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Abstract
Magic state distillation is a fundamental technique for realizing fault-tolerant universal quantum
computing, and produces high-fidelity Clifford eigenstates, called magic states, which can be
used to implement the non-Clifford π/8 gate. We propose an efficient protocol for distilling
other non-stabilizer states that requires only Clifford operations, measurement, and magic states.
One critical application of our protocol is efficiently and fault tolerantly implementing arbitrary,
non-Clifford, single-qubit rotations in average constant online circuit depth and polylogarithmic
(in precision) offline resource cost, resulting in significant improvements over state-of-the-art
decomposition techniques. Finally, we show that our protocol is robust to noise in the resource
states.
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1 Introduction

Given recent progress in quantum algorithms, quantum error correction, and quantum
hardware, a scalable quantum computer is becoming closer and closer to reality. For many
proposed quantum computer architectures, e.g., the surface-code model based on code
deformation [1], Clifford operations, stabilizer-state preparations, and measurements can
be implemented efficiently. However, these operations alone are not sufficient for quantum
universality and can be simulated classically [2]. Magic state distillation [3, 4, 5, 6] produces
Clifford eigenstates, which in turn can be used to realize a non-Clifford operation, e.g., the
single-qubit π/8 gate, T .

In this paper, we present an efficient protocol for distilling other non-stabilizer states. Our
protocol uses only |H〉-type magic resource states, Clifford operations, and measurements,
and is robust to noise in the resource states. One notable application of our protocol is
producing an arbitrary single-qubit, fault-tolerant unitary operation. Most commonly, a
single-qubit unitary U is decomposed into a discrete set of gates, typically {H,T}, using
Solovay-Kitaev decomposition [7, 8], which efficiently produces an approximate fault-tolerant
implementation of U with circuit depth Θ(logc(1/ε)), where ε is the precision and c is around
3.97 [9, 8]. Remarkably, efficient decomposition algorithms have recently been proposed
which lower c to 1 [10, 11]. Each T gate in the decomposed sequence requires a number of
copies of a quantum magic state |H〉, dependent on the specific state distillation protocol and
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|Z(θ)〉 X(Z) FE |m〉
|ψ〉 • Z(X)((−1)mθ)|ψ〉

Figure 1 Circuit to rotate by angle ±θ around the Z(X)-axis.

purity of the state [3, 4, 5, 6]. We show that our protocol requires only constant online circuit
depth and fewer resources than state-of-the-art decomposition techniques. Our protocols
may be useful for other applications as well.

2 Distilling Magic States and Implementing Rotations

We first review how to perform an arbitrary rotation about the Z-axis using a resource
state. A state |ψ〉 is magic if we can “distill" a purer |ψ〉 state from a Clifford circuit applied
to n noisy copies of |ψ〉. We focus on the +1 eigenstate of the Hadamard operation H,
|H〉 = cos π8 |0〉+ sin π

8 |1〉. We assume throughout that Clifford operations are perfect and
resource states are arbitrarily pure. We can arbitrarily purify these states by applying a
distillation protocol recursively [3, 4, 5, 6]. We concentrate on single-qubit states found in
either the XZ- or XY -plane of the Bloch sphere; note that a state can be rotated from one
plane to the other through application of the Clifford HSHX operation.

Suppose we have states |Z(θ)〉 = |0〉 + eiθ |1〉 and |ψ〉 = a |0〉 + b |1〉. The circuit to
implement a rotation around the Z-axis using |Z(θ)〉 as a resource state is presented in Fig. 1.
Upon measurement of the first qubit in the computational basis, we obtain either

m=0−−−→ a |0〉+ beiθ |1〉 , or
m=1−−−→ aeiθ |0〉+ b |1〉 = a |0〉+ be−iθ |1〉 ,

each with probability 1/2. Thus, the rotation angle is randomly either θ or −θ, up to global
phase. An analogous circuit performs a rotation about the X-axis [1].

As an example, consider the XY -plane version of |H〉:

|Z(π/4)〉 = HSHX |H〉 = |0〉+ eiπ/4 |1〉 .

Using the circuit in Fig. 1, we can implement a Z-rotation of angle ±π/4, producing at
random either the T gate or its adjoint, T †. We can deterministically correct the angle by
applying the phase gate S: ST † |ψ〉 = T |ψ〉. For general rotations, deterministic correction
is not possible.

3 Distilling Other Non-Stabilizer States

We now present our protocol for producing other non-stabilizer states using a very simple
two-qubit Clifford circuit and |H〉 states as an initial resource.

Consider the circuit of Fig. 2. One can easily verify that it measures the parity of the
two input qubits and decodes the resulting state into the second qubit. Consider the two
inputs to be |H〉 states and define θ0 = π

8 and |H〉 = |H0〉 = cos θ0 |0〉 + sin θ0 |1〉. Then
upon application of the controlled-NOT gate Λ(X),

|H0〉 |H0〉
Λ(X)−−−→ cos2 θ0 |00〉+ sin2 θ0 |01〉+ cos θ0 sin θ0(|11〉+ |10〉).
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|H0〉 X FE |0〉(|1〉)
|Hi〉 • |Hi+1〉(|Hi−1〉)

Figure 2 Two-qubit circuit used to obtain new |Hi〉 states from initial resource states |H0〉. Upon
measuring the 0 (1) outcome, the output state is |Hi+1〉 (|Hi−1〉).

Upon measurement m of the first qubit, we have

m=0−−−→ cos2 θ0 |0〉+ sin2 θ0 |1〉
cos4 θ0 + sin4 θ0

, or m=1−−−→ 1√
2 (|0〉+ |1〉).

We define θ1 such that

cos θ1 |0〉+ sin θ1 |1〉 = cos θ0 |0〉+ sin θ0 |1〉
cos4 θ0 + sin4 θ0

,

from which we deduce cot θ1 = cot2 θ0. We define |H1〉 = cos θ1 |0〉+sin θ1 |1〉, a non-stabilizer
state obtained from |H〉 states, Clifford operations, and measurements. If the measurement
outcome is 1, then we obtain a stabilizer state and discard the output (see Fig. 2). The
measurement outcomes occur with respective probabilities p0 = cos4 θ0 + sin4 θ0 = 3

4 and
p1 = 1− p0 = 1

4 .
We now recurse on this protocol using the non-stabilizer states produced by the previous

round of the protocol as input to the circuit in Fig. 2. We define |Hi〉 = cos θi |0〉+ sin θi |1〉,
where cot θi = coti+1 θ0. Using as input the previously produced |Hi〉 state and a new |H0〉
state, we have

|H0〉 |Hi〉
Λ(X)−−−→ cos θ0 cos θi |00〉+ sin θ0 sin θi |01〉+ sin θ0 cos θi |10〉+ cos θ0 sin θi |11〉 .

Upon measurement of the first qubit, we have
m=0−−−→ (cos θ′ |0〉+ sin θ′ |1〉),
m=1−−−→ (cos θ′′ |0〉+ sin θ′′ |1〉), where

cot θ′ = cot θi cot θ0 = coti+2 θ0 = cot θi+1,

cot θ′′ = cot θi tan θ0 = coti θ0 = cot θi−1.

Thus, if we measure m = 0, we obtain the state |Hi+1〉 and if we measure m = 1, we obtain
|Hi−1〉. The probability of measuring 0 is given by p0,i = cos2 θi cos2 θ0 + sin2 θi sin2 θ0. Note
that 3

4 ≤ p0,i < cos2 π
8 = 0.853 . . .

We can view this recursive process as a semi-infinite random walk with biased non-
homogeneous probabilities, as Fig. 3 illustrates. Every time a step is taken along this “ladder"
of states, one |H〉 ≡ |H0〉 is consumed, except at the first step of the ladder when we require
two |H〉 states; if m = 1 at the first node, we discard the output and start with two new |H〉
states.

4 A Denser Ladder

We can produce a denser ladder of states by using additional resource states
∣∣∣ψ0,1,2

0

〉
.

Consider the Clifford circuit of Fig. 4(a) that takes as input four |H〉 states. With probability
3(2 +

√
2)/32 ≈ 0.320, the measurement outcome is 000 and the resulting state is

∣∣ψ0
0
〉

=

TQC’13
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Figure 3 Obtaining non-stabilizer states from initial |H〉 states. Using |Hi〉 and |H0〉 states
probabilistically yields a |Hi−1〉 or |Hi+1〉 using the circuit of Fig. 2. Each ladder step costs one
|H0〉 state, except the first one which costs two.

|H0〉 H X • ����� 0

|H0〉(|+〉) • • H ����� 0

|H0〉 H X • • H H|ψ0(1)〉
|H0〉 X Z X ����� 0

|H0〉 • • H ����� 0

|H0〉 X X H |ψ2〉
|H0〉 • X ����� 0

|H0〉 X • ����� 0
(a) (b)

Figure 4 (a) Circuit to produce
∣∣ψ0

0
〉
(
∣∣ψ1

0
〉
) states. (b) Circuit to produce

∣∣ψ2
0
〉
states.

cosφ0
0 |0〉+sinφ0

0 |1〉 with φ0
0 = π

2−cot−1
(

2+3
√

2
6+5
√

2

)
≈ 0.446. Otherwise the output is discarded.

Since the probability of success is 0.320 and every trial consumes four copies of |H0〉, the
average cost to produce

∣∣ψ0
0
〉
is 12.50 |H0〉 states.

Another interesting state is obtained using the same circuit with one input state replaced
with a |+〉 state. Measurement 000 is obtained with probability (6+

√
2)/32 ≈ 0.232, resulting

in the state
∣∣ψ1

0
〉

= cosφ1
0 |0〉 + sinφ1

0 |1〉 with φ1
0 = π

2 − cot−1
(

2
√

2
3+
√

2

)
≈ 0.570. Since the

probability of success is 0.232 and every trial consumes three |H0〉 states, the average cost
to produce

∣∣ψ1
0
〉
is 12.95 |H0〉 states. Fig. 4(b) shows a circuit which produces the output

state
∣∣ψ2

0
〉

= cosφ2
0 |0〉+ sinφ2

0 |1〉 with φ2
0 = π

2 − cot−1
(

7
6
√

2

)
≈ 0.690, when measurement

000 is obtained (with probability 11/32 ≈ 0.344). The probability of success is 0.344 and the
average cost to produce

∣∣ψ2
0
〉
is 11.64 |H0〉 states.

Now we can use one of these non-stabilizer states as input to the circuit in Fig. 2 in place
of the top |H0〉 state. Begin with states

∣∣ψi0〉 and |H0〉. If m = 1, the state is discarded.
Otherwise, we obtain

∣∣ψi1〉 = cosφi1 |0〉+ sinφi1 |1〉, where cotφi1 = cotφi0 cot θ0. As before,
we define

∣∣∣ψji〉 = cosφji |0〉+ sinφji |1〉, where cotφji = cotφj0 coti θ0. If we input states
∣∣∣ψji〉

and |H0〉, we obtain

|H0〉
∣∣∣ψji〉 Λ(X)−−−→ cos θ0 cosφji |00〉+ sin θ0 sinφji |01〉+ sin θ0 cosφji |10〉+ cos θ0 sinφji |11〉 ,

such that the output state is, depending on the measurement outcome,

m=0−−−→
∣∣∣ψji+1

〉
, or m=1−−−→

∣∣∣ψji−1

〉
.

Denser “ladders" of states can be obtained using
∣∣∣ψ0,1,2

0

〉
as inputs in place of the top |H0〉

state.

5 Noisy states

A priori, noise in the |H0〉 resource states could be amplified by the circuit in Fig. 2
and affect the purity of the |Hi〉 states. However, we show this is not the case. We
measure the accuracy of the imperfect |Hi〉 states using the trace distance on states ρ and
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Figure 5 (a) Evolution of the trace distance between imperfect ρa
i and perfect |Hi〉 states with noise

p. Exponential decay fits give (2.08∗10−3)×2.31−i, (1.63∗10−5)×2.28−i and (1.26∗10−7)×2.24−i

for the circle, square and diamond data set, respectively. (b) Improvement factor of the total offline
cost using the noisiest |H0〉 states to distill |Hi〉 states of precision ε as a function of the relative
precision of the rotation ε/φ.

σ: D(ρ, σ) = tr(
√

(ρ− σ)†(ρ− σ))/2. We assume errors only occur on the |H0〉 states. We
numerically study three types of errors. For the first error, we assume that the mixed state,
ρa0 , is on the line joining the center of the Bloch sphere and the the perfect state, i.e.,

ρa0(p) = (1− p)|H0〉〈H0|+ p| −H0〉〈−H0|,

where |−H0〉 = sin π
8 |0〉 − cos π8 |1〉 is the state orthogonal to |H0〉. We denote the imperfect

version of |Hi〉 obtained from ρa0 states as ρai . We can always bring any mixed state into this
form using twirling [4]. For the protocol to be practical, we require it to remain stable under
the two following types of errors, where we assume the state is pure and the rotation is off of
the desired axis by δ:

ρb0(δ) = 1
2

(
I + sin

(π
4 + δ

)
X + cos

(π
4 + δ

)
Z
)
,

ρc0(δ) = 1
2

(
I + sin π4 cos δX + sin π4 sin δY + cos π4Z

)
.

We numerically generated 1000 pseudo-random instances of the protocol to produce |Hi〉
states for different values of i for each error type and for noise strengths 10−4, 10−6, and
10−8. Figure 5(a) shows an exponential decay of the distance between erroneous and ideal
states; if we start with a |H0〉 state distilled to our target accuracy, all subsequent derived
|Hi〉 states will also be distilled to at least that accuracy. This further suggests that for
larger values of i, noisier |H0〉 states could be used to still achieve the desired accuracy, and
in turn decrease the number of distillation recursions (and resources) necessary to prepare
the |H0〉 states.

Extrapolating from Fig.5(a), one could for example prepare ρ12 states with accuracy 10−9

using only input |H0〉 states of accuracy 10−6, saving at least one round of distillation prior
to our protocol, reducing the total offline cost (including magic state distillation). Using
states as noisy as possible and using the costs and accuracies presented in Table I of [4], we
were able to estimate, via numerical simulations, the improvement factor to be gained in
offline cost for different rotations and precisions. The results are presented in Fig. 5(b). Two
important behaviors are noted. First, for any given realtive precision ε/φ, the improvement
factor increases as the absolute precision ε goes down. Second, and more importantly, there
is as much as an order of magnitude to be gained for rotation angles that are comparable to

TQC’13
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the desired accuracy ε, e.g., for ε = 5× 10−10 and φ ∼ 100ε, there is a factor ∼ 11 reduction
in resource offline cost.

6 Application to Single-qubit Rotations

We now show how to use the ladders of states to enable the fault-tolerant approximation of
any single-qubit rotation. Results do not include the improvements in offline cost discussed in
previous section, so an additional gain factor between 2 and 10, depending on ε, is expected.
Recall the circuit given in Fig. 1. If we input either HSHX |Hi〉 or HSHX

∣∣∣ψji〉 in place
of the top qubit, we obtain rotation Z(±2θi) on |ψ〉. Note that there is a factor of two
difference between the angle θi involved in the description of the state and the rotation
applied, e.g., the |H0〉 state is over θ0 = π

8 , and can be used to implement a π
4 rotation. Also,

since 0 < θi <
π
4 (∀i), the discontinuity of cotangent is not a problem.

Although the circuit in Fig. 1 randomly applies ±θ, our protocols still result in efficient
application of the desired Z-rotation.

We propose the following protocol to approximate a Z-rotation Z(φ):
1. Set desired accuracy ε.
2. Pick a target rotation angle 0 < φ < 2π.
3. Find the state |Hi〉 (or denser state

∣∣∣ψji〉) such that 2θi is close to φ.
4. Simulate an instance of the ladder to obtain that state and add its cost to the offline cost.
5. Apply a rotation using |Hi〉 (or denser state

∣∣∣ψji〉) as input to the circuit of Fig. 1 and
add one to the online cost.

6. Recurse on steps 3 through 5 until the desired accuracy is reached.
Thus, one has to implement a sequence of j rotations {Z(2θij )} on |ψ〉 using the sequence of
states {

∣∣Hij

〉
}, such that Z(φ) ≈

∏
j Z(2θij ). The online cost is also given by

∣∣{∣∣Hij

〉
}
∣∣.

We define the accuracy of the applied rotation V compared to the target rotation U = Z(φ)
as

max
|ψ〉

D(U |ψ〉 〈ψ|U†, V |ψ〉 〈ψ|V †),

where D(ρ, σ) is the trace distance between states ρ and σ. If U and V are rotations
about the same axis, one can show that in our case, for small angles of rotation, this
reduces to the difference of rotation angles: ε = ∆φ. In [9], the distance measure used is
D(U, V ) =

√
(2− |tr(UV †)|)/2. In the case of rotations about the same axis, it can be

reduced to
√

1− | cos(∆φ)| ≈ ∆φ/
√

2 for small ∆φ.
We define an online and offline cost to apply a unitary gate. The online cost, Con, is the

expected number of |Hi〉 states required to implement the unitary. The offline cost, Coff, is
the total number of distilled |H0〉 states required to obtain all of the intermediate |Hi〉 states
used to perform the given unitary. For Solovay-Kitaev decomposition, the offline cost equals
the online cost and is given by the total number of T and T † gates in the decomposition. In
both cases, we do not count the cost of initially distilling |H0〉 states.

We simulated ∼ 1.8 × 104 instances of our |H〉 protocol, each for a random angle φ
and target accuracy between 10−12 < ε < 10−4. We assume that Con ∼ lncon( 1

ε ), and
Coff ∼ lncoff( 1

ε ), where Con and Coff are the online and offline costs, respectively, such
that lnCon ∼ con ln ln( 1

ε ), and lnCoff ∼ coff ln ln( 1
ε ). From linear fits to the data, we

find ln(Con) = −0.21 + 1.23 ln(ln(1/ε)) with a standard deviation around the mean of
ln(∆Con) = −0.30 + 0.83 ln(ln(1/ε)), and ln(Con) = −0.44 + 2.22 ln(ln(1/ε)) with a standard
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Figure 6 Cost of (a) random Z-rotations and (b) random unitaries as a function of precision
ε. Solid line: SK decomposition [9]. Dotted line: Offline cost using |H〉, or {

∣∣ψ0〉 , ∣∣ψ1〉 , ∣∣ψ2〉} as
initial resources. Dashed line: Online cost using |H〉, or

∣∣ψ0〉 , ∣∣ψ1〉 , ∣∣ψ2〉} as initial resources. The
shaded regions around the dashed and dotted lines represent the standard deviation around the
mean. (a) ln(C′ZSK) = −4.88 + 4.41 ln(ln(1/ε)); ln(C′ZOn) = −0.46 + 1.04 ln(ln(1/ε)); ln(C′ZOff) = 0.96 +
1.64 ln(ln(1/ε)). (b) ln(C′SK) = −2.67 + 3.40 ln(ln(1/ε)); ln(C′On) = −0.46 + 1.04 ln(ln(1/ε)) + ln 3;
ln(C′Off) = 0.96 + 1.64 ln(ln(1/ε)) + ln 3.

deviation around the mean of ln(∆Con) = 0.02 + 1.87 ln(ln(1/ε)). We deduce that con ∼ 1.23
and coff ∼ 2.22 for our protocol.

For the denser protocol, the offline costs are 12.50, 12.95, and 11.64 for
∣∣ψ0

0
〉
,
∣∣ψ1

0
〉
, and∣∣ψ2

0
〉
, respectively. The denser set of states results in improved scalings for both the online

and offline costs: c′on ∼ 1.04 and c′off ∼ 1.64, where ′ denotes the denser protocol. However,
the offline costs of our new states

∣∣ψi0〉 are improved only when precisions are smaller then
ε ≈ 1.28× 10−5.

Figure. 6 shows the behavior of the protocols on Z rotations and arbitrary rotations. For
an arbitrary rotation, recall that a single-qubit unitary U is composed of three rotations
around the X- and Z-axes [12]: U ∝ X(α)Z(β)X(γ), for some angles α, β, γ. We can
use our protocol to implement both Z and X rotations as previously outlined. Fig. 6(a)
plots the fit for Solovay-Kitaev decomposition [9] (solid line), the online cost (dashed), and
offline cost (dotted). For all practical precisions, the online cost of our proposed scheme is
consistently smallest. The offline cost is advantageous when ε ≤ 4.41× 10−4 for Z-rotations
and ε < 1.03× 10−6 for random unitaries.

7 Minimizing Online Cost

We can further minimize the online cost by considering instead the following protocol to
implement a Z rotation by angle φ: Prepare offline the state |Z(φ)〉 using the protocol
described to apply |Z(φ)〉 to a |0〉 ancilla. Then, use |Z(φ)〉 online to apply the rotation to
the desired qubit. With probability 1

2 , the rotation Z(φ) is applied and the online cost is 1.
If it fails, prepare offline |Z(2φ)〉; with probability 1

2 , Z(φ) is applied online and the online
cost is 2. If it fails, prepare offline |Z(4φ)〉, and so on. The probability of success after n
iterations decreases exponentially with n; the process is a negative binomial of parameter
p = 1

2 and the expected number of online rotations for success is ∼ 1
p = 2. We simulated

this process for random angles 0 < φ < 2π and accuracies 10−12 < ε < 10−4 and found the
expected number of online rotations is 〈C ′′on〉 = 1.99 and the offline cost is c′′off ∼ 1.75. Note

TQC’13
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Figure 7 Comparison of online (solid) and offline (dashed) costs to decompose Z rotations
vs. accuracy ε. Methods plotted include CPAR [13], CPS [10], CBS [9], CF [14]. COn, COff, C′On, C′Off,
C′′On, C′′Off represent our |H〉 ladder, dense ladder, and minimal online cost with the dense ladder,
respectively. The offline costs for C{BS,PS,F} are equal to their online costs.

that any method can be used to prepare the ancilla state offline, and here we use our protocol
for preparation. We discovered after writing that a similar technique was described in [13].

Figure 7 compares the cost of state-of-the-art decomposition techniques with our protocols.
The plot highlights the tradeoffs between the various methods. Note that we only plotted
two methods, our protocol C ′′ and CPAR (which uses CF to prepare the state), using the
minimal online framework, but the other techniques could also be used to prepare the state
offline, yielding an expected online cost of 2 and a roughly doubled offline cost. Our protocols
C, C ′, and C ′′ (red, green, black) exhibit a very clear tradeoff between online circuit depth
and offline cost. For example, if operations on logical qubits must be minimized (due to
noise), then trading offline resources for low online circuit depth is desirable, making C, C ′,
and C ′′ advantageous compared to C{BS,F,PS}. C ′′ is competitive with the minimal-online
versions of CF (plotted as CPAR) and CPS (not plotted). In practice, several decomposition
techniques will be used throughout the compilation of a quantum algorithm.

Finally, our protocol can be used to fault-tolerantly implement elements of the V basis,
which consists of V{1,2,3} = (I + 2i{X,Y, Z})/

√
5 and their inverses. The V basis was shown

to be efficiently universal, guaranteeing decompositions to be of depth O(log(1/ε)) [15]. It was
previously dismissed as a candidate basis for decomposition due to the inability to implement
the gates fault-tolerantly. However, our protocol enables fault-tolerant implementation:
V = Z(π/4)Z(2θ2), which is a T gate followed by a rotation using the |H2〉 resource state.
On average, it requires an offline cost of 10 |H0〉 states. This has prompted the development
of decomposition algorithms targeted to the V basis that may outperform those for the
{H,T} basis [16].
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8 Conclusions

We have proposed a protocol to distill non-stabilizer states efficiently using magic states,
Clifford operations, and measurements. One application of our protocol is implementing
arbitrary single-qubit rotations with lower resource cost than state-of-the-art decomposition
methods and constant online circuit depth. An extension of our work is to study other
stabilizer circuits as “ladders" of states, or to use SH eigenstates distilled using the protocols
of [3, 5]. Finally optimizing the sequence of angles required to implement the desired rotation,
or determining when to use a given decomposition technique, will be a necessary component of
any quantum compiler. We thank Alex Bocharov and Cody Jones for many useful discussions.
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