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Abstract
We give graphical characterisation of the access structure to both classical and quantum inform-
ation encoded onto a multigraph defined for prime dimension q, as well as explicit decoding
operations for quantum secret sharing based on graph state protocols. We give a lower bound on
k for the existence of a ((k, n))q scheme and prove, using probabilistic methods, that there exists
α such that a random multigraph has an accessing parameter k ≤ αn with high probability.
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1 Introduction

In this work we consider encoding, and accessing, both quantum and classical information
onto graph states of qudits - multipartite entangled states which are one to one corresponding
to multigraphs (which we will consider as simple graphs with multiple edges). We are
particularly interested in using these states for secret sharing.

Secret sharing is an important cryptographic primitive, which was first put forward
classically in [33], and then extended to the quantum realm in [19, 9]. The aim of the
protocol is for a dealer to distribute a secret (quantum or classical) to a set of players, in such
a way that only authorized sets of players can access the secret, and unauthorized sets of
players cannot (there may be sets of players which are neither authorized nor unauthorized).
The sets of authorized and unauthorized players is called the access structure. Any secret
sharing scheme of n players can be loosely paramaterised by two numbers, k and k′, such
that any subset of k players is an authorized set, whereas any subset of k′ players or less
is unauthorized. We call such paramaterised schemes (k, k′, n) ramp schemes. In the case
when k′ = k − 1, we say it is a threshold scheme, and simplify the notation to (k, n).

In this work we consider two classes of quantum schemes, one class using quantum
channels to distribute classical secrets, denoted CQ schemes [19], and the other sharing
quantum secrets [9, 19], denoted QQ schemes. The notation CQ and QQ used here follows
the work [30, 26, 28], where both classes were phrased in the same language of graph states
(first for qubits [30] then qudits [26, 28]). The equivalence of both schemes was shown in
[28]. Using the graph state formalism can be useful both practically - since graph states
are amongst the most well developed multipartite entangled states experimentally - and
theoretically, since graph states are rich in their uses in quantum information, and allow for
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graphical characterization of information flow, and access of information. The connection
between error correction and secret sharing was understood early on [9], and implies that for
general access structures it is necessary to use high dimensional states to encode the secret
[30, 28]. In [24] an entirely graphical description of the access structure was given for the
graph state protocols on qubits. This has led to many applications, for instance in proving
lower and upper bounds on what k and k′ are possible in ramp schemes. We are naturally
interested in doing the same for higher dimensional versions.

The first result of this paper is to extend to higher dimension the characterisation of the
access structure in a graph, previously done in [24] for 2-dimensional system. By gathering
the graphical conditions and previous results, we show that the accessibility problem to
quantum information can be reduced to study the classical information’s one in both a set
of player and its complementary (which was proved in [24, 21] for 2 dimensional system).
Finally we use this result for the decoding phase of both QQ and CQ protocols, as we know
[28] that a CQ authorised is a QQ authorised set and vice versa. In the last part, we study
the existence, as a function of k, of a ((k, n))q scheme (this will be defined explicitly later,
but can be understood as the underlying graph encoding which gives rise to (k, n− k, n) QQ
secret sharing schemes). We derive a lower bound over k, that is, there exists α such that
every (k, n− k, n) QQ secret sharing must satisfies k > αn, and we use probabilistic method
to find c < 1 such that a ((cn, n))q scheme exists with high probability.

2 Background

2.1 Qudit graph states, F∗
q-graphs, and multigraphs

The qudit graph state formalism [32, 14, 27, 1] consists of representing a quantum state using
a weighted undirected graph where every vertex represents a q-dimensional quantum system
and every edge, which has assigned an element from the finite field Fq, represents intuitively
the entanglement between the elementary systems (a formal definition is given in Definition
1). Such graphs, labeled with elements of a finite field Fq, are known as F∗q-graphs [23] and
can be interpreted as edge-colored graphs. In this paper, we consider q prime, and choose to
interpret F∗q-graphs as multigraphs i.e., graphs with possibly parallel edges between pairs
of vertices. Albeit equivalent to the other interpretation of F∗q-graphs, we believe that the
multigraph interpretation is relevant in the context of qudit graph states for secret sharing
protocols, in particular for the graphical characterisation of authorised and unauthorised
sets of players (see Lemmas 5 and 7).

I Definition 1 (q-multigraphs). Given a prime number q, a q-multigraph G is a pair (V,Γ)
where V is the finite set of vertices and Γ : V × V → Fq is the adjacency matrix of G: for
any u, v ∈ V , Γ(u, v) is the multiplicity of the edge (u, v) in G.

The term multigraph is used for q-multigraph when q is clear from the context or
irrelevant. In this paper, we consider undirected simple multigraphs G = (V,Γ) i.e., for any
vertices u, v ∈ V , Γ(u, v) = Γ(v, u) and Γ(u, u) = 0. For our characterizations of encoding
and accessing later on, it will be useful to introduce further concepts. We will see several
examples of them along the way, but for now we state definitions. Given a set V of vertices,
a vector D : V → Fq represents a multiset of vertices of V : for every v ∈ V , D(v) ∈ Fq is
the multiplicity of v in D. sup(D) = {v ∈ V | D(v) 6= 0 mod q} is the support of D. For any
multigraph G = (V,Γ) and any multiset of vertices D : V → Fq, the matrix product Γ.D
is the multiset of neighbours of D: for any v ∈ V , v is a neighbour of D with multiplicity
(Γ.D)(v) =

∑
u∈V Γ(u, v).D(u) mod q. In particular, for any vertex u, Γ.{u} is the multiset
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of neighbours of u. We call G[D] = (V ′,Γ′) the sub-multigraph of G = (V,Γ) induced
by the multiset D : V → Fq, where V ′ = V ∩ sup(D) and Γ′ : V ′ × V ′ → Fq = (u, v) 7→
D(u).Γ(u, v).D(v) mod q. Notice that the multiplicity of an edge in G[D] is the multiplicity of
this edge in the original graph G times the multiplicity in D of the two vertices connected by
this edge. For any A,B ⊆ V , Γ[A,B] denotes the submatrix of Γ whose columns correspond
to the vertices in A and rows to the vertices in B. Γ[A,B] represents the edges which have
one end in A and the other one in B.

I Definition 2 (Qudit Graph State). Given a q-multigraph G = (V,Γ) with V = {v1, . . . , vn},
let |G〉 ∈ Cqn be its associated qudit graph state defined as

|G〉 = 1√
qn

∑
x=(x1,··· ,xn)∈Fnq

ω|G[x]||x〉

where ω is the qth root of unity and |G[x]| is the number of edges of the sub-multigraph
G[x] = (Vx,Γx) induced by x, where Vx = {vi ∈ V, xi 6= 0} and Γx : Vx × Vx → Fq =
(vi, vj) 7→ xixjΓ(vi, vj).

Qudit graph states satisfy the following fundamental fixpoint property. Given a q-
multigraph G = (V,Γ), |G〉 is the unique quantum state (up to a global phase) such that, for
any u ∈ V ,

XuZΓ.{u}|G〉 = |G〉 (1)

where Γ.{u} is the multiset of neighbours of u, X = |b〉 7→ |b + 1 mod q〉, Z = |b〉 7→ ωb|b〉
are Pauli operators, and for any mulitset D : V → Fq, ZD :=

⊗
v∈V Z

D(v)
v .

I Example 3. We define the 3-multigraph G = (V,Γ) by V = {v1, v2, v3, v4, v5},

Γ =


0 0 1 0 1
0 0 2 0 1
1 2 0 2 0
0 0 2 0 2
1 1 0 2 0

 v4

v5

v3

v1

v2

2

2

1
1

1
2

1

Let A = {v1, v2} be a subset of V , and D : A→ F3 a multiset such that D(v1) = 2, D(v2) = 1.
That is D = {v1, v1, v2}. Then, with previous definitions, the graph induced by D is G[D] =

v1

v2

2 The multiset of neighbours of A is {v1, v2, v5, v5}. The multiset of neighbours of D is

{v1, v2, v2, v3}.

2.2 Local complementation and cut rank
The local complementation [5] is a graph transformation which is incredibly useful for the
study of graph states [35]. Indeed, if two graphs G and G′ are locally equivalent (i.e. one
can transform G into G′ by means of a series of local complementations), they represent the
same entanglement (i.e. there exists a local unitary transformation U such that |G′〉 = U |G〉)
[35]. Local complementation is extended to multigraphs as follows [23]: Given a q-multigraph
G = (V,Γ), u ∈ V and λ ∈ Fq, the λ-local complementation at u of G is the q-multigraph
G?λu = (V,Γ′) such that ∀v, w ∈ V , v 6= w, Γ′(v, w) = Γ(v, w) + λ.Γ(v, u).Γ(u,w) mod q.
Keet et al. [26] have proved that for any q-multigraph G = (V,Γ), any u ∈ V and any λ ∈ Fq,
there exists a local unitary transformation U such that |G?λu〉 = U |G〉.
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The cut rank [31] is a set function which associates with every set B of vertices the rank
of the matrix describing the edges of the cut (B, V \B): Given a multigraph G = (V,Γ), let
Γ[B] := Γ[B, V \B] be the cut matrix of the cut (B, V \B), moreover for any A,B ⊆ V , let
rkG(A,B) := rank(Γ[A,B]) and cutrkG(B) := rkG(B, V \B) be the cut rank of B. Notice
that rkG(A,B) = rkG(B,A) and cutrkG(B) = cutrkG(V \B).

We point out in this paper that the cut rank, which is known to be invariant by local
complementation [23], is a key parameter of q-multigraphs for the study of secret sharing
protocols with qudit graph states. Indeed, Theorem 9 states that the capability of a set of
players to reconstruct a quantum secret is characterised by the discrete derivative of the
cut rank function. Notice that the cut-rank of a bipartition is nothing but the Schmidt
measure of entanglement of this bipartition in the corresponding graph state. This is shown
for the qubit case in [17], and easily extends to the qudit case. As a consequence, Theorem 9
characterises the accessibility of a set of players as the derivative of the Schmidt measure of
entanglement.

2.3 Description of the encoding:
We now introduce the encoding of classical and quantum information onto graph states (CQ
and QQ respectively), which will be the starting point for the secret sharing protocols defined
in section 4. For ease of notation we present the CQ encoding as deterministic, and in one
basis. When used in the full CQ protocol this is randomised by measurement and choice
of basis (described fully in section 4). The ability of players to access encoded information
(both classical and quantum) is fully described in graph theoretical language in section 3.

CQ encoding:
Given a multigraph G = (V,Γ) of order n and a distinguished non isolated vertex d ∈ V ,

the corresponding CQ encoding of a classical secret s ∈ Fq among n− 1 players consists of
the dealer preparing the state

|sL〉 := ZsΓ.{d}|G\d〉

and sending one qudit to each player, where G\d = (V \{d},Γ[V \{d}, V \{d}]) is the multi-
graph obtained by removing the vertex d and all its incident edges.

In the CQ protocol (described in section 4) the secret s is randomised by measurement
on the dealer’s vertex d of the full graph state |G〉, and further, the encoding is randomised
by choice of measurement basis - the dealer chooses at random t ∈ T , T ⊆ Fq and |T | ≥ 2,
and measures his qudit in the associated complementary basis XtZ. Measuring in this t
basis will correspond exactly to using the above CQ encoding of the same secret value s onto
the complementary multigraph G?td.

QQ encoding:
Given a multigraph G = (V,Γ) of order n and a distinguished non isolated vertex d ∈ V ,

the corresponding QQ encoding on a qudit graph state for sharing an arbitrary quantum
secret |φ〉 =

∑q−1
j=0 sj |j〉 ∈ Cq among n− 1 players consists, for the dealer, in preparing the

state

|φL〉 =
q−1∑
j=0

sjZ
j
Γ.{d}|G\d〉 =

q−1∑
j=0

sj |jL〉

and in sending one qudit of |φL〉 to each player.
Notice that the preparation consists in applying the map |j〉 7→ ZjΓ.{d}|G\d〉 which is an

isometry as long as d is not an isolated vertex in G. We describe encoding procedures in
appendix A.
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The accessing structure of the protocols (i.e. the description of the sets of players which
can recover the secret, as well as those which have no information about the secret) is given
in the next section which provides a graphical characterisation of the accessing structure for
the secret sharing protocols using these encodings. Moreover, the operations the authorised
sets of players have to perform to reconstruct the secret are also described in the next section.

3 Access Structure in a Graph in Higher Dimension:

3.1 Classical Information
In this section, we show, when the secret is classical, that the protocol is perfect (i.e. every
set of players is either able to recover the secret or has no information about the secret), and
that the accessing structure is graphically characterised by a simple rank-based function:

I Theorem 4. Given a q-multigraph G = (V,Γ) and a distinguished vertex d ∈ V , a set
B ⊆ V \{d} of players can recover a classical secret for the corresponding CQ encoding if
and only if πG(B, d) = 1, where

πG(B, d) := cutrkG(B)− cutrkG\d(B)

A graphical interpretation of Theorem 4 is that a set B is accessible if and only if the
presence of the ‘dealer vertex’ d increases the rank of the cut between B and the rest of the
vertices.

The rest of the section is dedicated to the proof of Theorem 4.
First, we prove that a set B of players can recover a classical secret if, roughly speaking,

there exists a multiset D of them which is not ‘seen’ from outside except by the ‘dealer’:

I Lemma 5. Given a q-multigraph G = (V,Γ) and d ∈ V , a set B ⊆ V \{d} of players
can recover a classical secret for the corresponding CQ encoding if there exists a multiset
D : B → Fq such that sup(Γ[B, V \B].D) = {d} i.e.,

the number of neighbours of d in D is not congruent to 0 mod q;
∀u ∈ V \(B∪{d}), the number of neighbours of u in D is congruent to 0 mod q.

Proof. Given B ⊆ V and D : B → Fq such that sup(Γ[B, V \B].D) = {d}. W.l.o.g. we
assume the multiplicity of d in Γ.D is 1 (otherwise we consider the multiset D′ = u 7→
(Γ.D)(d)−1.D(u) instead of D). The players in B can recover the secret by measuring an ap-
propriate product of stabilizers. Indeed, there exists r ∈ Fq such that

∏
u∈B(XuZΓ.{u})D(u) =

ωrXDZΓ.D = Zdω
rXDZΓ[V,V \{d}].D. As

∏
u∈B(XuZΓ.{u})D(u)|G〉 = |G〉, we deduce that

ωrXDZΓ[V,V \{d}].D|G\d〉 = |G\d〉. If the classical secret is s ∈ Fq,
ωrXDZΓ[V,V \{d}].DZ

s
Γ.{d}|G\d〉 = ωr−sZsΓ.{d}XDZΓ[V,V \{d}].D|G\d〉 = ω−sZsΓ.{d}|G\d〉. So

if the players in B measure according to ωrXDZΓ[V,V \{d}].D, they get the outcome −s mod q,
so they recover the classical secret s. J

Lemma 5 provides a sufficient condition for a set of players to be able to reconstruct a
classical secret. Notice that this reconstruction is nothing but a Pauli measurement, so it
can be done by means of local Pauli measurements and classical communications.

I Corollary 6. Given a q-multigraph G = (V,Γ), d ∈ V , and B ⊆ V \{d}, if πG(B, d) = 1
then B can reconstruct a classical secret for the corresponding CQ encoding.

Proof. Let F = V \(B∪{d}). According to lemma 5, B can recover a classical secret if
there exists D : B → Fq such that sup(Γ[B, V \B].D) = {d}. W.l.o.g. we can assume
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that the multiplicity of d in Γ[B, V \B].D is one. So B can recover a classical secret if

the system
(

Γ[B, {d}]
Γ[B,F ]

)
.x =

(
1
0

)
has a non zero solution, which is equivalent to

rank
(

Γ[B, {d}]
Γ[B,F ]

)
= rank

(
Γ[B, {d}] 1
Γ[B,F ] 0

)
. Using the last column of the right-side

matrix to cancel terms of the row Γ[B, {d}], we are finally reduced to rank
(

Γ[B, {d}]
Γ[B,F ]

)
=

1 + rank(Γ[B,F ]) i.e., cutrkG(B)− rkG(B,F ) = 1 = πG(B, d). J

In the following, a sufficient condition for a set of players to have no information about the
secret is introduced: roughly speaking, a multiset of players D which includes the dealer d,
can ‘hide’ the secret to every player who is connected to D with a number of edges congruent
to 0 modulo q:

I Lemma 7. Given a q-multigraph G = (V,Γ) and d ∈ V , a set B ⊆ V \{d} has no
information about a classical secret for the corresponding CQ encoding if there exists D :
V \B → Fq, such that D(d) 6= 0 mod q and Γ[V \B,B].D = 0 i.e.,

the multiplicity of d in D is not congruent to 0 mod q;
∀u ∈ B, the number of neighbours of u in D is congruent to 0 mod q.

Proof. W.l.o.g. we assume D(d) = 1 mod q. Notice that R|G\d〉〈G\d|R† = |G\d〉〈G\d|
with R =

∏
u∈V \(B∪{d}) (XuZΓ[V \{d},V \{d}].{u})D(u). Moreover R.ZΓ.{u} is only acting on

V \(B∪{d}), so the reduced density matrix for the players in B is
TrV \(B∪{d})(ZsΓ.{d}|G\d〉〈G\d|Z†

s
Γ.{d})

= TrV \(B∪{d})((ZΓ.{d}R)s|G\d〉〈G\d|(ZΓ.{d}R)†s)
= TrV \(B∪{d})(|G\d〉〈G\d|)

which does not depend on the secret, so the players in B have no information about the
secret. J

I Corollary 8. Given a q-multigraph G = (V,Γ), d ∈ V , and B ⊆ V \{d}, if πG(B, d) = 0
then B has no information about the classical secret for the corresponding CQ encoding.

Proof. Let F = V \(B∪{d}). According to lemma 7, B has no information about classical
secret if there exists D : V \B → Fq such that D(d) = 1 mod q and Γ[V \B,B].D = 0,
so if Γ[F,B].C = −Γ[V,B]{d}, where C : F → Fq = u 7→ D(u) is the restriction of
D to F . As a consequence, B has no information about classical secret if the system
Γ[F,B].x = −Γ[V,B]{d} has a non zero solution, which is equivalent to find a non zero
solution to the system Γ[F,B].x = Γ[V,B]{d}, so if rank(Γ[F,B]) = rank(Γ[V \B,B]) i.e.,
πG(B, d) = 0. J

Proof of Theorem 4. The proof of Theorem 4 follows from Corollaries 6 and 8 and the fact
that for every B, 0 ≤ πG(B, d) ≤ 1. It proves that the encoding is perfect i.e., every set of
players is either able to reconstruct the secret (when πG(B, d) = 1) or has no information
about the secret (when πG(B, d) = 0). J

3.2 Quantum Information
In the following we prove that the accessibility of a set a players is characterised by the
derivative of the cut-rank function with respect to the dealer.
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I Theorem 9. Given a q-multigraph G with a distinguished dealer d ∈ V (G), a set B ⊆
V (G)\{d} of players can recover a quantum secret in the corresponding QQ encoding iff

∂dcutrkG(B) = −1

where ∂dcutrkG(B) = cutrkG(B∪{d})− cutrkG(B) is the discrete derivative of cutrkG in B
with respect to d.

Proof. It is known that B can access a quantum secret in G iff B can access a classical secret
in two mutual unbiased bases, say in G and G ∗1 d [28]. Moreover B can access a classical
secret in G iff πG(B, d) = 1, where πG(B, d) = cutrkG(B)− rkG(B, V \(B∪{d})).
(⇒) If B can access a quantum secret, B can access a classical secret and V \(B∪{d}) has no
information about a quantum secret [9], which implies that V \(B∪{d}) cannot access a clas-
sical secret. Thus πG(B, d) = 1 and πG(V \(B∪{d}), {d}) = 0. As a consequence πG(B, d)−
πG(V \(B∪{d}), {d}) = 1, so 1 = cutrk(B) − rkG(B, V \(B∪{d})) − cutrk(V \(B∪{d})) +
rkG(V \(B∪{d}), B) = cutrk(B)− cutrk(V \(B∪{d})) = cutrk(B)− cutrk(B∪{d}).
(⇐) If cutrkG(B) = cutrkG(B∪{d}) + 1, then πG(B, {d}) = 1, so B can access a clas-
sical secret in G. Moreover, since the cut rank is invariant by local complementation [23],
cutrkG?1d(B) = cutrkG?1d(B∪{d}) + 1, so B can also access a classical secret in G?1d. J

Notice that for any set B of players, ∂dcutrkG(B) ∈ {−1, 0, 1}: if ∂dcutrkG(B) = −1,
B can recover the quantum secret; if ∂dcutrkG(B) = 1 they have no information since
V \(B∪{d}) can recover the quantum secret; and if ∂dcutrkG(B) = 0 they have some partial
information about the secret.

Since the cut rank function is submodular [31], its derivative is monotonic (decreasing):
if B ⊆ B′, ∂dcutrkG(B) ≥ ∂dcutrk(B′). Indeed, if B can recover the secret, any superset B′
of B can recover it too; and if B′ has no information about the secret, any subset B of B′
has no information too.

4 Application to CQ and QQ protocols

We now see how the encoding of section 2.3, and the results on access structures in section 3
can be used to provide secret sharing protocols. Following the prescription of [28] (based on
[30, 26], see also [29]) we will now introduce two protocols, one for sharing classical secrets
over a quantum channel (CQ) and one for sharing a quantum secret (QQ), both based on
a graph state associated with a multigraph. Both protocols can be understood as using
the graph state as a channel between the dealer (associated with vertex d) and the players
(the remaining vertices). In the CQ case this channel is used to perform an Ekert-like key
distribution protocol between the dealer and authorised players, so that when completed the
dealer and authorised players will share a random ‘dit’ string which is unknown to anybody
else. In the QQ case the channel is used to teleport the secret to the players such that only
authorised sets of players can access the information (the QQ encoding in section 2.3 can be
understood as this teleportation, see Appendix A). More details on the protocols and their
relation to each other as well as error correction can be found in [28].

4.1 Detailed protocols
Before we write the full protocols out, we first review some background on the graph state
formalism, which will be the key in seeing how the stabilisers can be used to specify how
authorised sets can access the information, given the satisfaction of the conditions outlined
in the previous section.
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Given a multigraph G = (V,Γ), we begin with an illustrative expansion of the graph state
|G〉V according to the d, V \{d} partition.
|G〉 = 1√

qn

∑
x∈Fnq

ω|G[x]||x〉V = 1
√
q

∑
s

|s〉dZsΓ.{d}|G\d〉V \{d}

= 1
√
q

∑
s

|s〉d|sL〉V \{d}

= 1
√
q

∑
s

|s(t)〉d|sL(t)〉V \{d},

for any t ∈ Fq, where the second line follows from definitions in section 2.3, corresponding
to the CQ encoding achieved by the dealer measuring in the Z basis. The third line
corresponds to when the dealer measures in bases XtZ (explained in more detail later),
where they are defined as |s(0)〉 = |s〉, and |s(t)〉 = 1√

q

∑q−1
j=0 ω

j(j−t)
2t −st

−1j |j〉 for t = 1...q− 1,
so that XtZ|s(t)〉 = ωs|s(t)〉, and further |s(0)L〉 = |sL〉 = ZsΓ.{d}|G\d〉 and |sL(t)〉 :=
1√
q

∑q−1
k=0 ω

−k(k−t)
2t +st−1k|kL〉 for t = 1...q − 1. The state |s(t)L〉V \{d} is equivalent to the CQ

encoding of i on graph G ∗t d [26].
We now look at how the conditions for access arrived at in section 3 can be used, along

with the stabiliser (or “fixed point”) condition (1), to eventually see how authorised sets can
access the information in the CQ and QQ protocols. We start with the QQ case, which is
enough to imply the CQ case (see [28]). Suppose a set of players B ⊂ V \{d} has access to
quantum information in a graph G = (V,Γ). We proved with Theorem 9 that B can access
QQ encoded quantum information in G if and only if B can access the CQ encoded classical
information in G and V \(B∪{d}) cannot. Thus, by rewriting lemma 5 and 7 applied to B
and V \(B∪{d}), we have: there exists D : B → Fq and C : B∪{d} → Fq such that C(d) = 1

and
{

sup(Γ[B, V \B].D) = {d} (A)
Γ[B∪{d}, V \(B∪{d})].C = 0 (B)

Now, call Ki = XiZΓ.{i} and ki = XiZΓ[V \{d},V \{d}]{i} (these are the fixpoint operators, or
stabilisers for graphs G and G\d respectively according to (1)).
First we have KC = Kd

∏
i∈BK

C(i)
i = XdZ

β
d .ZΓ.{d}

∏
i∈B k

C(i)
i with β = Γ.C(d). Then

ZΓ.{d}
∏
i∈B k

C(i)
i = ωλ

∏
i∈B X

C(i)
i Z

Γ.C(i)
i , with λ =

∑
i,j∈B∪{d},j<i Γ(j, i)C(j)C(i).

Next KD satisfies KD =
∏
i∈BK

D(i)
i = Zαd

∏
i∈B k

D(i)
i , with α = Γ.D(d) 6= 0 since (A), and∏

i∈B k
D(i)
i = ωλ

′∏
i∈B X

D(i)
i Z

Γ.D(i)
i , λ′ =

∑
i,j∈B,j<i Γ(j, i)D(j)D(i).

Later we will suppose α = 1 (change D to α−1.D if necessary).
Hence Kt

CKD
1−tβ |G〉 = ω

t(t−1)
2 βXt

dZd.[ZΓ.{d}
∏
i∈B k

C(i)
i ]

t
[
∏
i∈B k

D(i)
i ]

1−tβ
|G〉 = |G〉

which is a stabiliser / fixpoint equation involving operators only in d and B which will be
used to inform which measurements should be made to recover the secret in the CQ case,
and how to find the QQ decoding operation. We can rewrite this as follows
[ZΓ.{d}

∏
i∈B k

C(i)
i ]

t
[
∏
i∈B k

D(i)
i ]

1−tβ
= ωc

∏
i∈B X

xi(t)
i Z

zi(t)
i with

xi(t) = tC(i) + (1− tβ)D(i) (2)
zi(t) = tΓ.C(i) + (1− tβ)Γ.D(i), (3)

c = t2λ′ + (1− tβ)2λ+ t(1− tβ)
∑
i,j∈B

Γ(i, j)C(i)D(j) (4)

and we further define

ft(r) := −r − c− t(t− 1)
2 β. (5)

We can then see that given the state |G〉V , if the dealer measures XtZ, getting result ωs(t)
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and each player i in B measures its qudit in the Xxi(t)Zzi(t) bases, denoting their results
mi(t), if we define m(t) = f−1

t (
∑
imi(t)), then the fixpoint stabiliser conditions imply

m(t) = s(t). This will be the basis of the CQ accessing strategy.
For the QQ accessing, we define operators UB and VB only acting on B such that

UB :=
∏
i∈B k

−D(i)
i , which satisfies UB |sL〉 = ωs|sL〉 and VB := ZΓ.{d}

∏
i∈B k

C(i)−βD(i)
i ,

which satisfies VB |sL〉 = |(s+ 1)L〉.
We also define the extended Bell basis as the following bipartite states over a system {a, b}:
∀k, l ∈ Fq, |βk,l〉ab = ZkaX

l
b

∑
i∈Fq

|ii〉ab√
q . The result (k, l) of a measurement over {a, b} in the

Bell basis yield the state as |βk,l〉ab.

CQ Protocol: Let T be a subset of {0, · · · , q − 1}, |T | ≥ 2

1. The dealer prepares the graph state |G〉 = 1
√
q

q−1∑
i=0
|i(t) 〉d|i′L(t)〉V \{d} and sends one

qudit of the state to each player.
2. The dealer randomly measures its qudit among the bases: {XtZ}t∈T and denotes the

result ωs(t). That leaves the state over the players on |i(t)L〉V \{d}.
3. A player b ∈ B randomly chooses t′ ∈ T and send t′ to the other players in B using

their private channel.
4. Each player i in B measures its qudit in the Xxi(t′)Zzi(t

′) bases (see (2),(3)) and sends
the result ωmi(t′) ∈ {1, ω, .., ωq−1} to b.

5. b computes m(t′) = f−1
t′ (
∑
imi(t′)) (see (5)).

6. Repeat step 1. 2. 3. p→∞ times. The list of measurement results s(t) and m(t′) are
the raw keys of the dealer and players B respectively.

7. security test: Follow standard QKD security steps. Through public discussion
between d and B first sift the key followed by standard error correction and privacy
amplification to generate a secure key (see [28] and [34]).

Correctness : After the QKD security steps the dealer and the authorised set B will be
able to share a perfectly secure random key. Furthermore, QQ unauthorised sets for the
same graph will not be able to establish such a key (see [28] for proofs).

QQ Protocol: Let |ζ〉S =
∑q−1
i=0 si|i〉S ∈ Cq be a quantum secret.

1. A dealer prepares the state 1
√
q

q−1∑
i=0

siZ
i
Γ.{d}|G\d〉V \{d}

2. The dealer sends one qudit of the resultant state to each player.
3. (measurement) The authorized set B uses two ancillas qudits {a1, a2} prepared in

the Bell pair state |β00〉a1a2 , and performs the following two commuting projective
measurement on {B a1}, V −1

B X−1
a1

and UBZ
−1
a1

on , with result denoted k and l

respectively.
4. (correction) B applies ZkX−l over the second ancilla {a2}.

Correctness: UB and VB satisfy UB |iL〉V \{d} = ωi|iL〉V \{d}, and VB |iL〉V \{d} = |(i +
1)L〉V \{d} ∀i ∈ Fq. We can rewrite the state over V \{d}∪{a1, a2} as:∑

i∈Fq si|iL〉V \{d}
∑
j∈Fq

|jj〉a1a2√
q .

= 1√
q

∑
l∈Fq IV \{d}X

l
a1
X l
a2

∑
i∈Fq |iLi〉V \{d}a1si|i〉a2

= 1√
q

∑
l∈Fq IV \{d}X

l
a1
X l
a2

∑
k∈Fq

∑
i∈Fq ω

k.i |iLi〉V \{d}a1
q

∑
j ω
−k.jsj |j〉a2

= 1√
q

∑
l∈Fq IV \{d}X

l
a1
X l
a2

∑
k∈Fq U

k
BIa1Z

−k
a2

∑
i∈Fq

|iLi〉V \{d}a1
q

∑
j sj |j〉a2

= 1
q

∑
l,k∈Fq U

k
BX

l
a1

∑
i∈Fq

|iLi〉V \{d}a1√
q X l

a2
Z−ka2

∑
j∈Fq sj |j〉a2)
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Table 1 List of typical subsets B of 4 players in the Reed Solomon Graph State described
in Fig 1a. For each B, B ∪ {u∈V \B |

∑
v∈B

D(v).Γ(u, v)6= 0 mod q} = B ∪ {d} = B ∪ {d} ∪
{u∈V \(B∪{d}) |

∑
v∈B∪{d} C(v).Γ(v, u) 6= 0 mod q}, meaning that B can access quantum informa-

tion, whereas V \(B∪{d}), that is all subset of 3 players, cannot. (The remaining subsets are covered
by symmetry.)

B (D(b))b∈Bs (C(b))b∈d∪B B (D(b))b∈Bs (C(b))b∈d∪B

{v7, v1, v2, v3} (1, 0, 0, 0) (1, 0, 4, 3, 6) {v6, v1, v2, v3} (1, 0, 0, 0) (1, 0, 2, 2, 1)
{v5, v1, v2, v3} (1, 0, 0, 0) (1, 0, 3, 4, 1) {v4, v1, v2, v3} (1, 0, 0, 0) (1, 0, 4, 6, 2)
{v6, v7, v2, v3} (3, 1, 0, 0) (1, 0, 0, 1, 3) {v6, v7, v1, v2} (1, 4, 0, 0) (1, 0, 0, 3, 6)
{v6, v7, v1, v3} (4, 1, 0, 0) (1, 0, 0, 5, 5) {v5, v7, v2, v3} (3, 4, 0, 0) (1, 0, 0, 6, 1)
{v5, v7, v1, v2} (1, 1, 0, 0) (1, 0, 0, 2, 1) {v5, v7, v1, v3} (4, 3, 0, 0) (1, 0, 0, 1, 4)
{v4, v7, v2, v3} (4, 1, 0, 0) (1, 0, 0, 2, 2) {v4, v7, v1, v3} (3, 4, 0, 0) (1, 0, 0, 6, 1)
{v5, v6, v1, v2} (3, 1, 0, 0) (1, 0, 0, 1, 3) {v5, v6, v1, v3} (1, 6, 0, 0) (1, 0, 0, 4, 3)
{v5, v6, v7, v3} (2, 2, 1, 0) (1, 0, 0, 0, 2) {v5, v6, v7, v2} (4, 1, 1, 0) (1, 0, 0, 0, 5)
{v5, v6, v7, v1} (5, 6, 1, 0) (1, 0, 0, 0, 6) {v4, v5, v7, v3} (1, 1, 1, 0) (1, 0, 0, 0, 6)
{v4, v5, v7, v1} (4, 6, 1, 0) (1, 0, 0, 0, 3) {v4, v5, v7, v2} (6, 1, 4, 0) (1, 0, 0, 0, 3)
{v4, v5, v6, v7} (5, 6, 1, 2) (1, 0, 0, 0, 0)

As V −1
B X−1

a1
(UkBX l

a1

∑
i∈Fq

|iLi〉V \{d}a1√
q ) = ωkUkBX

l
a1

∑
i∈Fq

|iLi〉V \{d}a1√
q and

UBZ
−1
a1

(UkBX l
a1

∑
i∈Fq

|iLi〉V \{d}a1√
q ) = ωlUkBX

l
a1

∑
i∈Fq

|iLi〉V \{d}a1√
q , the projective measure-

ment according to V −1
B X−1

a1
and UBZ−1

a1
reveals the syndrome (k, l), such that the correction

ZkX−l over the ancilla {a2} leaves the state as
∑
i si|i〉a2 .

4.2 Example

We illustrate the use of characterisation of the access structure in a multigraph with a Reed
Solomon Graph State that allows a quantum secret (or equivalently a random key of dits) to
be shared between a dealer and all subset of at least n+1

2 players among a set of n players
over a field of q elements, with q ≥ n. We refer to [29], [9] for more details about Reed
Solomon Graph for secret sharing.
We saw B ⊂ V \{d} can access quantum information with respect to d in G iff there exist
D : B → Fq and C : B∪{d} → Fq such that C(d) = 1 and

sup(Γ[B, V \B].D) = {d}
Γ[B∪{d}, V \(B∪{d})].C = 0

We rewritte these conditions in the following way: B ⊂ V \{d} can access quantum inform-
ation in G iff there exist D : B → Fq and C : B ∪ {d} → Fq such that C(d) = 1 and{

B ∪ {u ∈ V \B |
∑
v∈B D(v).Γ(u, v) 6= 0 mod q} = B ∪ {d}. (5)

B ∪ {d} ∪ {u ∈ V \(B∪{d}) |
∑
v∈B∪{d} C(v).Γ(v, u) 6= 0 mod q} = B ∪ {d} (6)

For A : V → Fq, we call GA = (VA,ΓA) the subgraph induced by A and its neighbours
such that: VA = sup(A) ∪ {v ∈ V \sup(A) | Γ[sup(A), V \sup(A)].A(v) 6= 0 mod q}

and ∀vi ∈ sup(A),
{

ΓA(vi, vj) = A(vi)A(vj).Γ(vi, vj) if vj ∈ sup(A)
ΓA(vi, vj) = A(vi)Γ(vi, vj) if vj ∈ VA\sup(A)

For example, let G = (V,Γ), d ∈ V , |V | = 8, be the (4, 3, 7)7 Reed Solomon Graph State
given in Fig 1a. Such a graph can be used by dealer d to encode any quantum secret
|ξ〉 ∈ C7 and share it between 7 players such that all subset of at least 4 players can recover
the secret, whereas any subset of 3 players or less cannot have any information about it.
We can reprove this result using the previous graph characterisation, that is by checking if
conditions (5) (6) are satisfied in a basis G for all subset B ⊂ V \{d} of 4 players. In fig 1b,
we give the relevant induced graphs for two different subsets B. And in table 1 we give a list
of relevant multiset D : B → Fq and C : B∪{d} → Fq for typical subsets B of four players.
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d

v4

v5

v6

v7

v1

v2

v3

6

3

4

1

6

6

3

34

4

4

4

1

1

1
1

(a) (4, 3, 7)7 Reed Solomon
QQ Graph scheme.

and D(v7) = 1
with B = {v7, v1, v2, v3}

GD, D : B → Fq

d

v7

v1

v2

v3
1

6
34

GC , C : d∪B → Fq

with C(d) = 1, C(v1) = 4
C(v2) = 3, C(v3) = 6

d

v7

v1

v2

v3
1

3
23

and D(v6) = 3, D(v7) = 1
with B = {v6, v7, v2, v3}

GD, D : B → Fq

d
v6

v7

v2

v3

5
1

63
5
3

GC , C : d∪B → Fq

with C(d) = 1, C(v2) = 1,
C(v3) = 3

d
v6

v7

v2

v3

4
1

43
5
1

(b) Examples of subgraphs GD associated with
subset B showing that B can access classical in-
formation in G and of subgraphs GC associated
with d∪B showing that V \B cannot have clas-
sical information in G.

Figure 1 Checking quantum accessibility in a (4, 3, 7)7 Reed Solomon Graph.

5 Existence of ((k, n))q scheme

In this section, we focus on the properties of the secret sharing scheme realised by a given
Fq-graph, as well as the existence of Fq-graphs realising a given secret sharing protocol.
A Fq-graph G of order n with a particular dealer d is said to realise a ((k, n))q scheme if
k − 1 = maxB⊆V \{d}(∂dcutrkG(B) ≥ 0). In other words, G realises a ((k, n))q scheme if
all sets of at least k players can recover a quantum secret and there exists a set of k − 1
players which cannot. A Fq-graph which realises an ((k, n))q scheme can be used as an
(k, k′ ≥ n− k, n)q CQ protocol or (k, n− k, n)q QQ protocol as described in section 4 (note
that they can also be used for (k, k′ ≥ n− k, n)q schemes to share a quantum secret using
hybrid protocols (e.g. [4, 21, 11, 12])).

5.1 Finding new schemes
Theorem 9 offers a combinatorial characterisation of quantum accessibility, and raises as
a consequence several questions about the complexity of deciding: (i) whether a given
set of players can access a quantum secret in a given q-multigraph? (ii) whether a given
q-multigraph realises a ((k, n)) protocol? (iii) whether, given q, n and k, there exists an
Fq-graphs realising a ((k, n)) protocol?

Problem i Given an Fq-graph G of order n with a particular dealer d and a set B of k
players, deciding whether B can access a quantum secret consists of deciding whether
∂dcutrkG(B) = −1. This can be decided efficiently since ∂dcutrkG(B) is computed in
O(nk1.38) operations using the Gaussian elimination for computing the rank [6, 20].

Problem ii Given a Fq-graph G of order n and α ∈ [0, 1], deciding whether G is a ((αn, n))
scheme can be done by enumerating all the

(
n
αn

)
sets of players of size αn and for each

of them deciding whether they can access a quantum secret. It leads to O(n2.382nH2(α))
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operations. This problem is NP-complete, as it has been shown to be NP complete when
q = 2 [7], and also hard in terms of parameterised complexity as it is hard for W [1] [7].

Problem iii Given n, α, and q, deciding whether there exists a ((αn, n)) Fq-graph? A
brute-force approach consists in enumerating all the q

n(n−1)
2 Fq-graphs of order n and

then decide whether they realise a ((αn, n)) protocol. It leads to O(q
n(n−1)

2 n2.382nH2(α))
operations. This can be implemented for small values of n only and permits to prove that
there is no (4, 3, 7)3 QQ secret sharing with qutrit graph state.

Solving problem i can be done with the similar algortihm C of [13]. Note that for one
thing, the later is more general and can be applied to input states (that is quantum secrets)
and to multigraphs of arbitrary dimension (not necessarily prime number). For another thing,
it concerns rather the access to partial information. Also it is not optimised for problem i of
our particular interest.

In the following sections, we develop a different approach for deciding the existence of
((αn, n)) Fq-graphs realising. We show an upper and a lower bound on the minimal α such
that there exists an Fq-graph realising a ((αn, n)) protocol. The upper bound (Theorem 11)
is based on non constructive probabilistic methods, whereas the lower bound (Theorem 14)
is based on a counting argument.

5.2 Existence of q-multigraphs realising ((αn, n))q schemes
In this section, we prove a Gilbert-Varshamov-like result: for any α such that Hq2(1−α) < 1

2
there exists a q-multigraph realising a ((αn, n))q scheme. The proof is using probabilistic
methods and is, as a consequence, non constructive. However, we prove that a random
q-multigraph satisfies such ((αn, n))q scheme with high probability as long as Hq2(1−α) < 1

2 .

I Lemma 10. For any q-multigraph G = (V,Γ) of order n, and any α ∈ [0.5, 1], if for any
multiset C : V → Fq, |sup(C)∪sup(Γ.C)| > (1−α)n then for any d ∈ V and any B ⊆ V \{d}
such that |B| ≥ αn, ∂dcutrkG(B) = −1.

Proof. For any B ⊆ V such that |B| ≥ αn, ker(Γ[V \B]) = {0}, otherwise there would
be a multiset C such that sup(C) ⊆ V \B and |sup(C)∪sup(Γ.C)| ≤ (1 − α)n. So for any
B ⊆ V such that |B| ≥ αn, cutrkG(B) = n − |B|. As a consequence, for any d ∈ V and
any B ⊆ V \{d} such that |B| ≥ αn, ∂dcutrkG(B) = n − |B∪{d}| − (n − |B|) = −1. Thus
∂dcutrkG(B) = −1 J

A random Fq-graph G(n, 1/q) is a Fq-graph of order n such that, for every pair of vertices
u and v, the number of edges between u and v is chosen uniformly at random in Fq.

I Theorem 11. Given q ≥ 2, and α ∈ [0.5, 1] such that Hq2(1− α) < 1
2 , for any n ∈ N, a

random q-multigraph G(n, 1/q) realises a ((αn, n))q scheme with probability 1− 2Ω(n), where
d is any vertex of G(n, 1/q).

Proof. Let Cα = {C : V → Fq, |sup(C)| ≤ (1− α)n}. For any C ∈ Cα, let AC be the (bad)
event |sup(C)∪sup(Γ.C)| ≤ (1− α)n.
For any C ∈ Cα, Pr(AC) = 1

q(1−c)n

∑(1−α−c)n
k=0

((1−c)n
k

)
(q − 1)k where c = |sup(C)|/n, and∑

C∈Cα Pr(AC) =
∑(1−α)n
j=0 f(j) with f(j) =

∑
Cs.t.|sup(C)|=j Pr(AC).

In the following, we show an upperbound on f(k). For any c ∈ [0, 0.5], f(cn) =
(
n
cn

)
(q −

1)cn 1
q(1−c)n

∑(1−α−c)n
k=0

((1−c)n
k

)
(q − 1)k ≤ (q−1)cn

q(1−c)n 2nH2(c)+(1−c)nH2( 1−α−c
1−c )(q − 1)(1−α−c)n =

2ng(c) where g(c) = H2(c) + (1− c)H2( α
1−c ) + (1− α) log2(q − 1)− (1− c) log2(q). g′(c) =
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− log2(c) + log2(1− α− c) + log2(q), so g′(c) = 0 ⇐⇒ c = q
q+1 (1− α). As a consequence,

g(c) ≤ g( q
q+1 (1 − α)) = −α log2(α) − (1 − α) log2(α) + (1 − α) log2(q2 − 1) − log2(q) =

log2(q)(2Hq2(1 − α) − 1). Thus,
∑
C∈Cα Pr(AC) ≤ (1 − α)nqn[2Hq2 (1−α)−1], so, thanks

to the union bound, Pr(
⋂
C∈Cα AC) ≥ 1 − (1 − α)nqn[2Hq2 (1−α)−1] = 1 − 2Ω(n) when

2Hq2(1 − α) − 1 < 0. So according to lemma 10, κQ(G, d) ≤ αn for any vertex d when
Hq2(1− α) < 1

2 . J

Theorem 11 extends the upper bound of the binary case (q = 2) [21]. Notice that even if
a random Fq-graph realises a ((αn, n))q scheme with probability almost 1, double checking
whether a (randomly chosen) Fq-graph actually realises a ((αn, n))q scheme is a hard task
(see Problem (ii) in section 5.1).

5.3 Lower bound on quantum accessibility
The no cloning theorem implies that for any ((αn, n)) secret sharing protocol, α > 0.5. In
the following we improve this lower bound for secret sharing schemes based on qudit graph
states. The lower bound on α depends on the dimension q (see Theorem 14), the value of
the lower bound is plotted for small values of q in figure 2.

The lower bound is based on the properties of the kernel with respect to the dealer defined
as follows:

I Definition 12. Given a q-multigraph G, for any d ∈ V (G) and any B ⊆ V (G)\{d}, let
Sd(B) = ker(ΓG[B∪{d}])\ ker(ΓG[B]) be the kernel of B with respect to d.

I Lemma 13. Given a q-multigraph G, for any d ∈ V (G) and any B ⊆ V (G)\{d}, if
∂dcutrkG(B) = −1, there exists C ∈ Sd(B) such that

|sup(C)| < q

q + 1cutrkG(B)

Proof. Since cutrkG(B∪{d})−cutrkG(B) = −1, dim(ker(ΓG[B∪{d}]))−dim(ker(ΓG[B])) =
2. Moreover, ker(ΓG[B]) ⊆ ker(ΓG[B∪{d}]), so |Sd(B)| = (q2 − 1).qt where t = dim(ker(
ΓG[B])). Let M =

(
I
M ′

)
a matrix in standard form (or reduced column echelon form)

generating ΓG[B∪{d}]. Since |Sd(B)| = (q2− 1).qt and | ker(ΓG[B∪{d}])| = qt+2, there exist
two columns C1 and C2 of M such that ∀(x, y) ∈ [0, q − 1]2\{(0, 0)}, x.C1 + y.C2 ∈ Sd(B).
Notice that since M is in standard form, |sup(C1)∪sup(C2)| ≤ |B|+ 1− t. Moreover for any
v ∈ sup(C1)∪sup(C2), v has a zero multiplicity in q−1 vectors of the q2−1 linear combinations
x.C1 + y.C2 for x, y ∈ [0, q − 1]\{(0, 0)}, so

∑
(x,y)∈[0,q−1]2\{(0,0)} |sup(x.C1 + y.C2)| =

(q2 − 1 − (q − 1)).|sup(C1)∪sup(C2)|, so there exists C ∈ Sd(B) such that |sup(C)| ≤
q2−q
q2−1 (|B|+ 1− t) = q

q+1 (cutrkG(B) + 1) < q
q+1cutrkG(B). J

I Theorem 14. If a q-multigraph G of order n realises a ((αn, n))q scheme, then(
n

(1−α)qn
q+1

)(
αn

(2α− 1)n

)
≥ (2α− 1)(1− α)

2

(
n

αn

)
Asymptotically, as n tends to infinity, α satisfies:

H2(αq + 1
q + 1 ) + αH2(1− α

α
) ≥ H2(α)



A. Marin, D. Markham, and S. Perdrix 321

0.5

0.501

0.502

0.503

0.504

0.505

0.506

0 5 10 15 20 25 30

α

q

minimum value of α s.t. H2(αq+1
q+1 ) + αH2( 1−α

α ) ≥ H2(α)+

+

+
+ + + + + + +

+

Figure 2 Lower bound on the accessibility to quantum information in a ((k, n))q scheme. There
is no ((k, n))q scheme with k ≤ αn

Proof. Given B0 of size αn, according to lemma 13 there exists C0 ∈ Sd(B0) such that
|sup(C0)| < q

q+1 (1− α)n. Notice that the set sup(C0)∪sup(ΓG.C0) has some partial inform-
ation about the secret so |sup(C0)∪sup(ΓG.C0)| ≥ (1− α)n. Moreover for any B of size αn,
if C0 ∈ Sq(B) then sup(C)∪sup(ΓG.C) ⊆ B. So there are at most

(
n−1−(1−α)n
αn−(1−α)n

)
=
(
αn−1

(2α−1)n
)

sets B ⊆ V \{d} of size αn such that C0 ∈ Sd(B). For any B of size αn there is a C which
support is of size at most q

q+1 (1 − α)n − 1, any every such C is associated with at most(
αn−1

(2α−1)n
)
such Bs, so a counting argument implies

(
n−1
αn

)
≤
(
αn−1

(2α−1)n
)∑ q

q+1 (1−α)n−1
i=1

(
n−1
i

)
.

Moreover,
∑ q

q+1 (1−α)n−1
i=1

(
n−1
i

)
≤ 1+αq

q(2α−1)
( n−1

(1−α)qn
q+1 −1

)
= (1−α)(1+αq)

(2α−1)(q+1)
( n

(1−α)qn
q+1

)
. So, ( nαn)

( αn
(2α−1)n)

=

α
(1−α)2

(n−1
αn )

( αn−1
(2α−1)n)

≤ α(1+αq)
(2α−1)(1−α)(q+1)

( n
(1−α)qn
q+1

)
≤ 2

(2α−1)(1−α)
( n

(1−α)qn
q+1

)
.

Since 2n(H2(p)+o(1)) ≤
(
n
pn

)
≤ 2nH2(p), asymptotically, as n tends to infinity, α satisfies

the equation H2(αq+1
q+1 ) + αH2( 1−α

α ) ≥ H2(α). J

6 Discussion

In this work we have studied the encoding of classical and quantum information onto graph
states of qudits, and its application for secret sharing schemes. We have given complete
graphical characterization of which sets of vertices (players) can access the information,
and shown how this can be done both for classical and quantum information. Using this
characterization we have given bounds on which protocols are possible and how difficult the
access structure is to calculate given a graph.

Whilst we have focused on the application of our results for secret sharing, there may
be applications to other quantum information protocols. Indeed, the QQ encoding defined
in section 2.3 is exactly the same encoding procedure used in measurement based quantum
computing and error correction, so we can expect that these results have implications in both
these domains. Furthermore, quantum secret sharing is intimately linked to error correction
[28, 9]. All secret sharing schemes are error correcting schemes, and the QQ protocols
presented here are equivalent to all possible stabilizer codes [28]. Thus, the existence of
((αn, n)) protocols is an existence statement about error correcting protocols too, and the no
goes on secret sharing imply no-goes for all stabilizer codes - so that there are no stabilizer
codes with parameters violating our lower bounds.

TQC’13



322 Access Structure in Graphs in High Dimension and Application to Secret Sharing

Acknowledgements. The authors want to thank Mehdi Mhalla and David Cattanéo for
fruitful discussions. This work has been funded by the ANR-10-JCJC-0208 CausaQ grant,
the FREQUENCY (ANR-09-BLAN-0410), HIPERCOM (2011-CHRI-006) projects, and by
the Ville de Paris Emergences program, project CiQWii.

References
1 M. Bahramgiri,S. Beigi, Graph states under the action of local Clifford group in non-binary

case arXiv:quant-ph/0610267 (2006).
2 S. Beigi, I. Chuang, M. Grassl, P. Shor, B. and Zeng, Graph concatenation for quantum codes.

J. Math. Phys. 52, 022201 (2011).
3 M. Ben-Or, C. Crépeau, D. Gottesman, A. Hassidim, A. Smith, Secure Multiparty Quantum

Computation with (Only) a Strict Honest. Proc. 47th Annual IEEE Symposium on the
Foundations of Computer Science (FOCS ’06), pp. 249-260 (2006).

4 A. Broadbent, P. Chouha, A. Tapp, The GHZ state in secret sharing and entanglement
simulation. Third International Conference on Quantum, Nano and Micro Technologies,
ICQNM’09, 59-62 (2009).

5 A. Bouchet Circle Graph Obstructions Journal of Combinatorial Theory, Series B, Vol 60, 1,pp
107-144 (1994).

6 J.R. Bunch, J.E. Hopcroft. Triangular Factorization and Inversion by Fast Matrix Multiplica-
tion. Mathematics of Computation, 28(125):231236, (1974).

7 David Cattanéo, Simon Perdrix. Parametrized Complexity of Weak Odd Domination Problems.
arXiv:1206.4081 (2012).

8 M. Christandl, A. Winter, Uncertainty, Monogamy and Locking of Quantum Correlations.
IEEE Trans Inf Theory, vol 51, no 9, pp 3159-3165 (2005).

9 R. Cleve, D. Gottesman, H.K. Lo, How to share a quantum secret. Phys. Rev. Lett. 83, 648
(1999).

10 A.K. Ekert, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett., 67, 6, pp.
661–663 (1991).

11 B. Fortescue, G. Gour, Reducing the quantum communication cost of quantum secret sharing.
IEEE Trans. Inf. Th. 58(10), pp. 6659 - 6666 (2012)

12 V. Gheorghiu, Generalized Semi-Quantum Secret Sharing Schemes. Phys. Rev. A 85, 052309
(2012)

13 V. Gheorghiu, S.Y. Looi, R.B. Griffiths, Location of quantum information in additive graph
codes Phys. Rev. A, 81, 3, pp. 032326, (2010).

14 M. Grassl, A. Klappenecker, M. Rötteler, Graphs, Quadratic forms and Quantum Codes, IEEE
International Symposium on Information Theory (ISIT 2002), p.45 (2002).

15 S. Gravier, J. Javelle, M. Mhalla, S. Perdrix, On Weak Odd Domination and Graph-based
Quantum Secret Sharing. arXiv:1112.2495 (2011).

16 S. Gravier, J. Javelle, M. Mhalla, S. Perdrix, Optimal accessing and non-accessing structures
for graph protocols. arXiv:1109.6181 (2011).

17 M. Hein, J. Eisert, H. J. Briegel. Multiparty entanglement in graph states. Phys. Rev. A 69,
062311 (2004).

18 M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Van den Nest, H. J. Briegel, Entanglement in
graph states and its applications in Quantum Computers, Algorithms and Chaos, Proceedings
of the International School of Physics Enrico Fermi, Vol. 162 (2006).

19 M. Hillery, V. Bužek, A. Berthiaume, quantum secret sharing. Phys. Rev. A 59, 1829 (1999).
20 O.H. Ibarra, S. Moran, R. Hui. A Generalization of the Fast LUP Matrix Decomposition

Algorithm and Applications. Journal of Algorithms, 3(1):4532656, (1982).
21 J. Javelle, M. Mhalla, S. Perdrix, New Protocols and Lower Bound for Quantum Secret Sharing

with Graph States. TQC’12. LNCS Vol 7582, pp 1-12 (2013).
22 J. Javelle, M. Mhalla, S. Perdrix, On the Minimum Degree up to Local Complementation:

Bounds and Complexity. WG’12. LNCS Vol 7551, pp 138-147 (2012).



A. Marin, D. Markham, and S. Perdrix 323

23 M.M. Kanté, M. Rao. The Rank-Width of Edge-Coloured Graphs. Theory of Computing
Systems, 1-46, (2012).

24 E. Kashefi, D. Markham, M. Mhalla, and S. Perdrix. Information flow in Secret Sharing
Protocols. Electronic Proceedings in Theoretical Computer Science, 9:87–97 (2009).

25 A. Karlsson, M. Koashi, N. Imoto, Quantum entanglement for secret sharing and secret
splitting. Phys. Rev. A 59, 162–168, (1999).

26 A. Keet, B. Fortescue, D. Markham and B. C. Sanders, Quantum secret sharing with qudit
graph states. Phys. Rev. A 82, 062315 (2010).

27 A. Ketkar, A. Klappenecker, S. Kumar, P. K. Sarvepalli, Nonbinary Stabilizer Codes Over
Finite Fields. IEEE Trans. Inf. Th. 52, 4892 (2005).

28 A. Marin, D. Markham, On the equivalence between sharing quantum and classical secrets,
and error correction. arxiv:1205.4182 (2012)

29 A. Marin, D. Markham, High dimensional CSS code and application to secret sharing. in
preparation (2013).

30 D. Markham, B. C. Sanders, Graph State for Quantum Secret Sharing. Phys. Rev. A, 78,
(2008).

31 S. Oum, P. Seymour. Approximating rank-width and clique-width quickly. Journal ACM
Transactions on Algorithms (TALG), vol 5, 1-20 (2008).

32 D. Schlingemann, R. F. Werner, Quantum error-correcting codes associated with graphs. Phys.
Rev. A, vol. 65, p. 012308 (2001).

33 A. Shamir, How to share a secret. Communications of the ACM, 22, 612–613 (1979).
34 L. Sheridan, V. Scarani, Security proof for quantum key distribution using qudit systems. Phys.

Rev. A 82, 030301(R) (2010).
35 M. Van den Nest, J. Dehaene, B. De Moor Graphical description of the action of local Clifford

transformations on graph states. Physical Review A (69) 022316 (2004).

A Appendix-QQ Encoding-Decoding Operations

The QQ encoding-decoding can basically be done by three typical ways. The first method
is based on projective Bell measurements (possibly extended to a |B|+ 1 length state) and
the two last one are accessible by local measurements and/or series of two qudit control
operations, which should finally result in a similar experimental complexity. We briefly
describe the three encoding methods E1, E2, E3 and decoding D2, D3. (D1 has been done
in section 4.1). For a graph G = (V,Γ), with d, u ∈ V such that Γ(d, u) 6= 0, W := V \{d},
a quantum secret |ξ〉S :=

∑q−1
i=0 si|i〉S , we write X̄ := ZΓ.{d} and Z̄ := (XuZΓ.{u})−Γ(u,d)−1

,
as they act like logical operators over the bases states over W , that is Z̄|iL〉 = ωi|iL〉,
X̄|iL〉 = |(i+ 1)L〉 with notation of 4.1.
E1 |ξ〉|G〉 =

∑
i∈Fq si|i〉S

∑
j∈Fq

|j〉D|jL〉W√
q

= 1√
q

∑
i,j∈Fq |i〉S |j〉Dsi|jL〉W = 1√

q

∑
l∈Fq ISX

l
DX̄

l
W (
∑
i∈Fq |i〉S |i〉Dsi|iL〉W )

= 1√
q

∑
l∈Fq ISX

l
DX̄

l
W (
∑
k∈Fq

∑
i∈Fq ω

k.i |i〉I |i〉D
q

∑
j∈Fq ω

−k.jsj |jL〉W )
= 1√

q

∑
l∈Fq ISX

l
DX̄

l
W (
∑
k∈Fq Z

k
I IDZ̄

−k
W

∑
i∈Fq

|i〉I |i〉D
q

∑
j∈Fq sj |jL〉W )

= 1
q

∑
l,k∈Fq Z

k
SX

l
D(
∑
i∈Fq

|i〉S |i〉D√
q )X̄ l

W Z̄
−k
W

∑
j∈Fq sj |jL〉W )

so that applying the correction: Z̄kX̄−l over V \{d}, according to the syndrom (l, k) of a
Bell measurement over {S,D}, leaves the state over W as

∑
i∈Fq si|iL〉.

E2 CX̄dW |ξ〉|0L〉 =
∑
i∈Fq si|i〉X̄

i|0L〉 =
∑
i∈Fq si|iiL〉 =

∑
i∈Fq siX

i|0〉|iL〉
=
∑
i∈Fq siX

i
∑
j∈Fq

|bj〉√
q |iL〉 =

∑
i∈Fq siX

i
∑
j
Z−j |b0〉√

q |iL〉
= 1√

q

∑
i,j siω

i.jZ−j |b0〉|iL〉 =
∑
j∈Fq

|bj〉√
q (Z̄j

∑
i∈Fq si|iL〉)

where | bj 〉 = Z−j |+〉 constitutes the X basis, so that applying the correction Z̄−j over W ,
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according to the result j of a Xd measurement, leaves the state to distribute as
∑
i si|iL〉

(see also [2]).
E3 CZ̄dWHdCX̄dW |ξ〉|0L〉 = CZ̄dWHd(

∑
i si|i〉|iL〉) = CZ̄dW (

∑
i siZ

−i
d |+〉|iL〉)

= 1√
qCZ̄dW (

∑
i,k si|k〉Z̄−k|iL〉) = |+〉

∑
i si|iL〉)

.

The same process can be done for the decoding by an authorised set B, where the operators
UB and VB defined in 4.1 will act as Z̄ and X̄ operators respectively. An ancilla qudit {a} is
prepared in the state |+〉a by B.
D2 CV −1

aB |+〉a(
∑
j∈Fq sj |jL〉W ) = 1√

q

∑
k∈Fq X

−k
a (

∑
i∈Fq si|i〉a)|kL〉W .

D3 CUaB .Ha.
1√
q

∑
k∈Fq X

−k(
∑
i∈Fq si|i〉a)|kL〉W =

∑
i∈Fq si|bi〉a

∑
k∈Fmq

|kL〉W√
q .
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