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Abstract
Self-testing a quantum apparatus means verifying the existence of a certain quantum state as well
as the effect of the associated measuring devices based only on the statistics of the measurement
outcomes. Robust (i.e., error-tolerant) self-testing quantum apparatuses are critical building
blocks for quantum cryptographic protocols that rely on imperfect or untrusted devices. We
devise a general scheme for proving optimal robust self-testing properties for tests based on
nonlocal binary XOR games. We offer some simplified proofs of known results on self-testing,
and also prove some new results.
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1 Introduction

Consider a quantum apparatus with a classical input/output interface, and suppose that
the internal behavior of the apparatus — the quantum state inside and the measurements
selected by the classical input — cannot be trusted to conform to a desired specification. The
apparatus is said to be self-testing [8], if there exists a self-test, i.e., a set of constraints on the
input-output correlations, that once satisfied will guarantee the accuracy to the specification.

The notion of quantum self-testing was explicitly formulated by Mayers and Yao [8],
who pointed out its importance for quantum cryptography: self-testing enables quantum
cryptographic protocols that rely on imperfect or untrusted quantum devices. Such protocols
were advanced in the recent thrust of research on device-independent quantum cryptography [1,
15, 9, 14, 6, 5, 18].

Multiple self-testing results are known. Such results are often based on nonlocal games.
Popescu and Rohrlich [16] proved that any state that achieves a maximal violation of the
CHSH inequality [3] must be equivalent to a direct sum of singlets. A self-testing result was
proved for the GHZ paradox by Colbeck [4].

In order for self-testing to be practically useful, it must tolerate error. That is, an
apparatus close to passing the self-test must be close to the specification. Robust self-testing
results have been proved in [7, 10, 12, 11, 17]. These papers include two recent results which
prove robust self-testing for the CHSH game [11, 17].
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Existing proofs of self-testing are fairly lengthy and technical, and appear specific to the
underlying (class of) quantum states. Also, there is some variation in the error terms afforded
by these results. Some of the results on nonlocal games show that if the score achieved is
within ε of a passing score, the deviation of the apparatus from perfect behavior is no more
than C

√
ε. For other results (e.g., in [10, 11]) the error term is Cε1/4. It is natural to ask

whether these error bounds can be tightened.
Most existing self-tests are based on binary nonlocal XOR games. In this paper, working

within this class, we provide a simple criterion which determines whether a particular game
is a robust self-test. The criterion guarantees an error term of C

√
ε, which is easily seen

to be the best possible (up to the constant C). The criterion is fairly simple to check, it
encompasses known results on the CHSH game and the GHZ paradox, and it allows the
proof of new results.

The starting point of our theory is the idea, first observed by Werner and Wolf [19], that
the optimal score for a binary nonlocal XOR game can be expressed as the maximum of
a certain multivariable sinusoidal function. In the present paper, we take the idea a step
further and show that the robust self-testing property can be checked using the local and
global properties of this function.

We will begin with some definitions and then state our main results. The results are
stated initially for multiqubit states only, and a higher-dimensional generalization is given at
the end of the paper. The proofs are sketched here—full proofs can be found in [13]. We
offer some examples. We give a simple proof that the CHSH game is a robust self-test. (This
result improves on the error term in [11], and it matches that of the independent work [17].)
We also augment a recent paper [2] on randomness and quantum correlations by showing
that a certain one-parameter family of games satisfies the robust self-testing condition.

2 Definitions

For our purposes, a binary nonlocal XOR game is simply a function f : {0, 1}n → R. The
function f describes a scoring rule for the game: if the input sequence is (i1, i2, . . . , in),
and the output sequence satisfies ⊕kok = 0, then the score is f(i1, i2, . . . , in); if the input
sequence is (i1, i2, . . . , in) and the output sequence satisfies ⊕kok = 1, then the score is
−f(i1, i2, . . . , in).

To any nonlocal game f , let us associate a polynomial Pf : Cn → C like so: for any
n-tuple (λ1, . . . , λn) of complex numbers, let Pf (λ1, . . . , λn) be equal to∑

(i1,...,in)∈{0,1}n
f(i1, . . . , in)λi11 λ

i2
2 · · ·λinn . (1)

For example, if g is the CHSH game (g(1, 1) = −1, g(0, 0) = g(0, 1) = g(1, 0) = 1) then

Pg = 1 + λ1 + λ2 − λ1λ2. (2)

Additionally, for any binary nonlocal XOR game f : {0, 1}n → R, and any real numbers
θ0, θ1, . . . , θn, let Zf (θ0, . . . , θn) denote the quantity

∑
(ik)∈{0,1}n

f(i1, . . . , in) cos
(
θ0 +

∑
k

ikθk

)
. (3)

Thus,

Zg(θ0, θ1, θ2) = cos(θ0) + cos(θ0 + θ1) + cos(θ0 + θ2)− cos(θ0 + θ1 + θ2). (4)
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256 Optimal Robust Self-Testing by Binary Nonlocal XOR Games

Note that the function Zf is 2π-periodic in every variable.
The two quantities Pf and Zf are related by the following identity.

Zf (θ0, . . . , θn) = Re[eiθ0Pf (eiθ1 , . . . , eiθn)]. (5)

Note also that∣∣Pf (eiθ1 , . . . , eiθn
)∣∣ = max

t∈[−π,π]
Zf (t, θ1, . . . , θn). (6)

3 Quantum strategies

For our purposes, a quantum strategy for a binary n-player nonlocal game is a pure state

|ψ〉 ∈ Q1 ⊗Q2 ⊗ . . .⊗Qn, (7)

where eachQj is a finite-dimensional Hilbert space, together with two projective measurements{
P

(0,+)
j , P

(0,−)
j

}
,
{
P

(1,+)
j , P

(1,−)
j

}
(8)

on the space Qj . These measurements can be more compactly expressed as Hermitian
operators:

M
(0)
j := P

(0,+)
j − P (0,−)

j (9)

M
(1)
j := P

(1,+)
j − P (1,−)

j (10)

The score for such a strategy is

〈ψ|
∑
(ik)

f(i1, . . . , in)M (i1)
1 ⊗ . . .⊗M (in)

n |ψ〉 . (11)

Let us use the term qubit strategy to refer to a strategy whose Hilbert spaces Qj are all
copies of C2 and whose projection operators P (i,∗)

j are all one-dimensional projectors.
For any nonlocal game f , let qf denote the highest possible score for f that can be

achieved by a qubit strategy. This quantity has a relationship to the functions Zf and Pf
which was proved in [19]. For the benefit of our exposition, we include a proof here.

I Proposition 1. Let f : {0, 1}n → R be a nonlocal binary XOR game. Then,

qf = max
|λ1|=...=|λn|=1

|Pf (λ1, . . . , λn)| (12)

and

qf = max
θ0,...,θn∈[−π,π]

Zf (θ0, . . . θn). (13)

Proof. Let
(
ψ,
{
{M (0)

j ,M
(1)
j }

}
j

)
be a qubit strategy for f . Each of the operators M (i)

j

is a Hermitian operator on a 2-dimensional space that has eigenvalues in the set {−1,+1}.
After an appropriate change of basis, we may make the assumption that

M
(0)
j =

[
0 1
1 0

]
, M

(1)
j =

[
0 eiθj

e−iθj 0

]
(14)

for some θ0, . . . , θn ∈ [−π, π].
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The score for this quantum strategy is clearly bounded by the operator norm of the
operator

M :=
∑
(ik)

f(i1, . . . , in)M (i1)
1 ⊗ . . .⊗M (in)

n (15)

The operator M is on a Hilbert space which has basis {|a1a2 . . . an〉 | ai ∈ {0, 1}}. If we
take the elements of this basis in lexicographical order, the resulting matrix expression is a
reverse-diagonal matrix:

0 0 . . . 0 ∗
0 0 . . . ∗ 0
...

...
...

...
0 ∗ . . . 0 0
∗ 0 . . . 0 0

 (16)

The entries along the reverse diagonal are given by the expressions

Pf

(
ei(−1)a1θ1 , . . . , ei(−1)anθn

)
(17)

for (ak) ∈ {0, 1}n.
Using the simple observation that the eigenvalues of any matrix of the form

z1
z2

· · ·
zn

zn
· · ·

z2
z1


, (18)

are ± |z1| ,± |z2| , . . . ,± |zn|, we find that the operator norm of M is

max
(ai)∈{0,1}n

∣∣∣Pf (ei(−1)a1θ1 , . . . ei(−1)anθn
)∣∣∣ . (19)

Formula (12) follows. Formula (13) follows also via equality (5). J

4 Self-testing

Let f be a binary nonlocal XOR game. Let us say that f is a self-test if the following
condition holds:

(*) There is a single optimal qubit strategy (φ, {M (0)
j ,M

(1)
j }j) such that for any other

optimal qubit strategy (ψ, {N (0)
j , N

(1)
j }j), there exist unitary matrices Uj : C2 → C2

such that

(U1 ⊗ U2 ⊗ . . .⊗ Un)ψ = φ (20)

and

UjN
(i)
j U†j = M

(i)
j (21)

for all i ∈ {0, 1}, j ∈ {1, 2, . . . , n}.
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I Proposition 2. Let f : {0, 1}n → R be a nonlocal binary XOR game. Then f is a self-test
if and only if the following two conditions hold:
1. There exists a maximum (α0, . . . , αn) of f such that none of α1, . . . , αn is a multiple of π.
2. Every other maximum of f is congruent modulo 2π to either (α0, . . . , αn) or (−α0, . . . ,−αn).

Proof. Suppose that f satisfies both of these conditions. Let

φ = 1√
2

(
|00 . . . 0〉+ Pf (α1, . . . , αn)

|Pf (α1, . . . , αn)| |11 . . . 1〉
)
.

Suppose that (ψ, {{M (0)
j ,M

(1)
j }}j) is an optimal qubit strategy for f . After a unitary change

of basis, we may assume that the operators M (i)
j have the form

M
(0)
j =

[
0 1
1 0

]
, M

(1)
j =

[
0 eiθj

e−iθj 0

]
, (22)

with (θj) ∈ [−π, π]n, and we may make the additional assumption that the vectors (α1, . . . , αn)
and (θ1, . . . , θn) lie in the same quadrant. (That is, for every j ∈ {1, 2, . . . , n}, θjαj ≥ 0.)

Again we let

M =
∑
(ik)

f(i1, . . . , in)M (i1)
1 ⊗ . . .⊗M (in)

n . (23)

Since the chosen strategy is optimal, by formula (19) we must have (θ1, . . . , θn) = (α1, . . . , αn).
Moreover, the vector ψ must lie in the eigenspace corresponding to the largest eigenvalue of
M. This eigenspace is spanned by φ. We conclude that f is a self-test.

It is easy to show that if f fails to satisfy either of the two conditions of the theorem,
then there exist multiple optimal strategies for f which are inequivalent. J

The reader may note one consequence of this proof: if a binary XOR game f is a self-test,
then all optimal qubit-strategies for f use states that are equivalent to the GHZ state

1√
2 (|00 . . . 0〉+ |11 . . . 1〉).

5 Robustness

Let us say that two qubit strategies (ψ, {{N (0)
j , N

(1)
j }}j) and (γ, {{S(0)

j , S
(1)
j }}j) are δ-close

if

‖ψ − γ‖ ≤ δ (24)

and∥∥∥N (i)
j − S

(i)
j

∥∥∥ ≤ δ (25)

for all j ∈ {1, 2, . . . , n} and i ∈ {0, 1}. Let us say that a binary nonlocal XOR game
f : {0, 1}n → R is a second-order robust self-test if both condition (*) and the following
condition hold:

(**) There exists a constant C > 0 such that any qubit strategy whose score is within ε of
the optimal score is (C

√
ε)-close to an optimal qubit strategy.
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The next proposition uses the concept of a Hessian matrix. For any twice-differentiable
function G : Rm → R and any element c = (c1, . . . , cm) ∈ Rm, let

Hessc(G) =
[
∂2G

∂xi∂xj
(c)
]
i,j

. (26)

The Hessian matrix can be used to calculate the second derivatives of the function G in any
direction. When the function G is such that the Hessians at all of its maxima are nonsingular
(meaning that all second-derivatives at maxima are negative) the function has the property
that near-maxima tend to lie close to true maxima. This fact is the basis for the following
proposition, which is proved in full detail in the supplementary information of [13].
I Proposition 3. Let f : {0, 1}n → R be a binary nonlocal XOR game. Then f is a second-
order robust self-test if and only if the conditions of Proposition 2 are satisfied and the
Hessian matrix of Zf at (α0, . . . , αn) is nonsingular. J

Proof sketch. Let T be the set of all n-qubit strategies
(
ψ,
{
{M (0)

j ,M
(1)
j }

}
j

)
which are

such that the operators M (i)
j have the form

M
(0)
j =

[
0 1
1 0

]
, M

(1)
j =

[
0 eiθj

e−iθj 0

]
(27)

(j = 1, . . . , n) and the state ψ has the form

ψ = 1√
2
(
|00 . . . 0〉+ eiθ0 |11 . . . 1〉

)
(28)

with θj ∈ [−π, π]. Direct calculation shows that the score for such a strategy is given by
Zf (θ0, . . . , θn). The Hessian assumption implies that f is a second-order robust self-test
within the class T.

Let S be the set of all n-qubit strategies
(
φ,
{
{M (0)

j ,M
(1)
j }

}
j

)
such that the operators

M
(i)
j have the form (27) and the state φ is permitted to be any n-qubit state satisfying
〈φ | 00 . . . 0〉 ≥ 0. Then, it can be shown that there exists a constant K > 0 such that any
n-qubit strategy in S which achieves a score of qf − ε must be (K

√
ε)-close to some n-qubit

strategy in T which achieves an equal or higher score. As a consequence, robust self-testing
holds within the class S as well. The proof is then completed by the observation that any
qubit strategy is equivalent under local unitary transformations to a strategy in S. J

6 Examples

It is easy to show that the function Zg (4) corresponding to the CHSH game has two maxima:
(−π4 ,

π
2 ,

π
2 ) and (π4 ,−

π
2 ,−

π
2 ). The Hessian matrices at these maxima are both equal to

(
− 1√

2

) 4 2 2
2 2 1
2 1 2

 , (29)

which is a nonsingular matrix. Therefore, the CHSH game is a second-order robust self-test.
Let d be the 3-player GHZ game:

Zd(θ0, θ1, θ2, θ3) = cos(θ0)− cos(θ0 + θ1 + θ2)
− cos(θ0 + θ2 + θ3)− cos(θ0 + θ1 + θ3).

TQC’13
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It easy to show that the maxima of this function are (0,±π2 ,±
π
2 ,±

π
2 ), and that the Hessian

matrices at these maxima are nonsingular. Therefore the GHZ game is also a self-test
that satisfies second-order robustness. (This fact can also be proved using the results on
self-testing graph states in [10].)

Let us see how Proposition 3 can be used to prove new results. The recent paper [2] by
Acin et al. considers a family of nonlocal games {hα : {0, 1}2 → R}α>1 defined by

hα(0, 0) = α hα(0, 1) = α

hα(1, 0) = 1 hα(1, 1) = −1. (30)

The authors characterize the qubit-devices that achieve an optimal score at these games, and
show that these devices achieve more randomness than optimal devices for the standard CHSH
inequality. The games hα may therefore be suitable for randomness expansion. However in
randomness expansion protocols, it is only possible to approximately determine the expected
score of a device. Thus it is important to ask whether the games from this family satisfy
robust self-testing.

With the aid of the theory in [2], one can show that the function Zhα(θ0, θ1, θ2) has two
maxima in [−π, π]3, and the Hessian matrices at these maxima are

−(1 + α2)−1/2

 2α2 + 2 α2 + 1 2
α2 + 1 α2 + 1 1

2 1 2

 (31)

which is nonsingular for any α > 1. Therefore, each of the games in the family {hα}α>1 is a
second-order robust self-test.

7 General quantum strategies

Now suppose that we consider quantum strategies of arbitrary finite dimension. Whenever
there are two Hermitian operators M (0),M (1) on a single finite-dimensional Hilbert space Q,
each having eigenvalues in the set {−1, 1}, there exists a decomposition

Q =
m⊕
`=1
Q` (32)

which is respected by both of the operators M (0),M (1), with dimQ` ≤ 2. This allows us to
reduce general quantum strategies to n-qubit strategies. In particular, this implies that for
any binary nonlocal XOR game f , the maximum score achievable by qubit strategies (qf ) is
the maximum score achievable by any quantum strategy.

The following generalization of Proposition 3 follows from the above decomposition. (See
[13].)
I Proposition 4. Let f : {0, 1}n → R be a binary nonlocal XOR game which satisfies the
conditions of Proposition 2 and, additionally, satisfies the condition that the Hessian matrices
of the maxima of Zf are all nonsingular. Then, there exists a constant K > 0 and an n-qubit
state χ ∈

(
C2)⊗n such that the following holds: for any quantum strategy

Φ ∈ Q1 ⊗ . . .⊗Qn (33)
M

(i)
j : Qj → Qj (34)

achieving a score of qf − ε, there exist unitary embeddings Uj : Qj → C2 ⊗Q′j and a vector
Γ ∈ Q′1 ⊗ . . .⊗Q′n such that

‖(U1 ⊗ · · · ⊗ Un) Φ− χ⊗ Γ‖ ≤ K
√
ε. J (35)

As in the 2-dimensional case, we can take the state χ to be the n-qubit GHZ state.
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8 Conclusion

We have provided some general results which allow for easy proofs of robust self-testing in
the context of nonlocal binary XOR games. A natural question is whether our results could
be generalized to a larger class of games. A possible next step would be to consider games in
which the score is based on the XOR of a subset of the outputs (as in the tests used [10]). It
would also be interesting to explore further applications to randomness expansion.
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