transition labelled by a.
We use this definition – excluding the possibility to have two transitions with different labels
between the same pair of states – for simplicity. However, the results presented in this paper
would still hold if this possibility was not excluded. A (finite or infinite) action sequence
σ = a1a2a3 . . . ∈ Σ∗ ∪Σω is a trace of A if there is a (finite or infinite) sequence s0s1s2 . . . of
states such that s0 = s0, ti = (si−1, si) ∈ T and λ(ti) = ai for every i. The path s0s1s2 . . . is
a realization of σ. The set of traces of A is denoted by Tr(A). Figure 1 shows (on its left)
three transition systems.

Let A1, . . . ,An be LTSs where Ai = (Σi, Si, Ti, λi, s
0
i ). The parallel composition A =

A1 ‖ . . . ‖ An is the LTS defined as follows. The set of actions is Σ = Σ1∪. . .∪Σn. The states,
called global states, are the tuples s = (s1, . . . , sn) such that si ∈ Si for every i ∈ {1..n}.
The initial global state is s0 = (s0

1, . . . , s
0
n). The transitions, called global transitions, are

the tuples t = (t1, . . . , tn) ∈ (T1 ∪ {?}) × · · · × (Tn ∪ {?}) \ {(?, . . . , ?)} such that there is
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Figure 1 Three labeled transition systems (left) and a branching process (right).

an action a ∈ Σ satisfying for every i ∈ {1..n}: if a ∈ Σi, then ti is an a-transition of Ti,
otherwise ti = ?; the label of t is the action a. If ti 6= ? we say that Ai participates in t. It
is easy to see that σ ∈ Σ∗ ∪Σω is a trace of A iff for every i ∈ {1..n} the projection of σ on
Σi, denoted by σ|Σi

, is a trace of Ai.

Petri nets. A labelled net is a tuple (Σ, P, T, F, λ) where Σ is a set of actions, P and T
are disjoint sets of places and transitions (jointly called nodes), F ⊆ (P × T ) ∪ (T × P )
is a set of arcs, and λ : P ∪ T → Σ is a labelling function. For x ∈ P ∪ T we denote
by •x = { y | (y, x) ∈ F } and x• = { y | (x, y) ∈ F } the sets of inputs and outputs of
x, respectively. A set M of places is called a marking. A labelled Petri net is a tuple
N = (Σ, P, T, F, λ,M0) where (Σ, P, T, F, λ) is a labelled net and M0 ⊆ P is the initial
marking. A marking M enables a transition t ∈ T if •t ⊆M . In this case t can occur or fire,
leading to the new marking M ′ = (M \ •t)∪ t•. An occurrence sequence is a (finite or infinite)
sequence of transitions that can occur from M0 in the order specified by the sequence. A
trace is the sequence of labels of an occurrence sequence. The set of traces of N is denoted
by Tr(N ).

Branching processes. The finite branching processes of A = A1 ‖ . . . ‖ An are labelled
Petri nets whose places are labelled with states of A1, . . . ,An, and whose transitions are
labelled with global transitions of A. Following tradition, we call the places and transitions
of these nets conditions and events, respectively. (Since global transitions are labelled with
actions, each event is also implicitly labelled with an action.) We say that a marking M of
these nets enables a global transition t of A if for every state s ∈ •t some condition of M is
labelled by s. The set of finite branching processes of A is defined inductively as follows:
1. A labelled Petri net with conditions b01, ..., b0n labelled by s0

1, . . . , s
0
n, no events, and with

initial marking {b01, ..., b0n}, is a branching process of A.
2. Let N be a branching process of A such that some reachable marking of N enables some

global transition t. Let M be the subset of conditions of the marking labelled by •t. If
N has no event labelled by t with M as input set, then the Petri net obtained by adding
to N : a new event e, labelled by t; a new condition for every state s of t•, labelled by s;
new arcs leading from each condition of M to e, and from e to each of the new conditions,
is also a branching process of A.

Figure 1 shows on the right a branching process of the parallel composition of the LTSs on
the left. Events are labelled with their corresponding actions.

The set of all branching processes of a net, finite and infinite, is defined by closing the
finite branching processes under countable unions (after a suitable renaming of conditions
and events) [4]. In particular, the union of all finite branching processes yields the unfolding
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228 Computation of Summaries Using Net Unfoldings

of the net, which intuitively corresponds to the result of exhaustively adding all extensions
in the definition above.

A trace of a branching process N is the sequence of action labels of an occurrence sequence
of events of N . In Figure 1, firing the events on the top half of the process yields any of the
traces cbdcbd, cdbcbd, cbdcdb, or cdbcdb. The sets of traces of A and of its unfolding coincide.

Let x, y be nodes of a branching process. We say that x is a causal predecessor of y,
denoted by x < y, if there is a non-empty path of arcs from x to y; further, x ≤ y denotes
that either x < y or x = y. If x ≤ y or x ≥ y, then x and y are causally related. We say that
x and y are in conflict, denoted by x # y, if there is a condition z (different from x and y)
from which one can reach both x and y, exiting z by different arcs. Finally, x and y are
concurrent if they are neither causally related nor in conflict.

A set of events E is a configuration if it is causally closed (that is, if e ∈ E and e′ < e then
e′ ∈ E) and conflict-free (that is, for every e, e′ ∈ E, e and e′ are not in conflict). The past
of an event e, denoted by [e], is the set of events e′ such that e′ ≤ e (so it is a configuration).
For any event e, we denote by M(e) the unique marking reached by any occurrence sequence
that fires exactly the events of [e]. Notice that, for each component Ai of A, M(e) contains
exactly one condition labelled by a state of Ai. We denote this condition by M(e)i. We
write St(e) = {λ(x) | x ∈M(e) } and call it the global state reached by e.

3 The Summary Problem

Let A = A1 ‖ · · · ‖ An be a parallel composition with a distinguished component Ai, called
the interface. An environment of A is any LTS E (possibly a parallel composition) that
only communicates with A through the interface, i.e, ΣE ∩ (Σ1 ∪ . . . ∪ Σn) = ΣE ∩ Σi.
We wish to compute a summary Si, i.e., an LTS with the same actions as Ai such that
Tr(E ‖ A)|ΣE = Tr(E ‖ Si)|ΣE for every environment E, where X|Σ denotes the projection
of the traces of X onto Σ. It is well known (and follows easily from the definitions) that this
holds iff Tr(Si) = Tr(A)|Σi [13]. We therefore address the following problem:

I Definition 1 (Summary problem). Given LTSs A1, . . . ,An with interface Ai, compute an
LTS Si satisfying Tr(Si) = Tr(A)|Σi , where A = A1 ‖ · · · ‖ An.

The problem can be solved by computing the LTS A, but the size of A can be exponential
in A1, . . . ,An. So we investigate an unfolding approach.

The interface projection Ni of a branching process N of A onto Ai is the following
labelled subnet of N : (1) the conditions of Ni are the conditions of N with labels in Si;
(2) the events of Ni are the events of N where Ai participates; (3) (x, y) is an arc of Ni iff
it is an arc of N and (x, y) are nodes of Ni. Obviously, every event of Ni has exactly one
input and one output condition, and Ni can therefore be seen as an LTS; thus, we sometimes
speak of the LTS Ni. The interface projection N1 for the branching process of Figure 1 is
the subnet given by the black conditions and their input and output events, and its LTS
representation is shown in the left of Figure 2.

q1 c
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q4

q2 d q1

q3

c q2 d q1 q2c q1 c
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q4
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Figure 2 Projection of the branching process of Figure 1 on A1 (left) and a folding (right).
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The projection Ui of the full unfolding of A onto Ai clearly satisfies Tr(Ui) = Tr(A)|Σi
;

however, Ui can be infinite. In the rest of the paper we show how to compute a finite
branching process N and an equivalence relation ≡ between the conditions of Ni such that
the result of folding Ni into a finite LTS by merging the conditions of each equivalence class
yields the desired Si. The folding of Ni is the LTS whose states are the equivalence classes of
≡, and every transition (s, s′) of Ni yields a transition ([s]≡, [s′]≡) of the folding. Figure 2
shows on the right the result of folding the LTS on the left when the only equivalence class
with more than one member is formed by the two rightmost states labelled by q2.

We construct N by starting with the branching processes without events and iteratively
add one event at a time. Some events are marked as cut-offs [4]. An event e added to N
becomes a cut-off if N already contains an e′, called the companion of e, satisfying a certain,
yet to be specified cut-off criterion. Events with cut-offs in their past cannot be added.
The algorithm terminates when no more events can be added. The equivalence relation ≡
is determined by the interface cut-offs: the cut-offs labelled with interface actions. If an
interface cut-off e has companion e′, then we set M(e)i ≡M(e′)i. Algorithm 1 is pseudocode
for the unfolding, where Ext(N , co) denotes the possible extensions: the events which can be
added to N without events from the set co of cut-offs in their past.

Algorithm 1 Unfolding procedure for a product A.
let N be the unique branching process of A without events and let co = ∅
While Ext(N , co) 6= ∅ do

choose e in Ext(N , co) and extend N with e
If e is a cut-off event then let co = co ∪ {e}

For every e ∈ co with companion e′ do merge [M(e)i]≡ and [M(e′)i]≡

Notice that the algorithm is nondeterministic: the order in which events are added is not
fixed (though it necessarily respects causal relations). We wish to find a definition of cut-offs
such that the LTS Si delivered by the algorithm is a correct solution to the summary problem.
Several papers have addressed the problem of defining cut-offs such that the branching
process delivered by the algorithm contains all global states of the system (see [4] and the
references therein). In [5] we show that these approaches do not “unfold enough”.

4 Two Attempts

The solution turns out to be remarkably subtle, and so we approach it in a series of steps.

4.1 First attempt
In the following we shall call events in which Ai participates i-events for short; analogously,
we call i-conditions the conditions labelled by states of Ai.

The simplest idea is to declare an i-event e a cut-off if the branching process already
contains another i-event e′ with St(e) = St(e′). Intuitively, the behaviours of the interface
after the configurations [e] and [e′] is identical, and so we only explore the future of [e′].

Cut-off definition 1. An event e is a cut-off event if it is an i-event and N contains
an i-event e′ such that St(e) = St(e′).

It is not difficult to show that this definition is correct for non-divergent systems.
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230 Computation of Summaries Using Net Unfoldings

I Definition 2. A parallel composition A with interface Ai is divergent if some infinite trace
of A contains only finitely many occurrences of actions of Σi.

I Theorem 3. Let A be non-divergent. The instance of Algorithm 1 with cut-off definition
1 terminates with a finite branching process N , and the folding Si of Ni is a summary of A.

The proof of this theorem is given in [5].
The system of Figure 1 is non-divergent. Algorithm 1 computes the branching process on

the right of Figure 1. The only cut-off is event 9 with companion 3. The folding is shown in
Figure 2 (right) and is a correct summary. However, cut-off definition 1 never works if A is
divergent because the unfolding procedure does not terminate. Indeed, if the system has
divergent traces then we can easily construct an infinite firing sequence of the unfolding such
that none of the finitely many i-events in the sequence is a cut-off. Since no other events can
be cut-offs, Algorithm 1 adds all events of the sequence. This occurs for instance for the
system of Figure 3 with interface A1, where the occurrence sequence of the unfolding for the
trace i(fcd)ω contains no cut-off.

4.2 Second attempt
To ensure termination for divergent systems, we extend the definition of cut-off. For this, we
define for each event e its i-predecessor. Intuitively, the i-predecessor of an event e is the last
condition that e “knows” has been reached by the interface.

I Definition 4. The i-predecessor of an event e, denoted by ip(e), is the condition M(e)i.

Assume now that two events e1 < e2, neither of them interface event, satisfy ip(e1) = ip(e2)
and St(e1) = St(e2). Then any occurrence sequence σ that executes the events of the set
[e2]\ [e1] leads from a marking to itself and contains no interface events. So σ can be repeated
infinitely often, leading to an infinite trace with only finitely many interface actions. It is
therefore plausible to mark e2 as cut-off event, in order to avoid this infinite repetition.

Cut-off definition 2. An event e is a cut-off if
(1) e is an i-event, and N contains an i-event e′ with St(e) = St(e′), or
(2) e is not an i-event, and some event e′ < e satisfies St(e) = St(e′) and ip(e) = ip(e′).

We give an example showing that this natural definition does not work: the algorithm
always terminates but can yield a wrong result. Consider the parallel composition at the left
of Figure 3, with interface A1. Clearly Tr(A)|Σ1 = Tr(A1) = iab∗e. For any strategy the
algorithm generates the branching process N at the top right of the figure (without the dashed
part). N has two cut-off events: the interface event 6, which is of type (1), and event 8, a non-
interface event, of type (2). Event 6 has 5 as companion, with St(5) = St(6) = {q2, r2, s2}.
Event 8 has 0 as companion, with St(0) = {q1, r1, s1} = St(8); moreover, 0 < 8 and
ip(0) = ip(8). The folding of N1 is shown at the bottom right of the figure. It is clearly not
trace-equivalent to A1 because it “misses” the trace iabe. The dashed event at the bottom
right, which would correct this, is not added by the algorithm because it is a successor of 8.

5 The Solution

Intuitively, the reason for the failure of our second attempt on the example of Figure 3 is
that A1 can only execute iabe if A2 and A3 execute ifcd first. However, when the algorithm
observes that the markings before and after the execution of ifcd are identical, it declares 8
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Figure 3 Cut-off definition 2 produces an incorrect result on A = A1 ‖ A2 ‖ A3.

a cut-off event, and so it cannot “use” it to construct event e. So, on the one hand, 8 should
not be a cut-off event. But, on the other hand, some event of the trace i(fcd)ω must be
declared cut-off, otherwise the algorithm does not terminate.

The way out of this dilemma is to introduce cut-off candidates. If an event is declared
a cut-off candidate, the algorithm does not add any of its successors, just as with regular
cut-offs. However, cut-off candidates may stop being candidates if the addition of a new
event frees them. (So, an event is a cut-off candidate with respect to the current branching
process.) A generic unfolding procedure using these ideas is given in Algorithm 2, where
Ext(N , co, coc) denotes the possible extensions of N that do not have any event of co or coc
in their past. Assuming suitable definitions of cut-off candidates and freeing, the algorithm
would, in our example, declare event 8 a cut-off candidate, momentarily stop adding any of
its successors, but later free event 8 when event 5 is discovered.

Algorithm 2 Unfolding procedure for a product A.
let N be the unique branching process of A without events; let co = ∅ and coc = ∅
While Ext(N , co, coc) 6= ∅ do

choose e in Ext(N , co, coc) according to the search strategy
If e is a cut-off event then let co = co ∪ {e}
Elseif e is a cut-off candidate of N then let coc = coc ∪ {e}
Else for every e′ ∈ coc do

If e frees e′ then coc = coc \ {e′}
extend N with e

For every e ∈ co with companion e′ do merge [M(e)i]≡ and [M(e′)i]≡

The main contribution of our paper is the definition of a correct notion of cut-off candidate
for the projection problem. We shall declare event e a cut-off candidate if e is not an interface
event, and N contains a companion e′ < e such that St(e′) = St(e), ip(e) = ip(e′), and,
additionally, no interface event e′′ of N is concurrent with e without being concurrent with
e′. As long as this condition holds, the successors of e are put “on hold”. In the example of
Figure 3, if the algorithm first adds events 0, 3, 4, and 8, then event 8 becomes a cut-off
candidate with 0 as companion. However, the addition of the interface event 5 frees event 8,
because 5 is concurrent with 8 and not with 0.

However, we are not completely done yet. The parallel composition at the left of Figure 4
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Figure 4 An example illustrating the use of strong causality.

gives an example in which even with this notion of cut-off candidate the result is still wrong.
A1 is the interface. One branching process is represented at the top right of the figure.
Event 3 (concurrent with 1) is a cut-off candidate with 2 (concurrent with 1, 4, and 5) as
companion. This prevents the lower dashed part of the net to be added. Event 6 is cut-off
with 1 as companion. This prevents the upper dashed part of the net to be added. The
refolding obtained then (bottom right) does not contain the word abcb.

If we wish a correct algorithm for all strategies, we need a final touch: replace the
condition e′ < e by e′ � e, where � is the strong causal relation:

I Definition 5. Event e′ is a strong cause of event e, denoted by e′ � e, if e′ < e and b′ < b

for every b ∈M(e) \M(e′), b′ ∈M(e′) \M(e).

Using this definition, event 3 is no longer a cut-off candidate in the branching process of
Figure 4 as it is not in strong causal relation with its companion 2 (because the t2-labelled
condition just after 2 belongs to M(2) \M(3) and is not causally related with the r1-labelled
condition just after 0 which belongs to M(3) \M(2)).

We are now in a position to provide adequate definitions for Algorithm 2.

I Definition 6 (Cut-off and cut-off candidate). Let IcoN (e) denote the set of non cut-off
interface events of N that are concurrent with e. An event e

is a cut-off if it is an i-event, and N contains an i-event e′ such that St(e) = St(e′).
is a cut-off candidate of N if it is not an i-event, and N contains e′ � e such that
St(e) = St(e′), ip(e′) = ip(e), and IcoN (e) ⊆ IcoN (e′).
frees a cut-off candidate ec of N if ec is not a cut-off candidate of the branching process
obtained by adding e to N .

I Theorem 7. Let A = A1 ‖ . . . ‖ An with interface Ai. The instance of Algorithm 2 given
by Definition 6 terminates and returns a branching process N such that the folding Si of Ni
is a summary of A.

The proof of this theorem is involved. It is given in [5]. We sketch the main ideas.
Termination follows from a lemma showing that every infinite chain of causally related events
contains an infinite subchain of strongly causally related events. The equality Tr(Si) =
Tr(A)|Σi

is proved in two parts. Tr(Si) ⊆ Tr(A)|Σi
follows easily from the definitions. The

proof of Tr(Si) ⊇ Tr(A)|Σi is more involved. For every trace of A we identify a strongly
succinct occurrence sequence in the unfolding with this trace as projection. Intuitively, in



J. Esparza, L. Jezequel, and S. Schwoon 233

such a sequence, interface events occur as early as possible, and the number of non-interface
events occurring between them is minimal. The main point in the proof is to show that every
cut-off in strongly succinct sequences is necessarily an interface event, which allows one to
conclude the proof as in the non-divergent case. This is proved by contradiction: If e is a
cut-off candidate with companion e′, we show that (1) e and e′ are located between the same
two interface events (this uses IcoN (e) ⊆ IcoN (e′)), (2) there is no i-event in [e] \ [e′], and (3)
every event of [e] \ [e′] is also located between the same two interface events (this is ensured
by e′ � e). The events from [e] \ [e′] can then be removed from the sequence, contradicting
the definition of strongly succinct sequence.

6 Implementation and Experiments

As an illustration of the previous results, we report in this section on an implementation of
Algorithm 2 as a modification of the existing unfolding tool Mole. All programs and data
used are publicly available. 1 Many components of Mole could be re-used. The main work
consisted in determining cut-off candidates and the “freeing” condition of Definition 6. This
required two main algorithmic additions discussed in detail in [5]: (i) an efficient traversal of
[e], for a given event e, that allows to determine the conditions for cut-off candidates; (ii)
computing IcoN (e) for an event e. Both additions could be obtained by extending existing
components of the tool. While the additions were not always trivial, they could be obtained
with small additional overhead.

Table 1 Experimental results.

Test case Events Markings
CyclicC(6) 426 639
CyclicC(9) 3347 7423
CyclicC(12) 26652 74264

CyclicS(6) 303 639
CyclicS(9) 2328 7423
CyclicS(12) 18464 74264

Dac(9) 86 1790
Dac(12) 134 14334
Dac(15) 191 114686

Dp(6) 935 729
Dp(8) 5121 6555
Dp(10) 31031 48897

Dpd(4) 2373 601
Dpd(5) 23789 3489
Dpd(6) 245013 19861

Dpsyn(10) 176 123
Dpsyn(20) 701 15127
Dpsyn(30) 1576 1860498

Ring(5) 511 1290
Ring(7) 3139 17000
Ring(9) 16799 211528

We tested our implementation on well-known
benchmarks used widely in the unfolding literature,
see e.g. [2, 6, 16]. The input is the set of components
A1, . . . ,An, which are converted into an equivalent
Petri net. For each example, we report the number
of events (including cut-offs) in the prefix. Notice
that this prefix is computed in less than one second
in most cases (more detailed experimental results are
given in [5]). We also report the number of reach-
able markings (taken from [20] where available, and
computed combinatorially for DpSyn).

The experiments are summarized in Table 1. We
used the following families of examples [2]: the Cyc-
licC and CyclicS families are a model of Milner’s
cyclic scheduler with n consumers and n schedulers;
in one case we compute the folding for a consumer, in
the other for a scheduler. The Dac family represents
a divide-and-conquer computation. Ring is a mutual-
exclusion protocol on a token-ring. The tasks are not
entirely symmetric, we report the results for the first.
Finally, Dp, Dpsyn, and Dpd are variants of Dining
Philosophers. In Dp, philosophers take and release
forks one by one, whereas in Dpsyn they take and
release both at once. In Dpd, deadlocks are prevented
by passing a dictionary.

1 http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/summaries.tar.gz
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In all cases except one (Dpd) our algorithm needs clearly fewer events than there are
reachable markings; in some families (Dac, Dpsyn, Ring) there are far fewer events. A
comparison of Dp and Dpsyn is instructive. In Dp, neighbours can concurrently pick and
drop forks. Intuitively, this leads to fewer cases in which the condition IcoN (e) ⊆ IcoN (e′)
for cut-off candidates is satisfied. On the other hand, in Dpsyn both forks are picked and
dropped synchronously, and so no event in Ai is concurrent to any event in the neighbouring
components, making the unfolding procedure much more efficient.

7 Extensions: Divergences and Weights

We conclude the paper by showing that our algorithm can be extended to handle more
complex semantics than traces. Indeed, the divergences of the system can be captured by the
summaries, as well as the minimal weights of the finite traces from Tr(A)|Σi

when A1 . . .An
are weighted systems.

7.1 Divergences
We first extend our algorithm so that the summary also contains information about divergences.
Intuitively, a divergence is a finite trace of the interface after which the system can “remain
silent” forever.

I Definition 8. Let A1, . . . ,An be LTSs with interface Ai. A divergence of Ai is a finite trace
σ ∈ Tr(Ai) such that σ = τ|Σi

for some infinite trace τ ∈ Tr(A). A divergence-summary
is a pair (Si, D), where Si is a summary and D is a subset of the states of Si such that
σ ∈ Tr(Si) is a divergence of Ai iff some realization of σ in Si leads to a state of D.

We define the set of divergent conditions of the output of Algorithm 2, and show that it
is a correct choice for the set D.

I Definition 9. Let N be the output of Algorithm 2. A condition s of Ni is divergent if after
termination of the algorithm there is e ∈ coc with companion e′ such that s is concurrent to
both e and e′. We denote the set of divergent conditions by DC .

I Theorem 10. A finite trace σ ∈ Tr(Si) is a divergence of Ai iff there is a divergent
condition s of Ni such that some realization of σ leads to [s]≡. Therefore, (Si, [DC ]≡) is a
divergence-summary.

The proof of this theorem is given in [5].

7.2 Weights
We now consider weighted systems, e.g parallel compositions of weighted LTS. More formally,
a weighted LTS Aw = (A, c) consists of an LTS A = (Σ, S, T, λ, s0) and a weight function
c : T → R+ associating a weight to each transition. A weighted trace of Aw is a pair (σ,w)
where σ = a1 . . . ak is a finite trace of A and w is the minimal weight among the paths
realizing σ, i.e:

w = min
s0...sk∈Sk+1,s0=s0,

ti=(si−1,si)∈T,λ(ti)=ai

k∑
j=1

c(tj).

We denote by Tr(Aw) the set of all the weighted traces of Aw. The parallel composition
Aw = (A, c) = Aw1 ||w · · · ||w Awn of the LTS Aw1 , . . . ,Awn is such that A = A1|| . . . ||An and
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the weight of a global transition t = (t1, . . . , tn) is:

c(t) =
∑
ti 6=?

ci(ti).

Similarly a weighted labelled Petri net is a tupleNw = (N , c) whereN = (Σ, P, T, F, λ,M0)
is a labelled Petri net and c : T → R+ associates weights to transitions. A weighted trace in
Nw is a pair (σ,w) with σ a finite trace of N and w the minimal weight of an occurrence
sequence corresponding to σ, where the weight of an occurrence sequence is the sum of the
weights of its transitions. By Tr(Nw) we denote the set of all the weighted traces of Nw.

The branching processes of Aw1 ||w . . . ||wAwn are defined as weighted labelled Petri nets
like in the non-weighted case, where each event is implicitly labelled by an action (as before)
and a cost. Given a finite set of weighted traces W we define its restriction to alphabet Σ as

W |Σ = { (σ,w) : ∃(σ′, w′) ∈W,σ = σ′|Σ ∧ w = min
(σ′,w′)∈W
σ′|Σ=σ

w′ }.

As in the non-weighted case we are interested in solving the following summary problem:

I Definition 11 (Weighted summary problem). Given weighted LTSs Aw1 , . . . ,Awn with in-
terface Awi , compute a weighted LTS Swi satisfying Tr(Swi ) = Tr(Aw)|Σi

, where Aw =
Aw1 ||w . . . ||wAwn .

This section aims at showing that the approach to the summary problem proposed in the
non-weighted case still works in the weighted one. In other words, Swi can be obtained by
computing a finite branching process Nw of Aw (using Definition 6 of cut-off and cut-off
candidates and Algorithm 2) and then taking the interface projection Nw

i of Nw on Awi and
folding it. The notion of interface projection needs to be slightly modified to take weights
into account. The conditions, events, and arcs of Nw

i are defined exactly as above, and the
weight of an event e of Nw

i is ci(e) = c([e])− c([e′]) if the predecessor e′ of e in Nw
i exists and

ci(e) = c([e]) else, where c is the weight function of Nw and c([e]) =
∑
ek∈[e] c(ek), where [e]

is the past of e in the weighted branching process Nw.

I Theorem 12. Let Aw = Aw1 ||w . . . ||wAwn with interface Awi . The instance of Algorithm 2
given by Definition 6 terminates and returns a weighted branching process Nw such that the
folding Swi of Nw

i is a weighted summary of Aw.

The proof of this theorem is given in [5].

8 Conclusions

We have presented the first unfolding-based solution to the summarization problem for trace
semantics. The final algorithm is simple, but its correctness proof is surprisingly subtle. We
have shown that it can be extended (with minor modifications) to handle divergences and
weighted systems.

The algorithm can also be extended to other semantics, including information about
failures or completed traces; this material is not contained in the paper because, while
laborious, it does not require any new conceptual ideas.

We conjecture that the condition e′ � e in the definition of cut-off candidate can be
replaced by e′ < e, if at the same time the algorithm is required to add events in a suitable
order. Similar ideas have proved successful in the past (see e.g. [6, 16]).

Acknowledgement. Thanks to the anonymous reviewers for their valuable comments.
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