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Abstract
A fundamental question in data exchange and data integration is how to answer queries that are
posed against the target schema, or the global schema, respectively. While the certain answers
semantics has proved to be adequate for answering monotone queries, the question concerning
an appropriate semantics for non-monotone queries turned out to be more difficult. This article
surveys approaches and semantics for answering non-monotone queries in data exchange and data
integration.
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1 Introduction

Query answering is a fundamental task both in data exchange and data integration. Indeed,
the goal of data integration is to combine different sources of data and to provide a unified
view through which these sources can be queried [29]. The data often resides at the sources
while the view is virtual (i.e., not materialized). Hence, if a user queries the view, the query
has to be answered using the source data, for example, by evaluating suitable queries on the
sources and combining their results, or by materializing the relevant part of the view that is
needed to answer the query. Data exchange is similar to data integration insofar as its goal is
to translate databases over a source schema into databases over a target schema [11, 27, 6, 4],
whereby providing a view (over the target schema) on the source database. However, unlike
in data integration, the view is materialized and queries have to be answered directly on
that view. In fact, in data exchange it is generally assumed that the source database is not
available at the time the target database is queried [11].

In both areas, the basic approach for modeling the relationship between source and target
is based on schema mappings [29, 27]. Schema mappings describe target databases (over a
target schema) in terms of source databases (over a source schema) by means of high-level
declarative assertions (typically expressed in a suitable fragment of first-order logic or even
second-order logic). A solution for a source database is a target database that makes all
assertions hold true. Usually schema mappings are underspecified, which means that source
databases may have more than one solution. Hence, it is not obvious at all how to answer
queries that are posed against the target schema of a schema mapping.

The following approach for answering queries is common in such a setting [29, 27, 6, 4].
Instead of answering a query Q on a single solution, the set of all tuples that are answers to Q
on all solutions is returned. This set is called the set of the certain answers to Q on the given
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source instance and schema mapping. Informally, it contains all tuples that are certain to be
answers to Q no matter on which solution Q is evaluated. The certain answers semantics has
turned out to be adequate for answering monotone queries like unions of conjunctive queries
with inequalities in the sense that it yields the best result obtainable from the information in
the source database and the schema mapping. Although the definition of the certain answers
involves a potentially infinite set of solutions, in many practical settings it is possible to
compute them in polynomial time (in data complexity, i.e., for fixed schema mappings and
queries) from a single solution called universal solution [11, 5], or by evaluating a suitably
rewritten query over the source schema (cf., [29] and Chapter 5 of this book).

Researchers soon realized [11, 3, 31] that for non-monotone queries, the certain answers
semantics may yield results that intuitively seem to be not accurate. The following example
illustrates the basic problem.

I Example 1. Suppose we just want to copy source databases to target databases. For
instance, assume that source databases contain a single binary relation E and the target
database is going to be a database containing a single binary relation E′. Then the schema
mapping M describing the translation from source to target could be specified by the
tuple-generating dependency

θ := ∀x, y
(
E(x, y)→ E′(x, y)

)
.

Informally, θ says that all tuples in E have to be in E′. Hence, the set of solutions for a
source database S consists of all target databases whose relation E′ contains all tuples in
the relation E of S.

On the other hand, since schema mappings describe translations from source to target, it
seems to be natural to expect that the result of translating a source database S according
to M is the copy S′ of S over the new schema {E′}. In particular, it seems to be natural
to expect that a query posed against the target schema yields the same result as the same
query evaluated on S′. However, this is not the case if we answer queries by the set of the
certain answers to the query: If the source database S is such that E contains only the tuple
(c, d), where c, d are distinct constants, then the expected set of answers to

Q(x, y) := ∀z
(
E′(x, z)→ z = y

)
would be {(c, d)}, yet the set of the certain answers to Q on S and M is empty (since the
instance whose relation E′ consists of the tuples (c, d) and (c, e) is a solution for S). J

As indicated by the example, the problem is really a matter of the semantics of schema
mappings. Which target databases should constitute the set of solutions for a given source
database? For the schema mapping M in the example, we argued that only the copy of a
source database S should be a solution for S under M . To enforce this, we could have used a
constraint like ∀x, y

(
E(x, y)↔ E′(x, y)

)
stating that a tuple is in E′ precisely if it belongs

to E. Then the set of the certain answers would be as desired. However, this approach –
of using constraints that are not expressible by standard constraints like tuple-generating
dependencies or equality-generating dependencies considered in the literature – seems to have
received almost no attention.1

The approach pursued in the literature is to use custom-made semantics of query answering
[13, 22, 32, 2, 21]. Under each of these semantics, a query Q is answered by the set of the

1 An exception is [32], where an extension of tgds, annotated tgds, is considered whose semantics cannot
be captured by any set of tgds and egds.
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certain answers to Q with respect to a suitably restricted set S of solutions (i.e., by the set
of all tuples that are answers to Q on all solutions from S). Except for the semantics in
[13], different forms of non-monotonic reasoning, specifically, variants of the closed world
assumption [36], are implemented to arrive at the corresponding set of solutions. Here, the
basic idea is to consider target databases as solutions only if they can be derived in a certain
way from the source database and the schema mapping. Apart from trying to remedy the
shortcomings of the certain answers semantics when it comes to answering non-monotone
queries, I think that non-monotonic reasoning in data exchange and data integration is
appealing in its own right. In principle, it allows for more compact specifications of schema
mappings, since only the data that is actually moved from the source to the target has to be
specified, without saying what should not be in the target database.

This chapter is intended to give an overview on the different semantics for answering
non-monotone queries, and the complexity of query answering under those semantics.

The remaining part of this chapter is organized as follows. In Section 2 we introduce basic
notions and notation used throughout this chapter, and in Section 3 we recall the certain
answers semantics and its behavior on non-monotone queries. Section 4 surveys the different
semantics that have been proposed in the literature for answering non-monotone queries.
Finally, Section 5 compiles what is known about the complexity of answering non-monotone
queries under those semantics.

2 Basics

Below, we recall standard notions from database theory and data exchange used in the rest
of this chapter. For a detailed account of these, see, e.g., [1, 4].

We let [n] be the set of all integers m with 1 ≤ m ≤ n. Mappings f : A→ B are extended
to tuples ā = (a1, . . . , ak) over A via f(ā) := (f(a1), . . . , f(ak)), and to relations R ⊆ Ak via
f(R) := {f(ā) | ā ∈ R}.

2.1 Databases

A schema is a finite set σ of relation symbols, where each R ∈ σ has a fixed arity ar(R) ≥ 1. A
σ-instance I assigns to each R ∈ σ a finite relation RI of arity ar(R). The active domain of I,
that is, the set of all values that occur in I, is denoted by dom(I). As usual in data exchange,
we assume that dom(I) ⊆ Dom, where Dom is the union of two fixed disjoint infinite sets –
the set Const of all constants, and the set Null of all (labeled) nulls. Constants are denoted by
letters c, d, e and variants like c′, c1; different letters denote mutually distinct constants. Nulls
serve as placeholders, or variables, for unknown constants; we will denote them by ⊥ and
variants like ⊥′,⊥1. Instances without nulls are called ground. Let const(I) := dom(I)∩Const
and nulls(I) := dom(I) ∩Null.

It will often be convenient to view instances as sets of atoms, where an atom is an
expression of the form R(ā) with R a relation symbol and ā ∈ Domar(R). Thus, we identify
σ-instances I with the set {R(ā) | R ∈ σ, ā ∈ RI}. This enables us to apply set theoretic
notation to instances. For example, we may write R(ā) ∈ I instead of “R ∈ σ and ā ∈ RI .”
Furthermore, we may write I ⊆ J to indicate that all atoms of I are contained in J , or I ∪ J
for the instance consisting of all the atoms of I and all the atoms of J .

Let I and J be instances. A homomorphism from I to J is a mapping h : dom(I) →
dom(J) such that for all constants c ∈ dom(I) we have h(c) = c, and for all R(a1, . . . , ak) ∈ I
we have R(h(a1), . . . , h(ak)) ∈ J . We call J a homomorphic image of I if there is a
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homomorphism h from I to J such that J = h(I), where we define

h(I) := {R(h(a1), . . . , h(ak)) | R(a1, . . . , ak) ∈ I} .

Furthermore, we call I and J homomorphically equivalent if there is a homomorphism from
I to J and a homomorphism from J to I. An isomorphism from I to J is a bijective
homomorphism h from I to J such that h−1 is a homomorphism from J to I. If there is
an isomorphism from I to J , we call I and J isomorphic. We say that J is a core of I if
J ⊆ I and there is a homomorphism from I to J , but no homomorphism from I to a proper
subinstance of J . As shown in [19] (see also [13]), every instance has a core, and cores of
homomorphically equivalent instances are isomorphic.

2.2 Queries and Constraints
The reader is assumed to be familiar with first-order logic (FO). Atomic FO-formulas over a
schema σ are formulas of the form R(u1, . . . , uar(R)) or u1 = u2, where R ∈ σ and each ui
is a variable or an element of Const. Formulas of the first form are called relation atoms
(over σ). FO-formulas over σ are built from atomic FO-formulas over σ in the usual way
using negation, conjunction, disjunction, implication, existential quantification, and universal
quantification. We write ϕ(x1, . . . , xk) to indicate that ϕ is a formula whose free variables
are precisely x1, . . . , xk; if ϕ is a sentence, we omit the parentheses.

Let dom(ϕ) be the set of all constants in ϕ. An assignment for ϕ in an instance I is a
mapping α from the free variables of ϕ to dom(I) ∪ dom(ϕ), which we extend to Const via
α(c) := c for all c ∈ Const. We write (I, α) |= ϕ to indicate that ϕ is satisfied in I under
α. The relation |= is defined as usual, the only difference being that constants in ϕ are
interpreted by themselves, and quantifiers range over dom(I) ∪ dom(ϕ). That is, we apply
the active domain semantics. For example, we have (I, α) |= R(u1, . . . , uar(R)) precisely if
(α(u1), . . . , α(uar(R))) ∈ RI ; (I, α) |= u1 = u2 precisely if α(u1) = α(u2); and (I, α) |= ∃xϕ
precisely if there is an a ∈ dom(I) ∪ dom(ϕ) with (I, α[a/x]) |= ϕ, where α[a/x] is the
assignment defined like α, except that x is mapped to a. For an FO-formula ϕ(x1, . . . , xk)
and a tuple ā = (a1, . . . , ak) ∈ (dom(I)∪ dom(ϕ))k, we write I |= ϕ(ā) instead of (I, α) |= ϕ,
where α(xi) = ai for each i ∈ [k].

An FO-query over σ is an FO-formula ϕ over σ together with a tuple x̄ = (x1, . . . , xk)
containing all the free variables in ϕ; we denote such queries by ϕ(x̄). The result of ϕ(x̄)
on I is the set ϕ(I) := {ā ∈ (dom(I) ∪ dom(ϕ))k | I |= ϕ(ā)}. We will often tacitly use the
fact that for every FO-query Q over σ, there is a polynomial time algorithm that takes a
σ-instance I as input and outputs Q(I).

A conjunctive query (CQ) is an FO-query of the form ϕ(x̄) = ∃ȳ ψ, where ψ is a
conjunction of relation atoms. If ψ is a conjunction of relation atoms and inequalities ¬u = v,
we call ϕ a CQ with inequalities, and if ψ is a conjunction of relation atoms and negated
relation atoms, we call ϕ a CQ with negation. A union of conjunctive queries (UCQ) is a
disjunction of CQs. A UCQ with inequalities is a disjunction of CQs with inequalities.

When we refer to the atoms of ϕ(ā) for some FO-formula ϕ(x̄) = R1(ȳ1) ∧ · · · ∧Rk(ȳk)
and an assignment ā for x̄, we mean the atoms Ri(b̄i), where b̄i is obtained from ȳi by
replacing each variable in ȳi with the corresponding value assigned to that variable by ā.

2.3 Schema Mappings
The following definitions are standard in data exchange (cf., e.g., [11, 13, 27, 6, 4]). A
schema mapping M = (σ, τ,Σ) consists of disjoint schemas σ and τ , called source schema
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and target schema, and a finite set Σ of assertions, where we distinguish between source-
to-target tuple-generating dependencies (st-tgds), target tuple-generating dependencies (t-
tgds), and equality-generating dependencies (egds). St-tgds are FO-sentences of the form
∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)), where ϕ is a conjunction of relation atoms over σ, ψ is a
conjunction of relation atoms over τ , and ϕ and ψ contain no constants. T-tgds are defined
similarly; they differ from st-tgds only in that ϕ, like ψ, is a conjunction of relation atoms
over τ . Egds are FO-formulas of the form ∀x̄(ϕ(x̄) → y = z), where ϕ is a conjunction of
relation atoms over τ , y and z occur in x̄, and ϕ contains no constants.

A source instance S for M is a ground σ-instance. A solution for S under M is a
τ -instance T such that S ∪T satisfies all the tgds and egds in Σ.2 Note that, unlike solutions,
source instances are not allowed to contain nulls, and that a source instance may have no
solution or more than one solution.

Concerning the question as to which solution should be materialized for data exchange,
[11] proposes universal solutions, and makes a good case for materializing such solutions. A
universal solution for S under M is a solution T for S under M such that for every solution
T ′ for S under M there is a homomorphism from T to T ′. A source instance for M might not
have a universal solution, even if it has solutions. However, if M is specified by st-tgds, then
every source instance S has a universal solution under M . For example, such a universal
solution can be constructed from an initially empty instance over M ’s target schema by
adding, for each st-tgd ∀x̄∀ȳ(ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)) in M and each pair ā, ā′ of tuples with
S |= ϕ(ā, ā′) the atoms of ψ(ā, b̄), where b̄ is a tuple of pairwise distinct fresh nulls. The
resulting universal solution is unique up to isomorphism. We call it the canonical solution
for S under M , and denote it by CanSol(M,S).

Particular important universal solutions are core solutions, which can be thought of as
smallest universal solutions. If M is specified by st-tgds, then a core solution for S under M
is defined as a core of CanSol(M,S). Since every two cores of CanSol(M,S) are isomorphic,
there is a unique core solution for S under M up to isomorphism. Hence, we may speak of
the core solution, denoted by Core(M,S). It is easy to verify that Core(M,S) is a solution
for S under M . We will not need core solutions for more general schema mappings; see [13]
for their definition and properties.

I Example 2. Consider the schema mapping M = (σ, τ,Σ) with σ consisting of a binary
relation symbol Book, τ consisting of binary relation symbols Author and BookInfo, and Σ
containing the st-tgd

∀x∀y
(
Book(x, y)→ ∃z(Author(y, z) ∧ BookInfo(z, x))

)
.

Furthermore, consider the source instance

S := {Book(Comput. Compl.,S. Arora),Book(Comput. Compl.,B. Barak),
Book(Model Theory,W. Hodges)},

which stores tuples of the form (book title, author) in BookS . Then,

T := {Author(S. Arora,⊥1),BookInfo(⊥1,Comput. Compl.),
Author(B. Barak,⊥2),BookInfo(⊥2,Comput. Compl.),
Author(W. Hodges,⊥3),BookInfo(⊥3,Model Theory) }

2 A word of caution: In data exchange, solutions are usually finite, as introduced here, whereas in data
integration, solutions may also be infinite. For simplicity, we consider only finite solutions.
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is a universal solution for S under M . It is both the canonical solution and the core solution
for S under M . Other universal solutions can be obtained from T by adding arbitrary tuples
with nulls to T . Note that the instance T ′ obtained from T by identifying ⊥1 and ⊥2 is not
a universal solution, since there is no homomorphism from T ′ to T . On the other hand, if
we would add the egd ∀x1∀x2∀y

(
BookInfo(x1, y) ∧ BookInfo(x2, y) → x1 = x2

)
to Σ, then

T ′ would be the core solution for S under M . J

For later reference, we state:

I Theorem 3 ([11, 13]). Let M be a schema mapping defined by st-tgds. Then there are
polynomial-time algorithms that take a source instance S for M as input and compute
CanSol(M,S) and Core(M,S), respectively.

3 The Certain Answers Semantics and Non-Monotone Queries

The basic approach for answering a query Q over the target schema of a schema mapping
M = (σ, τ,Σ) is to return its certain answers [29, 11, 27, 6, 4]. Given any source instance S
for M , the certain answers to Q on M and S are defined as

cert(Q,M,S) := {ā | ā ∈ Q(T ) for all solutions T for M under S}.

So, informally, a tuple ā belongs to cert(Q,M,S) whenever it is an answer to Q no matter
on which of S’s solutions Q is evaluated. Note that if Q is a UCQ (or any other domain
independent query), this means that Q(ā) logically follows from S, viewed as a set of atomic
formulas, and Σ.3

I Example 4. Let M and S be as in Example 2, and consider the UCQ

Q(x) := ∃y
(
BookInfo(y,Comput. Compl.) ∧Author(x, y)

)
,

which asks for all authors of “Comput. Compl.” It is intuitively clear that the result of
evaluating Q with respect to M and S should be “S. Arora” and “B. Barak.” And indeed,
cert(Q,M,S) = {S. Arora,B. Barak}. J

The certain answers have several good properties for query answering in data exchange
and data integration. The most apparent one is their simple and natural definition. Another
one is that in many practical settings it is possible to compute them in polynomial time
(for fixed schema mappings and queries) from a single solution, namely a universal solution
[11, 5], or by evaluating a suitably rewritten query over the source schema (cf., [29] and
Chapter 5 of this book). For example, to compute cert(Q,M,S) for a UCQ Q, we only need
to evaluate Q on an arbitrary universal solution for S, and remove all tuples with nulls from
its result:

I Theorem 5 ([11]). Let M be a schema mapping, let S be a source instance for M , and let
Q be a UCQ over M ’s target schema. For any universal solution T for S under M ,

cert(Q,M,S) = {c̄ ∈ Q(T ) | c̄ contains no nulls}.

3 Here we use the standard first-order semantics. That is, Q(ā) logically follows from S and Σ if for all
instances I with S ⊆ I and I |= Σ we have I |= Q(ā).
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In particular, if M and Q are fixed, and M is such that for any source instance S for M ,
S has a universal solution if it has a solution, and a universal solution for S can be computed
in polynomial time, then cert(Q,M,S) can be computed in polynomial time. By Theorem 3,
schema mappings defined by st-tgds have this property. Much broader classes of schema
mappings with this property are known, see, e.g., [11, 13, 16, 9, 28, 34, 15, 18] and Chapter 1
of this book.

I Remark. Extensions of universal solutions and Theorem 5 that are suitable for answering
general monotone queries like UCQs with inequalities appeared in [9]. However, computing
the certain answers to such queries (for fixed schema mappings and queries) is in co-NP, and
co-NP-complete in general [11, 33]. Certain fragments of UCQs with inequalities were shown
to be tractable, though [11, 5].

Despite their good properties, it has been realized that for non-monotone queries the
certain answers may yield counter-intuitive results. We have illustrated the basic problem in
Example 1. Other problems have been pointed out in [11, 3, 31], for example:

A copying schema mapping is a schema mapping M = (σ, τ,Σ), where τ consists of copies
R′ for each R ∈ σ, and Σ consists of st-tgds ∀x̄

(
R(x̄) → R′(x̄)

)
for each R ∈ σ. For

example, the schema mapping from Example 1 is a copying schema mapping. Although
copying schema mappings intuitively say nothing else than to copy each relation R to the
relation R′, [3] showed that there is a copying schema mappingM = (σ, τ,Σ) and a simple
FO-query Q (actually, a union of a CQ and a CQ with negation) that is not rewritable to
an FO-query Q′ over σ such that for every source instance S forM , Q′(S) = cert(Q,M,S).
They also proved that it is not rewritable to an FO-query Q′ over τ such that for every
source instance S for M , Q′(T ) = cert(Q,M,S) with T ∈ {Core(M,S),CanSol(M,S)}.
As shown in [3], if M is a schema mapping defined by st-tgds, then for every Boolean
FO-query Q over M ’s target schema, either cert(Q,M,S) = ∅ for all source instances S
for M , or cert(¬Q,M,S) = ∅ for all source instances S for M . To see this, suppose that
cert(Q,M,S) 6= ∅ for some source instance S for M . Then for all solutions T for S under
M we have T |= Q. Now, if S′ is an arbitrary source instance for M , it is not hard to see
that there is a solution T ′ for S′ under M that is also a solution for S under M . Then,
T ′ 6|= ¬Q, and therefore cert(¬Q,S′,M) = ∅. It follows that either Q or ¬Q has a trivial
answer, namely ∅, that does not depend on the source instance.

As already pointed out in the introduction, the problem is really a matter of the semantics
of schema mappings, that is, a matter of which target instances of a schema mapping M are
considered as solutions for a source instance under M . One way to enforce a suitable set
of solutions would be to use a more expressive constraint language for specifying schema
mappings. This approach is certainly worth pursuing, but to the best of my knowledge
it seems to have received almost no attention in the literature to date. The approaches
proposed in the literature are based on the certain answers to queries with respect to a
restricted set of solutions.

4 Semantics for Non-Monotone Queries

A variety of semantics for answering non-monotone queries over the target schema of a
schema mapping have been proposed in the literature [13, 22, 32, 2, 21]. These semantics are
based on the following basic idea: for each schema mapping M and each source instance S,
define an appropriate set [[M,S]] of solutions, and answer queries Q by the certain answers
to Q on [[M,S]], that is, {ā | ā ∈ Q(T ) for all T ∈ [[M,S]]}.

Chapte r 06



168 Semantics for Non-Monotone Queries in Data Exchange and Data Integration

In [13], it is proposed to let [[M,S]] be the set of all universal solutions for S under M .
However, the resulting semantics has similar problems as the certain answers semantics [3].4
Therefore, we will not consider that semantics here.

The semantics proposed in [22, 32, 2, 21] are based on non-monotonic reasoning, specifi-
cally variants of the Closed World Assumption (CWA) [36], to arrive at the sets [[M,S]]. This
means that a solution will be in [[M,S]] if it can be derived in a certain way from M and S.
The goal is always to define a set of solutions that intuitively captures “precisely the positive
information in M and S, and nothing more.” This is quite natural, since – as Libkin argued
in [31] – in data exchange (but the same applies to data integration), data is moved from
source to target according to the tgds and egds of a schema mapping. Therefore, answers
to queries should only depend on that data, and not on data that could later be added to
the target database. For instance, this seems to be natural in Example 1 as we have argued
there. In the following, we review these semantics in more detail.

4.1 Libkin’s CWA-Semantics
The CWA-semantics [31, 23] (see also [22]) was the first semantics explicitly designed for
answering non-monotone queries in data exchange. It was introduced by Libkin [31] for
schema mappings defined by st-tgds, and extended by Schweikardt and myself [23] to schema
mappings as considered in this chapter. As the name suggests, it5 is based on the CWA. As
mentioned above, this means that for answering a query Q on M and S we take into account
only those solutions for S under M which can be derived in a certain way from M and S.
We call such solutions CWA-solutions.

4.1.1 CWA-Solutions
Informally, CWA-solutions for a source instance S under a schema mapping M are all those
solutions T for S under M that satisfy the following properties:
1. All atoms in T are justified in a certain sense by M and S.
2. Each justification for atoms is used at most once.
3. Each “positive statement” (Boolean conjunctive query) that is true in T logically follows

from S and the set of tgds and egds in M . That is, T should not “invent” new facts
compared to what can be inferred from S using M .

Below, we give an idea of how to formalize these informal requirements.
In the context of schema mappings defined by st-tgds, the requirements can be formalized

as follows. Assume that M is defined by st-tgds. Regarding the first requirement, an atom is
justified if it can be obtained from S by means of “applying” an st-tgd in M to S, where
st-tgds are considered as rules for deriving new atoms, similar to Datalog rules. A justification
for atoms consists of an st-tgd θ in M , say θ = ∀x̄∀ȳ(ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)), and assignments
ā, ā′ to x̄, ȳ such that S |= ϕ(ā, ā′). We denote it by (θ, ā, ā′). An atom in T is justified if
there is a justification (θ, ā, ā′) with θ = ∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)), and an assignment b̄
for z̄ such that T |= ψ(ā, b̄), and the atom is one of the relation atoms in ψ(ā, b̄). The second
requirement insists that each justification j is “used” with a unique assignment b̄j for the
existentially quantified variables of the st-tgd in j. An atom in T is then justified if there is
a justification j such that the atom is justified by j as above, except that the assignment b̄

4 Example 1 is true for the universal solution-based semantics, too.
5 As we shall see below, the CWA-semantics form a family of semantics. But for the moment, let us refer
to this family as the CWA-semantics.
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must be the assignment b̄j . It was shown in [31, 22] that a solution T for S under M satisfies
the two requirements precisely if T is a homomorphic image of CanSol(M,S). Furthermore,
the third requirement, once properly formalized, turns out to be equivalent to the property
of being a universal solution. Hence:

I Theorem 6 ([31, 22]). Let M be a schema mapping defined by st-tgds, and let S be a
source instance for M . A solution T for S under M is a CWA-solution for S under M
iff
1. T is a homomorphic image of CanSol(M,S), and
2. T is a universal solution for S under M

(or, equivalently, there is a homomorphism from T to CanSol(M,S)).

This characterization immediately implies that CanSol(M,S) is the “maximal” CWA-
solution for S under M up to isomorphism in the sense that CanSol(M,S) is a CWA-
solution for S, and that every CWA-solution for S is a homomorphic image of CanSol(M,S).
Furthermore, it was shown in [31, 22] that Core(M,S) is the unique “smallest” CWA-solution
for S under M up to isomorphism.

I Example 7. Let M be the schema mapping defined by the st-tgd θ from Example 1,
and let S be the source instance exhibited in the same example. Then there is a unique
justification consisting of θ, and assigning x, y the values c, d. Since θ has no existentially
quantified variables, the only atom that can be justified using this justification is E′(c, d).
Hence, T := {E′(c, d)} is the unique CWA-solution for S under M . Indeed, we have
T = Core(M,S) = CanSol(M,S). J

I Example 8. Let M , S and T be as in Example 2. In the same example, we mentioned
that T = CanSol(M,S) = Core(M,S). Hence, T is the unique CWA-solution for S under
M up to isomorphism. J

To lift Libkin’s CWA-semantics to schema mappings defined by st-tgds, t-tgds and egds,
it is necessary to formalize the first two requirements above for such schema mappings. In
[23, 22], this is done using a derivation-based approach using a suitably controlled version
of the chase procedure. In addition, [24] (see also [20]) introduces a 2-player game and
characterizes the requirements using this game. It is shown that CWA-solutions can still
be characterized as particular universal solutions, and that the core solution, if it exists, is
the “smallest” CWA-solution up to isomorphism. On the other hand, in general there is no
“maximal” CWA-solution, that is, a CWA-solution with the same properties as the canonical
solution in the context of schema mappings defined by st-tgds.

Concerning the question whether a given source instance has a CWA-solution, it is easy
to see that a source instance has a CWA-solution whenever it has a universal solution. If M
is a schema mapping defined by st-tgds, by Theorem 3, we can even compute CWA-solutions
in polynomial time. For most of the classes of schema mappings mentioned in Section 3,
for which universal solutions can be computed in polynomial time (data complexity), it is
possible to compute CWA-solutions in polynomial time (data complexity). However:

I Theorem 9 ([23, 22]). There is a schema mapping M = (σ, τ,Σ) with Σ consisting only
of st-tgds and t-tgds such that the following problem is undecidable: Given a source instance
S for M , is there a CWA-solution for S under M?

4.1.2 Query Answering under the CWA
Given a schema mappingM and a source instance S forM , it seems now perfectly reasonable
to answer queries Q overM ’s target schema by the certain answers to Q on the CWA-solutions
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for S under M , that is, by the set of all tuples that are answers to Q on all CWA-solution
for S under M . However, we should be careful about what constitutes the result of a query
on an individual CWA-solution. To explain why, we need a little background on incomplete
instances.

An incomplete σ-instance is a set I of ground σ-instances [1, 37]. The idea is that I
represents an unknown instance I, and the instances in I are the possibilities for I. Every
σ-instance I represents an incomplete σ-instance. This is because nulls, which may occur
in I, are place-holders for unknown constants, and therefore, any instance obtained from
I by substituting constants for the nulls in I is a ground instance that could possibly be
represented by I. Consequently, I represents the incomplete σ-instance

rep(I) := {h(I) | h : dom(I)→ Const, h is the identity on const(I)} .

Here we are more interested in incomplete instances represented by CWA-solutions. Techni-
cally, CWA-solutions are instances I together with a set Σ of integrity constraints (the set of
t-tgds and egds of the schema mapping). Several ways of associating an incomplete instance
with such an instance have been proposed (see, e.g., [1, 37]). We choose the one proposed in
[26, 37], which is

repΣ(I) := {J | J ∈ rep(I), J |= Σ} .

Now, if I is an instance with nulls, and Q is a non-monotone query, returning Q(I) as
the answer to Q on I may lead to counter-intuitive results [26], mainly due to the fact
that distinct nulls may represent the same constant. To circumvent this, one typically uses
semantics designed for answering queries on incomplete instances. There are several such
semantics, but the most common one is the certain answers semantics [1, 37]. The certain
answers to a query Q on an incomplete instance I are defined by:

cert(Q, I) := {ā | ā ∈ Q(I) for all I ∈ I} .

For an instance I and a set Σ of constraints, we let

cert(Q, I) := cert(Q, rep(I)) and certΣ(Q, I) := cert(Q, repΣ(I)).

I Remark. It is no coincidence – and will do no harm – that we use the same name both
for the certain answers with respect to schema mappings and source instances, and for the
certain answers with respect to incomplete instances. Indeed, the set of solutions for a source
instance S under a schema mapping M is almost an incomplete instance T , except that it
may contain non-ground instances (think of each solution in T as a possible outcome of
translating S to the target).

For answering queries over target schemas of schema mappings, [22] propose the following
variant of the certain answers on CWA-solutions:6

I Definition 10. Let M = (σ, τ,Σst ∪Σt) be a schema mapping, where Σst is a set of st-tgds
and Σt is a set of t-tgds and egds, let S be a source instance for M , and let Q be a query
over τ . Then the set of the CWA-answers to Q on M and S is defined as

certCWA(Q,M,S) := {ā | ā ∈ certΣt(Q,T ) for all CWA-solutions T for S under M}.

6 Three more semantics have been proposed in [22]. For brevity, we consider only the most basic one.
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The following example shows that for the schema mapping, source instance and query in
Example 1, the CWA-answers leads to the desired result.

I Example 11. Let M and S be as in Example 7. As shown in Example 7, T := {E′(c, d)}
is the unique CWA-solution for S under M . Note that rep(T ) = {T}, since T contains no
nulls. In particular, for the query Q(x, y) from Example 1, we have cert(Q,T ) = {(c, d)},
and therefore certCWA(Q,M,S) = {(c, d)}, as desired. J

More generally, if M is a copying schema mapping, then every source instance S for M
has a unique CWA-solution S′, namely its copy, and the CWA-answers to a query Q on
M and S are precisely Q(S′), as desired. This implies that Q can be trivially rewritten
into a query Q′ over M ’s source schema such that for all source instances S we have
Q′(S) = certCWA(Q,M,S). Hence, the CWA-semantics remedies the problems of the certain
answers semantics on non-monotone queries described at the end of Section 3.

Let us finally consider an example that involves st-tgds with existential quantifiers:

I Example 12. Let M , S and T be as in Example 2. As shown in Example 8, T is the
unique CWA-solution up to isomorphism. Consider the query

Q(t) := ∃=1a∃x
(
BookInfo(x, t) ∧Author(a, x)

)
,

which, intuitively, asks for all single-authored books. However, certCWA(Q,M,S) = ∅, since
“Comput. Compl.” cannot be in certCWA(Q,M,S), and rep(T ) contains an instance obtained
from T by replacing ⊥1,⊥2,⊥3 with the same constant. On the other hand, this is not really
surprising, since M does not tell us that ⊥1,⊥2,⊥3 could not represent the same value.

Now let M ′ be the extension of M by the egd

η := ∀x∀y1∀y2
(
BookInfo(x, y1) ∧ BookInfo(x, y2)→ y1 = y2

)
.

Then, T would still be the unique CWA-solution for S under M ′, but cert(Q,M ′, S) =
{Model Theory}, since rep{η}(T ) does not contain any instance that arises from T by
mapping ⊥3 to the same constant as ⊥1 or ⊥2. J

For a number of schema mappings, including schema mappings defined by st-tgds, the
task of computing the CWA-answers to a query can be reduced – as in the case of the certain
answers semantics, explained in Section 3 – to the task of evaluating the query on a single
incomplete instance, which is a well-studied topic, see, e.g., [1, 37]:

I Theorem 13 ([22]). Let M = (σ, τ,Σ) be a schema mapping where Σ is a set of st-tgds,
let S be a source instance for M , and let Q be a query over τ . Then:

certCWA(Q,M,S) = cert(Q,CanSol(M,S)).

The result also holds for schema mappings defined by st-tgds and egds with CanSol(M,S)
extended appropriately.

4.2 A Relaxation of the CWA-Semantics
The CWA interprets existential quantifiers in tgds in a very restrictive way. For instance, in
Example 8, each entry in BookS introduces precisely one null which corresponds to a new
value assigned to the variable z in the unique st-tgd in M . In some cases, like Example 2,
this might be desirable. But in other cases, this might be too restrictive.
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I Example 14 ([22]). Let M = (σ, τ,Σ) be a schema mapping, with σ containing a unary
relation symbol Person, τ containing a binary relation symbol Child, and Σ containing a
single st-tgd

θ := ∀x
(
Person(x)→ ∃yChild(x, y)

)
.

Intuitively, θ states that for each person x there is a child y. Certainly, there could be more
than one child. However, under the CWA, the effect of θ would be that each person x has
exactly one child y. Indeed, if S is a source instance for M , then there is a unique CWA-
solution T for S under M which assigns to each person p ∈ PersonS a unique null ⊥p such
that (p,⊥p) ∈ ChildT . Hence, the CWA-answers to the Boolean query ∀x∃=1yChild(x, y) on
M and S would yield true (i.e., a non-empty result), even though this was not intended. J

Libkin and Sirangelo [32] propose a relaxation of the CWA, which admits finer control
over the degree of “closedness.” The basic idea is to control for each position in a solution
whether it should be open for adding new values at this position, or closed. In the following,
we illustrate the basic idea with an example.

I Example 15 (Example 14, continued). Let us annotate each occurrence of a variable in the
head7 of θ as closed (cl) or open (op) as follows:

∀x
(
Person(x)→ ∃yChild(xcl, yop)

)
.

Then the annotated version of θ induces the following annotated version of CanSol(M,S) for
the source instance S with PersonS = {p1, p2}:

T = {Child(pcl1 ,⊥
op
1 ),Child(pcl2 ,⊥

op
2 )}.

The basic idea is that at a position annotated with op we may “insert” arbitrary many values,
while at a position annotated with cl, the value is fixed. That is, the atom Child(pcli ,⊥

op
i )

corresponds to “there exist one or more c with Child(pi, c),” as desired. J

More generally, let M = (σ, τ,Σ) be a schema mapping, where Σ is a set of st-tgds. The
starting point is always an annotation α of the positions in the heads of the st-tgds in M ,
which must be provided by the user. To be precise, a position in the head of an st-tgd

θ := ∀x̄∀ȳ
(
ϕ(x̄, ȳ)→ ∃z̄

k∧
i=1

Ri(ūi)
)

is represented by a pair (i, j), where i ∈ [k] and j ∈ [ar(Ri)]. Such a pair corresponds to
the variable at position j in ūi. Then for each st-tgd θ ∈ Σ and each position (i, j) in θ’s
head, we have an annotation α(θ, i, j) ∈ {cl, op}. For instance, the annotation of the st-tgd
in Example 15 corresponds to α(θ, 1, 1) = cl and α(θ, 1, 2) = op.

Given a source instance S, we now define the annotated canonical solution CanSolα(M,S)
for S under M and α, which is a set of pairs (R(u1, . . . , uk), α′) consisting of an atom
R(u1, . . . , uk) from CanSol(M,S), and an annotation α′ : [k]→ {cl, op}. The construction
is as indicated in Example 15: starting from an empty set, for each st-tgd ∀x̄∀ȳ(ϕ(x̄, ȳ)→
∃z̄ ψ(x̄, z̄)) and each assignment ā, ā′ for x̄, ȳ with S |= ϕ(ā, ā′), we pick a tuple b̄ of pairwise
distinct fresh nulls and add all pairs (A,α′) to the set with A an atom of ψ(ā, b̄), and α′ the
annotation induced by α on A.

7 Given a tgd θ of the form ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄), we refer to the formula ψ(x̄, z̄) as the head of θ.
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As in the case of CanSol(M,S), the annotated canonical solution CanSolα(M,S) repre-
sents an incomplete instance, denoted by rep(CanSolα(M,S)), which is then used for query
answering. Before we give its definition, let us continue with our example.

I Example 16 (Example 14, continued). Let α be the annotation of θ’s head as shown in
Example 15. Recall T = CanSolα(M,S) from the same example, and that the meaning
of each atom Child(pcli ,⊥

op
i ) in T is “there exist one or more c with Child(pi, c).” Hence,

T represents the incomplete instance rep(T ) which consists of all τ -instances T ′ such that
ChildT

′
contains tuples (p1, a) and (p2, b) with possibly identical constants a, b, and all tuples

in ChildT
′
have the form (pi, c) with i ∈ [2] and c ∈ Const. In particular, each T ′ ∈ rep(T )

contains tuples (p1, a) and (p2, b), which represents the information that for each i ∈ [2] there
is at least one c with (pi, c). Furthermore, for any such tuple we can add a new tuple by
replacing the values at the positions annotated as “open” with new values. The resulting
instance would be in rep(T ), too. J

In general, rep(CanSolα(M,S)) consists of all ground instances T such that there is a
homomorphism h from CanSol(M,S) to T with h(CanSol(M,S)) ⊆ T , and for each atom
R(a1, . . . , ak) ∈ T \ h(CanSol(M,S)) there is a pair (R(b1, . . . , bk), α′) ∈ CanSolα(M,S)
such that ai = h(bi) for all positions i ∈ [k] with α′(i) = cl. That is, each atom A in
T \ h(CanSol(M,S)) coincides with an atom from h(CanSol(M,S)) on all positions that are
annotated as “closed”; A may have arbitrary values at positions annotated as “open”.

Analogous to Theorem 13, which characterizes the certain answers to Q on M and S by
cert(Q, rep(CanSol(M,S))), Libkin and Sirangelo propose to answer Q on (M,α) and S by8

cert(Q,M,α, S) := cert
(
Q, rep(CanSolα(M,S))

)
.

Note that under this semantics, the answers to a query depend on the annotation α. Note
also that for the annotation that assigns to each position in the head of a st-tgd the label
cl, we obtain the CWA-semantics. The other extreme is to assign to each position the label
op. In this case, we arrive at the certain answers semantics as introduced in Section 3. For
details, the reader is referred to [32].

I Example 17 (Example 14, continued). Let α be the annotation of θ’s head as shown in
Example 15. For the Boolean query

Q := ∀x∃=1yChild(x, y)

from Example 14 we have cert(Q,M,α, S) = ∅, as desired. J

Libkin and Sirangelo introduced their “mixed world” semantics for schema mappings
defined by st-tgds only, and left open the task of extending it to more general schema
mappings.
I Remark. Afrati and Kolaitis [2] proposed a much stricter version of the CWA, and argued
that it leads to an interesting semantics for aggregate queries under schema mappings defined
by st-tgds. Recall that for such schema mappings M , if S is a source instance and Q is a
query over M ’s target schema, the CWA-answers to Q on M and S can be characterized
as cert(Q,CanSol(M,S)). That is, a tuple belongs to the set of CWA-answers to Q on M
and S iff it belongs to Q(T ) for all T ∈ rep(CanSol(M,S)). Afrati and Kolaitis argue that

8 In fact, this is a characterization of their semantics, in the same way as Theorem 13 is a characterization
of the CWA-semantics.
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the CWA-semantics is too weak in the context of aggregate queries, since rep(CanSol(M,S))
may contain instances with values that do not occur in S, and propose a new semantics
based on the set of all endomorphic images of CanSol(M,S). Here, an instance I is an
endomorphic image of an instance J if there is a homomorphism h from J to J such that
h(J) = I. Given a query Q over M ’s target schema, we could now answer Q on M and S
under this “endomorphic images semantics” by

certendo(Q,M,S) := {ā | ā ∈ Q(T ) for all endomorphic images T of CanSol(M,S)}.

4.3 The GCWA∗-Semantics

Consider two schema mappings M1 = (σ, τ,Σ1) and M2 = (σ, τ,Σ2) over the same source
schema σ and the same target schema τ . We say that M1 and M2 are logically equivalent
if Σ1 and Σ2 are logically equivalent under the standard FO-semantics9 (i.e., for every
σ∪τ -instance I we have I |= Σ1 if and only if I |= Σ2). IfM1 andM2 are logically equivalent,
it seems desirable that for each source instance S for M1 (resp., M2) and each query Q
over τ , the answer to Q on M1 and S is the same as the answer to Q on M2 and S, since
intuitively M1 and M2 specify the same translation of source data to the target. Yet, for the
semantics introduced above, this is not necessarily true:

I Example 18. Let M1 = (σ, τ,Σ1) and M2 = (σ, τ,Σ2) with σ = {P}, τ = {E}, and

Σ1 =
{
∀x
(
P (x)→ E(x, x)

)}
,

Σ2 = Σ1 ∪
{
∀x
(
P (x)→ ∃y E(x, y)

)}
.

Clearly, M1 and M2 are logically equivalent. Now, for S := {P (c)} we have

T1 := CanSol(M1, S) = {E(c, c)},
T2 := CanSol(M2, S) = {E(c, c), E(c,⊥)}.

Hence, if

Q(x) := ∃=1y E(x, y),

then certCWA(Q,M1, S) = {c}, since T1 is the unique CWA-solution for S under M1, while
certCWA(Q,M2, S) = ∅, since T2 is a CWA-solution for S under M2. Analogously, we have
certendo(Q,M1, S) = {c} and certendo(Q,M2, S) = ∅.

Next we turn to the “mixed world” semantics. Fix an annotation α for the st-tgds in Σ2.
In particular, α yields an annotation for the st-tgd in Σ1. As long as the second position in
the head of the st-tgd in Σ1 is annotated as closed by α, we have cert(Q,M1, α, S) = {c} and
cert(Q,M2, α, S) = ∅. Note that if the second position is annotated as open, the resulting
semantics is very close to the certain answers semantics. J

There is a second issue related to the interpretation of tgds under the CWA-semantics,
which is best illustrated with an example:

9 Different notions of equivalence between schema mappings have been considered in [12]. Logical
equivalence is the strongest such notion. Instead of invariance under logical equivalence one could also
require invariance under any of the other notions of schema mapping equivalence.
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I Example 19. Let M = (σ, τ,Σ) be defined by σ = {R}, τ = {E,F}, and Σ = {θ}, where

θ = ∀x, y
(
R(x, y)→ ∃z

(
E(x, z) ∧ F (z, y)

))
.

Intuitively, θ states that “if R(x, y), then there is at least one z such that E(x, z) and F (z, y)
hold.” There could be exactly one such z, but there could also be more than one such z. In
particular, the possibility that there are precisely two such z, or precisely three such z etc. is
perfectly consistent with θ, and should not be denied when answering queries. Hence, given
a source instance S for M , we should expect that the answer to

Q(x, y) := ∃=1z
(
E(x, z) ∧ F (z, y)

)
on M and S is empty.

However, if we consider the source instance S = {R(c, d)}, we have CanSol(M,S) =
{E(c,⊥), F (⊥, d)}, so that certCWA(Q,M,S) = certendo(Q,M,S) = {(c, d)}. Hence, both
the CWA-semantics and the endomorphic images semantics exclude the possibility that there
is more than one z satisfying E(x, z) and F (z, y), although θ explicitly states that it is
possible that more than one such z exists.

Note that the existential quantifier in θ can be expressed via an infinite disjunction
over all possible choices of values for z (recall that nulls are just place-holders for unknown
constants, so we do not have to consider nulls here):

θ′ := ∀x, y
(
R(x, y)→

∨
c∈Const

(
E(x, c) ∧ F (c, y)

))
.

Thus, we argued above that we need a semantics that interprets this disjunction inclusively
rather than exclusively. J

Under the “mixed world” semantics, the query Q in Example 19 is answered as expected
as long as the occurrences of z in θ are annotated as open. On the other hand, if the
occurrences of z in θ are annotated as open, then, in a way, the “mixed world” semantics is
“too open” in that it allows atoms to appear in solutions that intuitively cannot be justified
by the source instance and the st-tgds.

I Example 20 (Example 19, continued). In light of the rewriting θ′ of θ in Example 19 the
only reasonable solutions for S = {R(c, d)} under M seem to be those solutions T for which
there is a finite set X ⊆ Dom such that T = {E(c, x) | x ∈ X} ∪ {F (x, d) | x ∈ X}. For
example,

T ∗ := {E(c, e), E(c, e′), F (e, d)}

should not be a valid solution, since the occurrence of E(c, e′) in T can intuitively not be
explained in terms of S and θ (for this, F (e′, d) should be in T ). Therefore, we should expect
the answer to

Q′(x) := ∀z
(
E(x, z)→ ∃y F (z, y)

)
on M and S to be {c}. But let α be an annotation for θ that annotates the second position of
E(x, z) in θ as open. Then, cert(Q′,M, α, S) = ∅ since T ∗ ∈ rep(CanSolα(M,S)). Intuitively,
the “mixed world” semantics is “too open” in that it allows E(c, e′) to occur in T ∗ without
enforcing that the corresponding atom F (e′, d) is present in T ∗. J
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Motivated by the above examples, [21] proposes a new semantics, called GCWA∗-seman-
tics. This semantics is invariant under logically equivalent schema mappings, and interprets
existential quantifiers in a natural way. A detailed discussion of the latter property can
be found in [21]. The starting point for the development of the GCWA∗-semantics was the
observation that query answering with respect to schema mappings is very similar to query
answering on deductive databases [14], and that non-monotone query answering on deductive
databases is a well-studied topic in this area (see, e.g., [14, 36, 35, 38, 25, 8]). Therefore, it
seemed obvious to use these semantics in the context of data exchange. For data exchange,
the semantics based on Reiter’s formalization of the CWA [36], and variants of the CWA
like Minker’s generalized CWA (GCWA) [35] seemed to be particularly interesting. It turns
out, though, that these semantics are too strong, too weak, or do not have the desired
properties. Nevertheless, their analysis provided a good starting point for developing the
GCWA∗-semantics. For details, see [21].

For schema mappings defined by st-tgds and egds, the GCWA∗-semantics has a very
simple definition in terms of minimal solutions. Here, a solution T for S under M is minimal
if there is no solution T ′ for S under M with T ′ ( T .

I Definition 21. Let M be a schema mapping defined by st-tgds and egds, and let S be a
source instance for M .
1. A GCWA∗-solution for S under M is a ground solution that is the union of minimal

solutions for S under M .
2. Given a query Q over M ’s target schema, the set of all GCWA∗-answers to Q on M and

S is defined by

certGCWA∗(Q,M,S) := {ā | ā ∈ Q(T ) for all GCWA∗-solutions for S under M} .

I Remark. For schema mappings whose specification additionally contains t-tgds, an extended
definition of GCWA∗-solutions is necessary. See [21] for details.

It should be clear that the GCWA∗-semantics is invariant under logical equivalent schema
mappings. Therefore, the problem described at the beginning of this section does not appear
for the GCWA∗-semantics.

I Example 22. Recall Example 19. The minimal solutions for the source instance S =
{R(c, d)} under M are all solutions for S under M of the form Ta := {E(c, a), F (a, d)} for
some a ∈ Dom. Now, the GCWA∗-solutions for S underM are precisely those instances T for
which there is a finite set C ⊆ Const with T =

⋃
a∈C Ta. Intuitively, this reflects “precisely

the positive information in M and S, and nothing more.” It is easy to see that for the query
Q from Example 19 and the query Q′ from Example 20 we have certGCWA∗(Q,M,S) = ∅
and certGCWA∗(Q′,M, S) = {c}, as desired.

I Remark. Gottlob et al. [17] propose a different approach of enforcing unique answers on
logically equivalent schema mappings under the CWA-semantics (and its relatives). The
idea is to first normalize the schema mapping as described in their paper, and then answer
queries under the desired semantics.

5 The Complexity of Answering Non-Monotone Queries

This section’s goal is to compile what is known about the complexity of answering queries
under the different semantics introduced in Section 4, which we henceforth call non-monotone
semantics. To the best of our knowledge, only the data complexity of this problem (i.e., its
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complexity as a function of the size of the source instance only) has been considered in the
literature. For each s ∈ {CWA,GCWA∗}, each schema mapping M for which certs is defined,
and each FO-query Q over M ’s target schema, we will therefore consider the complexity of

Evals(M,Q)

Input: a source instance S for M , and a tuple ā over dom(S) ∪ dom(Q)

Question: Is ā ∈ certs(Q,M,S)?

Concerning the “mixed world semantics” from Section 4.2, an important parameter is the
maximum number of open positions per atom in the head of an st-tgd. For an annotation α
for the st-tgds in M , let us denote this number by #op(α). Then, for each k ≥ 1 we consider

Evalk(M,Q)

Input: a source instance S for M , an annotation α for the st-tgds in M such
that #op(α) = k, and a tuple ā over dom(S) ∪ dom(Q)

Question: Is ā ∈ cert(Q,M,α, S)?

Note that for k = 0, the problem would correspond to EvalCWA(M,Q).
Let me point out that for monotone queries, most of the non-monotone semantics coincide

with the certain answers semantics [22, 32, 2, 21]. The only exception is the CWA-semantics,
but only in the context of schema mappings defined by st-tgds, t-tgds, and possibly also egds.
This, however, seems to be only due to the choice we made for the incomplete instances
represented by instances under integrity constraints. It might well be the case that this
changes when we represent such instances in any of the other ways proposed in the literature.
Anyway, the collapse to the certain answers semantics indicates once more that the certain
answers semantics is well-suited for monotone queries. It also shows that all results concerning
the certain answers semantics directly carry over to the non-monotone semantics. So, for
example, we know from [33] that there are schema mappingsM defined by st-tgds and CQs Q
with only two inequalities such that EvalCWA(M,Q) is co-NP-hard. But we also know from
[11] that the problem is in PTIME if Q is a UCQ with at most one inequality per disjunct.
For the GCWA∗-semantics, the latter is true even for the much broader class of weakly acyclic
schema mappings considered in [11]. This does not hold for the CWA-semantics in general,
since it does not coincide with the certain answers semantics on such schema mappings.

5.1 General FO-Queries
Not much is known about the complexity of answering non-monotone queries under the
non-monotone semantics. In many cases, it is hard to evaluate such queries, which is not
surprising given that the non-monotone semantics introduce implicit negation. Concerning
the complexity of evaluating general FO-queries under the CWA-semantics and the mixed
world semantics, we know:

I Theorem 23 ([22, 32]). If we restrict ourselves to schema mappings M defined by st-tgds,
and FO-queries Q over M ’s target schema, then:
1. EvalCWA(M,Q) ∈ co-NP, and there is a schema mapping M defined by st-tgds, and a

FO-query Q such that EvalCWA(M,Q) is co-NP-complete.
2. Eval1(M,Q) ∈ co-NEXPTIME, and there is a schema mapping M defined by st-tgds,

and a FO-query Q such that Eval1(M,Q) is co-NEXPTIME-complete.
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3. For all k ≥ 2, there is a schema mapping M defined by st-tgds, and a FO-query Q such
that Evalk(M,Q) is undecidable.

4. If Q has the form ∀x̄∃ȳ ϕ, where ϕ contains no quantifiers, then Evalk(M,Q) ∈ co-NP
for all k ≥ 1.

The membership part of Theorem 23(2a) follows directly from Theorem 13, whereas for
the hardness part we can use [33]. On the other hand, the membership part of Theorem 23(2b)
requires more sophisticated techniques. It involves a games argument and is technically
quite involved. Hardness is proved by a reduction from a NEXPTIME-complete version of
the tiling problem to the complement of Eval1(M,Q). Theorem 23(2c) is established by a
reduction from the finite validity problem for first-order logic [30].
I Remark. As shown in [22], the upper bound in Theorem 23(2a) holds for more general
schema mappings, called richly acyclic, which form a subclass of the weakly acyclic schema
mappings considered in [11]. It does not hold for weakly acyclic schema mappings, as there
are weakly acyclic schema mappings M and FO-queries Q over M ’s target schema such that
EvalCWA(M,Q) is undecidable [22].

Under the GCWA∗-semantics, query answering seems to be harder:

I Theorem 24 ([21]).
1. There is a schema mapping M defined by st-tgds and a CQ Q with one negated atom

such that EvalGCWA∗(M,Q) is co-NP-hard.
2. There is a schema mapping M defined by st-tgds and a FO-query Q of the form ∃x̄∀y ϕ,

where ϕ contains no quantifiers, such that EvalGCWA∗(M,Q) is undecidable.

Remember, though, that all of the above-mentioned results concern the data complexity
of query evaluation. For instance, co-NP-hardness of EvalCWA(M,Q) holds for some schema
mappings M and FO-queries Q, but there are many schema mappings M and FO-queries Q
for which EvalCWA(M,Q) is easy. Think, for example, of schema mappings that contain
only tgds without existentially quantified variables, and arbitrary FO-queries. For them,
EvalCWA(M,Q) is in PTIME. The same is of course true for Evalk, k ≥ 1, and EvalGCWA∗ .
It would be interesting to identify more general classes of schema mappings and queries for
which these problems are in PTIME.

5.2 Universal Queries
A very general and natural class of queries for which tractability of query answering under a
non-monotone semantics – namely, the GCWA∗-semantics – could be established is the class
of universal queries. Universal queries are FO-queries of the form ∀ȳ ϕ, where ϕ contains no
quantifiers. For schema mappings defined by st-tgds, it is not hard to show:

I Theorem 25 ([21]). For all schema mappings M defined by st-tgds, and for all universal
queries Q over M ’s target schema we have EvalGCWA∗(M,Q) ∈ co-NP.

On the other hand, if we restrict consideration to schema mappings defined by packed
st-tgds, then universal queries can be answered in polynomial time, as we shall see below.

I Definition 26 (Packed st-tgd). An st-tgd ∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)) is packed if every
two distinct relation atoms in ψ share a common variable from z̄.

I Remark. The schema mapping that is constructed in [21] for proving Theorem 24(2b) is
defined by packed st-tgds.
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Although quite restrictive, packed st-tgds still allow for non-trivial use of existentially
quantified variables in heads of st-tgds. Note that every st-tgd ∀x̄∀ȳ(ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)),
where ψ contains at most two relation atoms with variables from z̄, is logically equivalent to
a set of packed st-tgds of size at most the number of relation atoms in ψ. Hence, the class of
schema mappings defined by packed st-tgds forms an interesting class of schema mappings.
An example of an st-tgd that is not packed is ∀x(P (x)→ ∃y∃z∃u(E(x, y)∧E(y, z)∧E(z, u))).
The remaining part of this section is devoted to the following result:

I Theorem 27 ([21]). Let M be a schema mapping defined by packed st-tgds, and let Q be a
universal query over M ’s target schema. Then there is a polynomial time algorithm that takes
the core solution for some source instance S for M as input and outputs certGCWA∗(Q,M,S).

Combined with Theorem 3, this result leads to a polynomial time algorithm that takes a
source instance S for M as input and outputs certGCWA∗(Q,M,S). In particular, we have
EvalGCWA∗(M,Q) ∈ PTIME. Also, recall from Section 3 that core solutions can be used to
compute the certain answers to UCQs and other queries. As a consequence, one only needs
to materialize the core solution in order to answer such queries and universal queries.

The proof of Theorem 27 is technically very involved. The core part consists of proving
the following “decision variant” of Theorem 27:

I Theorem 28 ([21]). Let M be a schema mapping defined by packed st-tgds, and let Q be a
universal query over M ’s target schema. Then there is a polynomial time algorithm that,
given the core solution for some source instance S for M and a tuple ā as input, decides
whether ā ∈ certGCWA∗(Q,M,S).

The remainder of this section presents a sketch of the proof of Theorem 28.

5.2.1 GCWA∗-Answers and Core Solutions
Let us first see how GCWA∗-answers can be obtained from core solutions. Consider a schema
mapping M , a source instance S for M , an FO-query Q over M ’s target schema, and a tuple
ā over dom(S)∪dom(Q). Using the core solution for S under M , how can we decide whether
ā ∈ certGCWA∗(Q,M,S)?

Observe that ā /∈ certGCWA∗(Q,M,S) if and only if there is a GCWA∗-solution T ′

for S under M such that ā ∈ ¬Q(T ′). Furthermore, recall that GCWA∗-solutions are
ground solutions that are the union of minimal solutions for S under M . In the case of
schema mappings defined by st-tgds, this is equivalent to being a union of ground minimal
solutions for S under M . Now let T be the core solution for S under M , and recall
from Section 4.1.2 that it represents an incomplete instance rep(T ). The following lemma
implies that ā /∈ certGCWA∗(Q,M,S) if and only if there are k ≥ 1 and minimal instances
T1, . . . , Tk ∈ rep(T ) such that ā ∈ ¬Q(T1 ∪ · · · ∪ Tk).10

I Lemma 29 ([21]). Let M be a schema mapping defined by st-tgds, let S be a source instance
for M , and let T be the core solution for S under M . Then the set of all ground minimal
solutions for S under M coincides with the set of all minimal instances in rep(T ).

If Q is a universal query, then ¬Q is equivalent to an existential query, i.e., a FO-query
of the form ∃x̄ ϕ, where ϕ is quantifier-free. Thus we have reduced the initial problem of
deciding ā ∈ certGCWA∗(Q,M,S) to a satisfiability problem for existential queries over the

10As for solutions, an instance T ′ ∈ rep(T ) is minimal if there is no T ′′ ∈ rep(T ) with T ′′ ( T ′.
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set of all instances that are unions of minimal instances in rep(T ). Towards solving this
satisfiability problem in its full generality, an important subproblem to be solved is the
corresponding satisfiability problem for the case that Q has the form ¬R(c̄) for some tuple
c̄ of constants. In this case, the problem simplifies to deciding whether there is a minimal
instance in rep(T ) that contains R(c̄). The next section shows how to find such an instance
if one exists.

5.2.2 Finding Atoms in Minimal Possible Worlds
Let T be the core solution for S under M , and let repmin(T ) be the set of all minimal
instances in rep(T ). Given an atom A, how can we find an instance T ′ ∈ repmin(T ) with
A ∈ T ′ if there is one? Note that in general there are infinitely many instances in rep(T ),
since each null can be substituted by an arbitrary element of Const. However, as shown in
[21], it suffices to restrict attention to finitely many representatives. Still, in the worst case
there are exponentially many such representatives left, and it is not clear at all how to find a
representative containing A.

A very nice structural property of core solutions under schema mappings defined by
st-tgds comes to the rescue: that the number of nulls in the atom blocks of such core solutions
does only depend on the schema mapping.

I Definition 30 ([16]). The Gaifman graph of the atoms of T is the undirected graph which
has the atoms of T as nodes, and an edge between two distinct atoms A and A′ if there is
a null that occurs both in A and A′. An atom block of T is a connected component in the
Gaifman graph of the atoms of T .

It follows immediately from results in [13] that for every schema mapping M defined by
st-tgds there is an integer s such that for every source instance S for M each atom block in
the core solution for S under M contains at most s nulls. The obvious idea is now to try to
look only at single atom blocks B of T , and search for an instance in repmin(B) containing
A. Unfortunately, this does not lead to a correct algorithm: If no instance in repmin(B)
contains A, then we can be sure that no instance in repmin(T ) contains A, but if there is an
instance in repmin(B) containing A, then this does not imply that there is also an instance
in repmin(T ) that contains A. An example is given in [21].

Instead, it can be shown that there is a subset S of the representatives of instances
in repmin(T ) such that S has size polynomial in the size of T , and such that it suffices to
consider only the instances in S in order to decide whether there is an instance in repmin(T )
containing A. Furthermore, it is possible to enumerate the instances in S in polynomial time.
The set S is defined using the following homomorphisms:

I Definition 31. Let B be an atom block of T , let B̄ := T \B, and let C ⊆ Const.
Let valC(T,B) be the set of all mappings h : dom(T )→ dom(T ) ∪ C such that h(c) = c

for all c ∈ const(T ), h(⊥) = ⊥ for all ⊥ ∈ nulls(B̄), and for every atom R(a1, . . . , ak) ∈ B
we have: if R(h(a1), . . . , h(ak)) /∈ B, then every null that occurs in R(h(a1), . . . , h(ak))
also occurs in B.
Let minvalC(T,B) be the set of all mappings h ∈ valC(T,B) such that there is no
h′ ∈ valC(T,B) with h′(T ) ( h(T ).

Let C be the set of all constants that occur in A. Then the set S is the set of all instances
that are the core of h(T ) for some h ∈ minvalC(T,B) and some atom block B of T . For
enumerating S, we simply enumerate all the atom blocks B of T and all h ∈ minvalC(T,B),
and compute the core of h(T ) using a slight modification of the blocks algorithm from [13].
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Showing that (1) the instances in S are indeed representatives of instances in repmin(T ), and
that (2) for every atom A contained in some instance in repmin(T ) there is an instance in
S containing A is technically involved. For proving (2), the property that M is defined by
packed st-tgds is very important. For details the reader should consult [21].

5.2.3 Solving the General Satisfiability Problem
Finally, let us see how we can put together the results so as to solve the satisfiability problem
in its full generality. Let M = (σ, τ,Σ) be a schema mapping defined by packed st-tgds, and
let Q be an existential query over τ . Given the core solution T for a source instance S under
M and a tuple ā over dom(S) ∪ dom(Q), how can we decide whether there are k ≥ 1 and
T1, . . . , Tk ∈ repmin(T ) such that ā ∈ Q(T1 ∪ · · · ∪ Tk)?

We first observe that Q is logically equivalent to a query of the form

Q′(x̄) :=
m∨
i=1

Qi(x̄),

where each Qi(x̄) is an existential query of the form

Qi(x̄) := ∃ȳi
ni∧
j=1

ϕi,j ,

and each ϕi,j is an atomic FO-formula, or the negation of an atomic FO-formula. It therefore
remains to decide whether for some i ∈ [m], there are k ≥ 1 and T1, . . . , Tk ∈ repmin(T ) such
that ā ∈ Qi(T1 ∪ · · · ∪ Tk).

We can do this as follows. Let i ∈ [m]. For simplicity, assume that the relation atoms
in Qi are ϕi,1, . . . , ϕi,`. Then for all j ∈ [`], we consider the set Tj of all pairs (Tj , αj),
where Tj is an instance in the set S mentioned in Section 5.2.2, and αj is an assignment for
ϕi,j with (Tj , αj) |= ϕi,j . Combining tuples from T1, . . . , T` that are compatible in a certain
sense,11 we obtain a set T of pairs (T ∗, α∗) such that T ∗ has the form T1 ∪ · · · ∪ Tk with
each Ti isomorphic to an instance in S, and α∗ is an assignment for

∧`
j=1 ϕi,j such that

(T ∗, α∗) |=
∧`
j=1 ϕi,j . Finally, we check whether there is a pair (T ∗, α∗) ∈ T such that T ∗

can be padded with a large enough number of disjoint copies of T so that the resulting
instance T ∗∗ satisfies ā ∈ Qi(T ∗∗). For the proof of correctness, which is technically quite
involved, I refer the reader to [21].

6 Conclusions

Query answering is a fundamental task in data exchange and data integration. The standard
semantics for queries in these areas is the certain answers semantics. While this is adequate
for monotone queries, it may lead to counter-intuitive answers for non-monotone queries.
This chapter surveyed various semantics (the CWA-semantics, the “mixed world” semantics,
the endomorphic images semantics, and the GCWA∗-semantics) that were designed for
answering non-monotone queries. Each of these semantics is based on a variant of the CWA
to reduce the set of solutions, and to answer queries with respect to the reduced set of

11 Informally, (T1, α1) and (T2, α2) are compatible if T1 and T2 can be “glued together” by identifying the
values assigned to some variable that occurs both in the domain of α1 and in the domain of α2, while
leaving the other values untouched.

Chapte r 06



182 Semantics for Non-Monotone Queries in Data Exchange and Data Integration

solutions. Answering non-monotone queries under any of these semantics may be co-NP-hard,
or co-NEXPTIME-hard (in the case of the “mixed world” semantics with at most one open
position per atom in an st-tgd), or even undecidable. Note, however, that these results speak
about the data complexity of the problem. In particular, single schema mappings M and
queries Q were exhibited for which the problem is hard. For many schema mappings and
queries, the problem is easy, though, and it would be interesting to identify more general
classes of schema mappings and queries for which the problem is tractable. We presented
one such example: the GCWA∗-answers to universal queries can be computed in polynomial
time under schema mappings defined by packed st-tgds.

Apart from identifying more general classes of schema mappings and queries for which
query answering is tractable, there are many more problems that still need to be solved. To
give three examples: Since there are several semantics for non-monotone queries, it would
be nice to have formal criteria (e.g., in the style of [7], see also [10]) for comparing them
and to understand their strengths and weaknesses relative to each other. Furthermore, it is
worth studying the combined complexity of query answering under non-monotone semantics.
There are a few results on the combined complexity of computing the certain answers [5],
but for non-monotone semantics there are no such results. Finally, a technical question
concerning the polynomial time algorithm for computing GCWA∗-answers to universal queries
(Theorem 27): Can it be extended to more general schema mappings? It seems possible to
do this for schema mappings defined by st-tgds.
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