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Abstract
We describe the state of the art in the area of core computation for data exchange. Two main
approaches are considered: post-processing core computation, applied to a canonical universal
solution constructed by chasing a given schema mapping, and direct core computation, where
the mapping is first rewritten in order to create core universal solutions by chasing it.
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1 Introduction

Data exchange is concerned with the transfer of data between databases with different
schemas, according to declarative specifications known as schema mappings. Unlike virtual
data integration, concerned with query translation among distributed databases [15, 9], data
exchange aims at actually materializing a target database, for the later use offline.

In this chapter, we consider the most common schema mapping language, based on tuple-
generating dependencies (tgds) and equality-generating dependencies (egds). Our setting
assumes two parties: the source and the target data storages with respective relational
schemas S and T, and the single direction of data flow. Such scenario is typically guided by
the source-to-target tgds (st-tgds for short) and target constraints based on egds and tgds.

The data exchange problem for a schema mappingM = (S,T,Σ), where Σ is a set of
st-tgds and target constraints, is defined by Fagin, Kolaitis, Miller and Popa in [6] as a task
of constructing a target instance J for a given source instance I, s.t. the combined instance
〈I, J〉 satisfies the dependencies in Σ. Such J is called a solution for I to the data exchange
problem associated withM.

I Example 1 ([20]). Let Tutorial(course, tutor) and BasicUnit(course) be relations in a source
schema, and NeedsLab(id_tutor,lab), Tutor(id_tutor,tutor), Teaches(id_tutor, id_course) and
Course(id_course,course) be relations in a target schema. The following source-to-target tgds
relate the two schemas:
1. ∀C (BasicUnit(C)→ ∃IdcCourse(Idc, C)) ,
2. ∀C∀T (Tutorial(C, T )→ ∃Idc ∃Idt (Course(Idc, C) ∧ Tutor(Idt, T ) ∧ Teaches(Idt, Idc))) .
Target dependencies are given by the two tgds:
3. ∀Idc ∀C (Course(Idc, C)→ ∃Idt ∃T (Tutor(Idt, T ) ∧ Teaches(Idt, Idc))),
4. ∀Idt ∀Idc (Teaches(Idt, Idc)→ ∃LNeedsLab(Idt, L)).
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For the source instance I consisting of two facts Tutorial(’java’, ’Yves’) and BasicUnit(’java’),
the following instances are all valid solutions:
J = {Course(C1, ’java’), Tutor(T2,N), Teaches(T2,C1), NeedsLab(T2,L2),

Course(C2, ’java’), Tutor(T1,’Yves’), Teaches(T1,C2), NeedsLab(T1,L1)},
Jc = {Course(C1,’java’), Tutor(T1,’Yves’), Teaches(T1,C1), NeedsLab(T1,L1)},
J ′ = {Course(’java’,’java’),Tutor(T1,’Yves’), Teaches(T1,’java’), NeedsLab(T1,L1)}
Existentially quantified variables in tgds can be interpreted as arbitrary values. To reflect
this, solutions in data exchange may contain labeled nulls, serving as placeholders for
unknown constants. Labeled nulls are denoted by capitalized identifiers without quotes in
this chapter. J

As demonstrated by Example 1, data exchange problems may admit multiple solutions,
due to the use of implicational dependencies with existentially quantified variables in schema
mappings. Fagin et al. in [6] proposed clear criteria for evaluating the quality of solutions.
The most prominent requirement is universality, disallowing materialization of facts not
implied by I ∪ Σ, where I is seen as conjunction of atoms of the source instance, and Σ is
the set of dependencies in the mapping. This requirement can be captured as follows: a
solution K for I is universal, if for arbitrary solution K ′ for I, there is a function h mapping
labeled nulls of K to values occurring in K ′ and preserving non-null values of K, such that
h(K) ⊆ K ′ holds. Such h is called a homomorphism. Note that J ′ in Example 1 is not
universal, since there exists no homomorphism transforming J ′ into the solution J . Indeed, a
homomorphism preserves constants, and thus the fact Course(’java’,’java’) cannot be mapped
onto any fact in J . At the same time, J is a universal solution (and hence, so is Jc, which is
a subset of J , up to a renaming of labeled nulls): in particular, J can be transformed into J ′
by mapping C1 and C2 to ’java’, T2 to T1, L2 to L1 and N to ’Yves’.

The number of universal solutions is usually infinite: unless very restrictive target egds
are part of the mapping, arbitrary number of facts consisting of fresh distinct labeled nulls
can be added to a universal solution J , without affecting its universality. Fagin, Kolaitis
and Popa [7] thus recognized the size of universal solution as an important quality criterion,
and proposed the notion of core universal solution. It is inspired by the graph theoretic
concept of the core of a graph [13] defined as smallest subgraph which also is a homomorphic
image of the graph. Since universal solutions have homomorphisms to any other solutions,
core universal solution can be defined as the smallest universal solution possible (Thus, the
smallest solution Jc in Example 1 is the core universal solution). The following holds [7]:
1. For each source instance I and a mappingM, a smallest universal solution is unique up

to isomorphism (that is, up to renaming of labeled nulls). Therefore, we can speak of the
core universal solution (or, simply, the core).

2. Every universal solution contains the core universal solution as its subset.
3. All universal solutions for I underM have the same core.
4. For some classes of queries, certain answers (or the best approximations thereof) can

be found by evaluating the queries on the core universal solution. Certain answers (cf.
Chapter 5) are the answers that are found in every solution for a data exchange problem.

Being an attractive option for materialization, core universal solutions are not always easy
to compute. For mappings with expressive target constraints, the question of feasibility of
finding the core universal solution remained open for several years. In 2006 Gottlob and
Nash answered it positively for mappings with target egds and tgds, appropriately restricted
to ensure the termination of the data exchange process based on incrementally satisfying all
dependencies in the mapping (known as chasing the dependencies, or just the chase) [12].
Their technique eliminates redundant facts from instances that result from the chase, and
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Table 1 Development of Algorithms for Core Computation.

Algorithm Year1) Type Σt Scale: 300s Comments
GreedyCoreComp [7] 2003 PP egds n/a

BlockCoreComp [7] 2003 PP egds n/a

Hd-Core [10] 2005 PP simple tgds n/a hypertree-decomp.
+ egds not covered

FastCore [10] 2005 PP full tgds n/a not covered
+ egds

FindCore [12] 2006 PP tgds
Chase with egds: [20]

2K Skolemized mappings,
+ egds oblivious chase: [16]

Core mappings [19] 2009 D ∅ 500K

Laconic mappings [22] 2009 D ∅ n/a FO< st-tgds

Spicy-FD [18] 2010 D FDs 1M FDs (best-effort)

1) Conference versions of the articles:
[7]: In Proceedings of PODS 2003, pp. 90–101, ACM 2003
[12]: In Proceedings of PODS 2006, pp. 40–49, ACM 2006
[20]: In Proceedings of LPAR 2008, LNCS(5330), pp. 62–78, Springer
[19]: In Proceedings of SIGMOD 2009, pp. 655–668, ACM 2009

thus can be called a post-processing core computation method. Despite theoretical tractability,
it has not yet been proven to scale in practice.

Much better performance is demonstrated by the method of direct core computation
proposed by Mecca, Papotti and Raunich [19], and independently by ten Cate, Kolaitis,
Chiticariu and Tan [22] in 2009. Its idea is to rewrite the dependencies in the mapping in
such a way that chasing them immediately yields a core universal solution. The downside
of this approach is that far less expressive mappings can be supported: both algorithms of
[19, 22] deal with mappings without target constraints, whereas in [18], Marnette, Mecca
and Papotti extend direct core computation to encompass target functional dependencies on
the best-effort basis. Both [19, 18] report experimental results witnessing that direct core
computation scales to instances with up to million records.

Table 1 contrasts the published algorithms for core computation in data exchange. The
columns are (1) the name of the algorithm, (2) year of its first publication, (3) type: post-
processing or direct, (4) the class of target constraints supported, (5) estimate of the source
instance size (in tuples) for which the core universal solution can be found in 5 minutes,
based on the latest published results, and (6) additional comments. The prototypical
algorithms GreedyCoreComp and BlockCoreComp, proposed by Fagin et al. in their
foundational paper [7], are discussed in Sections 3.1, 4.1 and 4.2. The algorithms HD-Core
and FastCore by Gottlob were the first to encompass restricted classes of target tgds along
with egds. The former supports the class of simple tgds having a single atom without repeated
variables in the antecedent. This class leads to the target database instances with bounded
hypertree-width (see Section 3.1 for brief discussion). The latter algorithm allows full tgds
(introducing no new labeled nulls, see Section 2) and egds. Due to space restrictions, we will
not discuss HD-Core and FastCore here, but istead focus on their successor, FindCore
algorithm by Gottlob and Nash, supporting mappings with egds and weakly-acyclic tgds, a
broad class of dependencies for which the chase always terminates. Marnette [16] has shown
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that FindCore can be lifted, in fact, to arbitrary terminating mappings based on tgds. In
both [12, 16], egds are supported via encodings as tgds. Pichler and Savenkov [20] have
shown how the need for such an encoding in FindCore can be eliminated, and provided a
prototype implementation of post-processing core computation. FindCore algorithm and
its enhancements is subject of Sections 4.3 and 4.4.

The last three lines in Table 1 are direct core computation methods. The Core schema
mappings by Mecca et al. (Section 5.1.1) and Laconic schema mappings by ten Cate et al.
(Section 5.1.2) were first such approaches, supporting source-to-target dependencies only.
The algorithm Spicy-FD by Marnette et al. relies on these methods to provide a best-effort
direct core computation facility in presence of target functional dependencies (Section 5.3).

The rest of this paper is organized as follows: after presenting the preliminaries in Section 2,
we discuss general complexity of core computation Section 3, then present post-processing
algorithms in Section 4, and direct core computation in Section 5. After outlining the
performance of currently existing implementations in Section 6, we conclude with Section 7.

2 Preliminaries

Data exchange problem. A schema R = {R1, . . . , Rn} is a set of relation symbols Ri each
of a fixed arity. An instance over a schema R consists of a relation for each relation symbol in
R, s.t. both have the same arity. We only consider finite instances. We will usually identify
a relation with its relation symbol (and vice versa).

Tuples of the relations may contain two types of elements: constants and labeled nulls.
For every instance J , we write nulls(J) to denote the set of labeled nulls of J and const(J)
to denote the set of constants of J . The two sets are disjoint: nulls(J) ∩ const(J) = ∅. The
domain of J dom(J) is thus the union of nulls(J) and const(J). If a tuple (x1, x2, . . . , xn)
belongs to the relation R, we say that J contains the fact R(x1, x2, . . . , xn). We also write
~x for a tuple (x1, x2, . . . , xn) and if xi ∈ X, for every i, then we also write ~x ∈ X instead of
~x ∈ Xn. Likewise, we write r ∈ ~x if r = xi for some i.

Let S = {S1, . . . , Sn} and T = {T1, . . . , Tm} be schemas with no relation symbols in
common. We call S the source schema and T the target schema. We write 〈S,T〉 to denote
the combined schema {S1, . . . , Sn, T1, . . . , Tm}. Instances over S (resp. T) are called source
instances (resp. target instances). If I is a source instance and J a target instance, then their
combination 〈I, J〉 is an instance of the schema 〈S,T〉. A subinstance of an instance J is an
instance over the same schema as J , containing a subset of facts of J .

Dependencies. A common class of database dependencies considered in the area of data
exchange and data integration is the class of embedded dependencies [5]. These are first-order
sentences ∀~x∀~x0 (φ(~x, ~x0)→ ∃~y ψ(~x, ~y)), where premise φ and conclusion ψ are conjunctions
of atomic formulas with relational symbols from some schema R or equalities. Throughout
this paper, we shall omit the outermost universal quantifiers, and assume all variables
occurring in the premise to be universally quantified (over the entire formula), and all
variables occurring only in the conclusion to be existentially quantified over the entire
conclusion. For instance, we shall write

S1(x1, x2) ∧ S2(x1, x3)→ ∃y1∃y2 Q(x1, y1) ∧ P (x2, y1, y2)
instead of

∀x1 ∀x2∀x3 ( S1(x1, x2) ∧ S2(x1, x3)→ ∃y1∃y2 (Q(x1, y1) ∧ P (x2, y1, y2)) ) .
The dependencies considered in this chapter fall in one of the two categories: tuple-generating
dependencies (tgds) with conjunctions of atoms in the conclusions and equality-generating
dependencies (egds) where conclusions are restricted to equality predicates. In Section 5, we
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will also extend the class of embedded dependencies by L tgds, whose antecedents φ(~x, ~x0)
are formulas over the language L. In particular, an important role will play FO tgds with
antecedents being arbitrary first-order formulas, and FO< tgds enhancing the latter with the
linear order relation <. Given a tgd τ : φ(~x, ~x0)→ ∃~y ψ(~x, ~y)

the elements of ~x, ~x0 are called the ∀-variables of τ , and the elements of ~y are called the
∃-variables of τ ; it is assumed that all elements of ~x actually occur in ψ(~x, ~y),
|~x| as ∀-width of τ and |~y| ∃-width of τ . If ∃-width = 0, the tgd is called full.

For a mapping M, ∀-width and ∃-width of M are defined, respectively, as the maximal
∀-width and ∃-width of a tgd inM.

Schema mappings, data exchange problem. A schema mapping M is given by a triple
(S,T,Σ) consisting of the source schema S, the target schema T, the set of dependencies.
Typically, Σ contains a set of source-to-target dependencies Σst and the set of target depend-
encies Σt. Each source-to-target dependency of Σst is a tgd with its antecedent over S and
conclusion over T. The target dependencies Σt range over T.

The data exchange problem associated with a mapping M = (S,T,Σst ∪ Σt) is the
following: Given a null-free source instance I, find a target instance J , s.t. 〈I, J〉 |= Σst and
J |= Σt. Such a J is called a solution for I underM or, simply, a solution if I andM are
clear from the context.

Skolemization. We will also consider skolemized mappings. The standard skolemization
replaces each ∃-variable y ∈ ~y in the tgd φ(~x, ~x0)→ ∃~y ψ(~x, ~y) with a Skolem term f(~x)
where f is a fresh distinct function symbol.

Chase. The data exchange problem can be solved using the chase procedure [1], which
iteratively introduces new facts or equates terms until all desired dependencies are fulfilled.

Tgd chase step. Let φ(~x, ~x0)→ ∃~y ψ(~x, ~y) be a tgd, s.t. I |= φ(~a,~a0) for some assignments
~a,~a0 on ~x and ~x0 respectively. For each such assignment ~a, I is extended with the facts
instantiating the atoms of ψ(~a, ~Z) where ~Z consists of distinct labeled nulls not present in
dom(I). If the tgd is skolemized, the functional terms it generates are considered labeled
nulls. Chase based on this definition of tgd application is often called oblivious, or naïve in
the literature. A more fine-grained classification, proposed in Chapter 1, calls the so defined
chase semi-oblivious (since the target facts are created for each assignment ~a and not for
every combination of ~a and ~a0).

Egd chase step. Consider an egd τ : φ(~x )→ xi = xj , s.t. I |= φ(~a ) for some assignment
~a on ~x. This egd enforces the equality ai = aj . If ai, aj ∈ const(I) and ai 6= aj , the chase
aborts with failure. Otherwise, if one of ai, aj is a labeled null, all its occurrences in the
instance are replaced by the other term in the pair (ai, aj).

The result of chasing an instance I with dependencies Σ restricted to the target schema is
denoted as chase(I,Σ). An important property of mappings with target tgds is termination of
the chase. Unless specifically noted, here we assume that sets of dependencies are terminating,
that is, never cause infinite sequence of chase steps on any source instance. We refer the
reader to Chapter 1 for detailed discussion of chase variants and chase termination.

Homomorphisms and the core. Let I,I ′ be instances. A homomorphism h : I → I ′ is a
mapping dom(I) → dom(I ′), s.t. (1) whenever R(~x ) ∈ I, then R(h(~x )) ∈ I ′, and (2) for
every constant c, h(c) = c. An endomorphism is a homomorphism I → I, and a retraction is
an idempotent endomorphism, i.e. r ◦ r = r. The image r(I) under a retraction r is called
a retract of I. An endomorphism or a retraction is proper if it is not surjective (for finite
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instances, this is equivalent to not being injective), i.e., if it sends two distinct nulls onto the
same term.

I Definition 2. An instance is called a core if it has no proper endomorphisms. A core C of
an instance I is an endomorphic image of I, s.t. C is a core.

It can be easily shown that all cores of an instance I are unique up to isomorphism [13]. We
can therefore speak about the core of I.

Universal solutions and canonical instances. Consider a terminating schema mapping
M = (S,T,Σst ∪ Σt). Given a null-free source instance I, the universal solution for I under
M can be computed as follows: We start with the instance (I, ∅) over the combined schema
〈S,T〉, i.e., the source instance is I and the target instance is initially empty. Chasing
(I, ∅) with Σst yields the instance (I, Jst), where Jst is called a preuniversal instance: we
write chase(I,Σst) = Jst, using the convention that chase(I,Σst) is restricted to T. This
chase always succeeds since Σst contains no egds. Then Jst is chased with Σt. If Σt

contains egds, this chase may fail. If the chase succeeds, we end up with the instance
J = chase(Jst,Σt) = chase(I,Σ), which is referred to as a canonical universal solution for I.
A universal solution has a homomorphism into any other solution for I. If universal solution
J ′ is a core, it is called the core universal solution for I. Finally, we call an instance J over
T canonical, if for some source instance I, J = chase(I,Σ).

3 Complexity of core computation

We start with discussing the complexity of core computation for arbitrary instances, first
studied by Hell and Nešetřil [13] and then by Fagin, Kolaitis and Popa in [7], where the
following decision problems are formulated:

CoreRecognition: Given an instance A over some schema R is it a core?

According to Definition 2, the instance is the core if it has no homomorphism into its
proper subinstance. Since testing for homomorphism is a well known NP-complete problem,
it is immediate that CoreRecognition is in coNP. Hell and Nešetřil [13] have shown that
it is actually coNP-complete, even if A is an undirected graph. The proof uses a reduction
from Non-3-Colorability on graphs with girth (shortest cycle contained in the graph) of
length at least 7. The next problem brings us yet one step further to the complexity of core
computation. It was first formalized and studied by Fagin et al. in [7].

CoreIdentification: Given an instance A and its subinstance B over some schema R,
is core(A) = B?

The intuition suggests, that deciding CoreIdentification amounts to testing a homo-
morphism between A and B, and then solving CoreRecognition for B. Hence, the problem
can be split into a NP-complete and coNP-complete parts, and therefore might be complete
for both classes. This guess appears to be correct: Fagin et al. showed that core identification
problem is DP-complete (where the class DP is the class of decision problems that can be
expressed as a conjunction of an NP problem and a coNP problem). Building upon results
of [13], the authors provide a reduction from 3-Colorability/Non-3-Colorability.

Taking the possible instance size into account, the above results render core computation
on arbitrary instances as a prohibitively expensive task. Importantly though, in data exchange
one is typically confronted with target instances with certain regularities: they must fulfill
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Procedure BlockCoreComp (”The Blocks algorithm” [7])

Input: An instance J
Output: The core of J

(1) Identify the fact blocks {B1, . . . , Bn} of J
(2) Set C := J

(3) for each X ∈ nulls(J) do
(4) Set C−X := {R(~a) | R(~a) ∈ J ∧X ∈ ~a}
(5) Let BX ∈ {B1, . . . , Bn} be the block containing X: X ∈ nulls(BX)
(6) if X ∈ nulls(C) and exists a homomorphism h : BX → C \ C−X then
(7) Set C := (C \BX) ∪ h(BX)
(8) return C

data dependencies and, moreover, are often created from scratch with this requirement in
sight. These regularities allow to dramatically improve the efficiency of core computation.

In contrast, less assumptions can be typically made about the structure of source instances.
At the same time, many data exchange frameworks disallow labeled nulls at the source side1.
Most algorithms considered in this survey crucially depend on this simplifying assumption.
Thus, speaking of core computation for data exchange, we assume that source instances do
not contain nulls.

The next section is devoted to the complexity of core computation relative to certain
structural parameters of the instance. In Section 4, these parameters will be related to
syntactic properties of schema mappings.

3.1 Parameterized complexity
Core computation comes down to a search for homomorphisms. The decision version of this
problem can be formulated as follows:

Homomorphism: Given instances A,B over schema R, does A→ B hold?

This problem can be reformulated as the problem of evaluation of boolean conjunctive
queries (BCQ), one of the most thoroughly studied topics in database theory [2]. Hence,
numerous results for BCQ evaluation carry over to Homomorphism, and vice versa. One
of the most immediate parameters for Homomorphism is the maximal size of independent
subinstance, called fact block.

I Definition 3. Fact blocks are connected components of the fact graph of an instance
J , where the fact graph has the facts of J as vertices and edges drawn between two
vertices whenever the facts at these vertices share a labeled null. We define blocksize(J)
as max{|nulls(B)| | B is a fact block of J}. Finally, for a null X ∈ nulls(J), B(X) denotes
the fact block of J which contains X.

It follows immediately from the definition, that for two distinct blocks B1, B2 in J ,
nulls(B1) ∩ nulls(B2) = ∅. Hence, every homomorphism h for J can be decomposed into
a union of homomorphisms hi : Bi → A where i ranges over all blocks of J , and the
homomorphisms hi and hj can be defined independently of each other if i 6= j. This

1 Data exchange semantics for source instances with nulls has been proposed in [8]

Chapte r 02



46 Algorithms for Core Computation in Data Exchange

motivates the Blocks algorithm BlockCoreComp, first considered in [7]. It searches for
local block-wise homomorphisms that eliminate at least a single null from the domain of J .
For any fact block B ⊆ J the homomorphism h : B → J can be immediately turned into an
endomorphism on J by taking it in a union with the identity mapping on all other fact blocks
of J . Hence, BlockCoreComp computes a sequence of nested instances J ⊇ J1 . . . ⊇ Jn,
such that the endomorphisms J → J1 . . .→ Jn hold, and Jn = core(J).

The BlockCoreComp algorithm can be shown to run in time O(|nulls(J)| · (c+m),
where m = |I| and c is the cost of the homomorphism test at step 5. This cost depends
crucially on blocksize(J), which we will denote by b.

A naïve way of testing a single homomorphism B → J takes time O(|dom(J)|b). This
result can be improved considerably by employing such parameters of J as treewidth tw(J)
[14], query-width qw(J) [3], or hypertree-width [11]. Gottlob and Nash take the latter
parameter, and describe a procedure for deciding Homomorphism, that on the input
(B(X), C \C−X) on line (5) of BlockCoreComp takes time O(mbb/2c+2), where hw(B(X))
is approximated by b.

A number of favorable properties of hypertree decomposition is given in [12], motivating
its usage for core computation. In particular, the hypertree decomposition is

Robust: for every instance J , hw(J) ≤ qw(J) ≤ tw(J) holds. Moreover, there exist
instances J ′, J ′′, for which inequalities hw(J ′) < qw(J ′) and qw(J ′′) < tw(J ′′) are proper.
Useful: Homomorphism(J , A) can be decided in time O(t · ak), where a is the size of the
largest relation in A, t a number of hypernodes in the hypertree decomposition of J and
k is a bound for hw(J). Moreover, k ≤ bb/2c+ 1, where b = blocksize(J).
Efficiently decidable: For each fixed constant k, the problems of determining whether
hw(J) ≤ k and of computing (in the positive case) a hypertree decomposition of width
≤ k are feasible in polynomial time.

The precise complexity of BlockCoreComp relative to treewidth and query-width has
not been considered in the literature so far, but can be derived easily from the results on CQ
evaluation.

In all the expressions above, we have b = blocksize(J) in the exponent of the running
time estimation. The authors of [12] show that this cannot be avoided (unless P=NP). They
use a parameterized reduction from the k-CLIQUE problem, to show the following:

I Theorem 4. [12] If J has blocksize(J) ≤ k and C ⊆ J is null-free, then the problem
CoreIdentification (J,C) is fixed parameter-intractable in the parameter k.

4 Core computation as a post-processing

In this section we show how the knowledge that the given instance results from the chase
with certain type of dependencies can be leveraged to facilitate the core computation.

Most post-processing algorithms restrict the homomorphism search to subinstances whose
blocksize only depends on the given mapping, thus achieving polynomial data complexity of
the core computation. In Section 4.1, we also present a particularly simple Greedy algorithm
[7] which requires no endomorphism search at all, provided that the target dependencies of
the mapping contain no tgds.

J = J0 ⊇ J1 ⊇ . . . ⊇ Jn = C

Figure 1 Recursive core approximation.

All currently known post-processing al-
gorithms follow the recursive approximation
scheme, in which the core is found as a sequence
of ever shrinking endomorphic images of the ca-
nonical universal solution J , such that each image
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can be seen as an approximation to the core. It is desirable that every such core approximation
Ji be itself a universal solution to the data exchange problem. Then, each subsequent
approximation can be immediately used for query answering instead of the previous one (and
instead of the original canonical instance J); the core is found when no further improvement
of the current approximation is possible. The BlockCoreComp algorithm, however, never
checks that the output instance C is a solution. It is easy to show, that for mappings
with target constraints restricted to egds, each iteration of BlockCoreComp delivers a
universal solution, without further ado. Indeed, the algorithm computes a sequence of nested
endomorphic images. Egds are closed under the subset relation, while for st-tgds the following
lemma holds:

I Lemma 5. Let Σ be a set of st-tgds, I, J be respectively a source and a target instance,
and let h be a homomorphism on J . Then, (I, J) |= Σ implies (I, h(J)) |= Σ.

Proof idea. The proof is based on the three observations: (1) I contains no nulls, (2) h
preserves constants, and (3) conjunctive queries are closed under homomorphisms. Assume
that for a st-tgd τ and some assignment ~a satisfying the antecedent of τ there is an assignment
~b for ∃-variables of τ . Then, h(~b) is also a satisfying assignment for ∃-variables of τ . J

In presence of target tgds, however, the situation is a little more complex. Consider the
following example:

I Example 6. [12] Let J be an instance with a binary relation R containing the following
tuples: {(X,Z), (X, a), (a, a), (Z, Y ), (a, Z)}, were a is a constant and the other values are
labeled nulls. Then, h = {X → Z, Y → Z,Z → a, a → a} is an endomorphism on A,
h(J) = {(X, a), (a, a), (a, Z)}. Now, the following full tgd is satisfied by A but not by h(A):

R(x1, x2) ∧R(x2, x2) ∧R(x2, x3)→ R(x1, x3)

Indeed, applied to h(J), the tgd yields (X,Z), which is not part of h(J). J

The above endomorphism is somewhat particular: namely, it is non-idempotent, mapping
Z onto a and re-introducing it as a image of Y . As shown by Gottlob and Nash, no such
example would be possible for an idempotent endomorphism (retraction):

I Lemma 7. [12] Let J be an instance, and r : J → J its retraction. Then, for arbitrary set
of tgds and egds Σ, J |= Σ implies r(J) |= Σ.

Hence, the core approximation via proper retractions is a viable alternative for mappings
with target tgds. Their use becomes even better justified, taking into account the cost of
transformation of an arbitrary endomorphism into an idempotent one, as demonstrated by
Gottlob and Nash:

I Lemma 8. [12] Let h be a proper endomorphism on some instance J : that is, ∃x, y ∈
dom(J), such that h(x) = h(y). Then, there exists a retraction r : J → h(J), such that
r(x) = r(y). Moreover, such r can be found in time O(|dom(J)|2).

Proof hint. The retraction r can be obtained by computing a sequence h = h0, h1, . . . , hk = r

of endomorphisms, where hi+1 is obtained by composing hi with itself ni times. It can be
shown that Σ0≤i<k ni ≤ |dom(J)|2. We will refer to this iteration-based transformation as
to Procedure ToRetraction. J
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Procedure GreedyCoreComp (”The Greedy algorithm” [7])

Input: Source instance I, schema mapping Σ = Σst ∪ Σt where Σt = ∅ or consists of egds
Output: The core universal solution for I under Σ

(1) Set J := chase(I,Σ), C := J

(2) for each R(~a) ∈ J do
(3) if 〈I, C \ {R(~a)}〉 |= Σst then
(4) Set C := C \ {R(~a)}
(5) return C

In the remainder of this section, post-processing core computation is considered under
different classes of target dependencies. Most algorithms that we present deliver core
approximations which are universal solutions. If target constraints are restricted to egds,
this property comes for free. In presence of target tgds, transforming proper endomorphisms
into proper retractions is needed. The only complicated case is when target dependencies
comprise both tgds and egds, since some algorithms simulate egds by tgds and thus egds may
not be satisfied until the core is found. This issue is addressed in Section 4.4.

4.1 No target constraints
The Blocks algorithm. In the absence of target constraints, each canonical instance has
blocksize bounded by the ∃-width of the mapping, as can be readily seen from the definition
of a chase step with a tgd. Indeed, each such step instantiates the ∃-variables of a tgd with
fresh distinct nulls, and hence two facts created at different chase steps never share a null.

Hence, the BlockCoreComp algorithm from Section 3.1 can be applied to chase(I,Σ)
without any modifications, and the inequality blocksize(J) ≤ ∃-width(Σ) holds.

The Greedy algorithm. The Greedy algorithm GreedyCoreComp is defined for mappings
whose set of target constraints is empty or consists of target egds. This procedure does not
explicitly check the existence of an endomorphism from the canonical universal solution J
to its subinstance C. This is not an omission, since C is a solution for I: the test on line 3
verifies that Σst is satisfied after the atom R(~a) is removed. Being a universal solution, J has
a homomorphism into any other solution, so J → C holds after each iteration. Obviously,
C → J holds too, by C ⊆ J . Hence, this algorithm does not depend on the block size of J ,
but rather on the complexity of evaluating the st-tgds in Σst over 〈I, C〉. This approach is
not quite in the spirit of data exchange, however, since the test on line 3 requires the source
instance to be accessible all the time until the core is not found.

4.2 Target egds
The Blocks algorithm. If mapping includes target egds, the blocksize of the instance is
not fixed anymore, as can be seen on a following simple example:

I Example 9. Consider the mapping Σ with one st-tgd and one egd:

S(x, z)→ ∃y1, y2 P (x, y1) ∧R(z, y1, y2) R(x, x1, y1) ∧R(x, x2, y2)→ y1 = y2

For each source instance I, the canonical preuniversal instance chase(I,Σst) has blocksize
2. The blocksize of canonical universal solution, however, is k + 1, where k is the maximal
number of distinct facts in I that agree on the second attribute. J
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Recall that the complexity of core computation depends exponentially on blocksize.
Therefore, the unbounded blocksize would effectively make core computation intractable.
The idea due to Fagin et al. [7] is to redefine the notion of fact block in order to keep its size
bounded despite the effects of egds. Recall the process of constructing a universal solution
via chase: first the source instance I is chased into a preuniversal canonical instance Jst, to
which, in turn, the target egds are applied. The following property, discovered by Fagin et
al., will play an important role in several core computation algorithms:

I Lemma 10 (Rigidity). [7] Let Σ = Σst ∪ Σt be a mapping in which Σt consists of target
egds, and two labeled nulls X,Y ∈ nulls(Jst) belong to different fact blocks in Jst. If the
chase of target egds enforces the unification of X and Y so that they are both substituted
by a term t in the canonical universal solution J , then t is rigid in J : That is, for any
endomorphism e on J , e(t) = t holds.

The intuition behind this property is that conjunctive queries in the antecedents of egds
cannot distinguish between the fact block and its endomorphic image, and thus make egds
perform the same labeled null unifications in both. The consequence for core computation is
very favorable: nulls affected by egds during the target chase can be treated as constants.
Hence, we consider non-rigid fact blocks (nr-blocks for short) constructed as in Definition 3,
but disregarding the sharing of rigid nulls between facts. A corresponding parameter of the
target instance measuring the maximal number of nulls in an nr-block of an instance is called
nr-blocksize, and the BlockCoreComp algorithm can be adapted accordingly.

Since non-rigid fact blocks are contained in the fact blocks of the preuniversal instance
(modulo unification of nulls), target egds actually facilitate core computation. The only
downside is the necessity to track egd applications in order to identify rigid nulls.

The Greedy algorithm. The procedure GreedyCoreComp defined in Section 4.1 handles
mappings with target egds without any modification. Note that line 3 only checks that the
source-to-target constraints in Σ are satisfied after the fact R(~a) is eliminated from C. It is
easy to show that whenever an instance J satisfies an egd, then any its subinstance does so,
too. Since C is a subinstance of J and J |= Σt, C |= Σt holds as well.

4.3 Target tgds
Neither Greedy nor Blocks algorithm can be easily extended to support target tgds. The
problem with the Greedy algorithm is that unlike egds, tgds are not closed under the subset
relation, so the test if the combined instance 〈I, C \ {R(~a)}〉 satisfies Σt as well as Σst needs
to be performed at each iteration in addition to the test 〈I, C \ {R(~a)}〉 |= Σst. Moreover,
eliminating a single fact at a time is no longer sufficient in presence of target tgds.

The negative effect of target tgds on the Blocks algorithm is twofold. Besides merging
the blocks of a preuniversal instance (by putting nulls from different blocks into the same
fact), chase with target tgds can introduce a polynomial number of new nulls, and thus the
blocks of chase(I,Σst ∪Σt) can be substantially larger than those of chase(I,Σst). No direct
analog of the Rigidity property is available for the case of target tgds. Thus, new ideas are
needed to tackle mappings with target tgds. In this section we describe one such idea by
Gottlob and Nash, implemented in their algorithm FindCore [12].

Let J be a canonical instance for some mapping M, and C ⊆ J be its current core
approximation, satisfyingM. C is the core if there is no endomorphism r from J into some
proper subinstance of C. It is easy to show, that any such r must unify at least two terms
from the domain of C: that is, ∃X,Y ∈ dom(C) such that r(X) = r(Y ). Gottlob and Nash
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proposed a construction of a bounded-size instance K ∈ J , X,Y ∈ dom(K), such that a
desired r exists iff a homomorphism h : K → C exists, with h(X) = h(Y ). We will call such
K a kernel of J w.r.t. the terms X,Y , written KXY . (Note that it is not a problem kernel,
as used in the parameterized complexity theory, but a database instance). To define KXY ,
some new definitions are needed.

I Definition 11 (Parents, Ancestors, Siblings). Let ~Y be a vector of nulls created by a tgd
τ : φ(~x)→ ∃~y ψ(~x, ~y), that fired with a satisfying assignment ~a for the variables of φ. Then,
the elements in ~a are called parents of each null in ~Y . Moreover, all elements of ~Y are called
siblings w.r.t. each other, and τ -children of ~a, written ~a τ⇒ ~Y . The ancestor relation is then
defined as a transitive closure over parents.

We say that a subinstance K of a canonical instance J is closed under parents and siblings,
if (1) whenever X ∈ nulls(K), then parents and siblings of X are in dom(K), and (2) all
facts of J which are over dom(K) are in K.

I Definition 12 (Depth). The depth of constants (copied from the source instance or
contained in the right-hand side of the tgd) is taken to be 0. Then, the depth of each labeled
null is defined to exceed by one the maximal depth of its parents.

For a broad class of terminating mappings, every null in the canonical target instance has
depth bounded by a constant depending only on the mapping: we say that such a mapping
has the bounded depth property. Gottlob and Nash used this insight to limit the kernel
size |KXY |. The results of Marnette [16] imply that a similar property holds for arbitrary
terminating mappings defined by tgds, and thus FindCore can be lifted to handle all such
mappings. This lifting will be the subject of Section 4.3.1.

The following example shows how the depth of a labeled null can remain small even
though its derivation takes a long sequence of chase steps.

I Example 13. Let mapping Σ consist of a single st-tgd τst and three target tgds τ1,2,3:

τst : E(x1, x2)→ ∃y D(x1, y) ∧D(x2, y)
τ1 : D(x1, x2) ∧D(x1, x3)→ C(x2, x3)

τ2 : C(x1, x2) ∧ C(x2, x3)→ C(x1, x3)
τ3 : D(2, x1) ∧ C(x1, x2)→ ∃z C2(x2, z)

τst copies the vertices of a graph given by the source relation E (a list of egdes) along with the
unique edge identifier, generated as a labeled null. The binary relation C is then initialized
by τ1 with the pairs of identifiers of adjacent edges. The transitive closure of C is computed
by τ2. Finally, τ3 puts in C2 the identifiers of edges which belong to the connected component
with a specific vertex “2”. Although C2 depends on the transitive closure of C and thus takes
unlimited number of chase steps to compute, any null in it has bounded depth. Indeed, the
nulls in D are created by the source-to-target chase, and thus have depth 1. C contains only
the nulls from D. The tgd τ3 which populates C2 depends on C and on D and therefore
creates nulls of depth at most 2. J

We are now ready to define a kernel subinstance KXY :

I Definition 14 (Kernel). Let J be a canonical universal solution under a terminating
mappingM defined by st-tgds and target tgds, and let Jst be its preuniversal subinstance.
Given a pair X,Y ∈ dom(J), let AXY be a minimal set of terms containing X, Y and closed
under the parent and sibling relations. Then, the kernel KXY of J is defined as a set of all
facts of J over AXY , together with the fact blocks of Jst having nulls in common with AXY :⋃
N∈nulls(AXY ) B

st(N), where Bst denotes the fact blocks of Jst.
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Procedure Extend

Input: Canonical universal solution J ,
retraction r for J ,
homomorphism h : K → r(J) where K ⊆ J closed under parents and siblings.

Output: Endomorphism g : J → r(J) such that ∀x ∈ dom(h) g(x) = h(x)

(1) Initialize g(x) =
{
h(x) if x ∈ dom(h)
r(x) if x ∈ dom(Jst \ dom(h))

(2) while dom(g) ⊂ dom(J) do
(3) Find a tgd τ ∈ Σt, ~a ∈ dom(g) and ~Y ∈ nulls(J) \ dom(g), such that ~a τ⇒ ~Y ;
(4) Set g := g ∪ {~Y → r(~Y ′)}, where g(~a) τ⇒ ~Y ′;
(5) return g;

I Theorem 15 (Properties of KXY ). Let J be a canonical universal solution under a mapping
M defined by st-tgds and target tgds and having the bounded depth property. Let r be a
retraction on J and let C = r(J). Then, for any two terms X,Y ∈ dom(C), the kernel KXY

constructed according to Definition 14 has the following properties:
1. |KXY | is bounded by a constant depending solely onM.
2. An endomorphism g : J → C, g(X) = g(Y ) exists if and only if the homomorphism

h : KXY → C exists, such that h(X) = h(Y ).

Proof Sketch. Claim (1) follows from the Definition 14. Indeed, an estimation |AXY | ≤
2edwd can be shown by induction, where where w and e are respectively ∀-width and ∃-width
of the mapping, and d its depth (see [12], Lemma 1). A combination with the blocks of
Jst raises the bound to 2e2dwd (blocksize(Jst) is at most e). This is a constant, as we only
consider data complexity and take the mapping fixed. Thus, also the number of facts in
KXY is bounded (the target schema is fixed, and there is only a constant number of distinct
facts one can build over a fixed domain).

For Claim (2), suppose no homomorphism KXY → h(J) can unify X and Y . Since KXY

is a subinstance of J , there is also no endomorphism of J with this property. Now, to the
contrary, let h be an arbitrary homomorphism h : KXY → r(J). Such a homomorphism can
be extended to an endomorphism g on J , consistent with h:
(a) We initialize g to be a homomorphism W → C, where W is an instance, similarly to
KXY closed under ancestors and siblings, but also containing the preuniversal subinstance
Jst of J . To do so, we define

g(x) =
{
h(x) if x ∈ dom(h) ,
r(x) if x ∈ dom(Jst \ dom(h))

To see that g is indeed a homomorphism it suffices to note that the facts in KXY and in
Jst \KXY do not have nulls in common, as readily follows from Definition 14.
(b) We now extend g to an endomorphism on the whole instance J . The extension proceeds
by “replaying” the chase steps:

Let φ(~x)→ ψ(~x) be a full target tgd inM, and let ~a be an assignment for ~x such that
W |= φ(~a) but W 6|= ψ(~a). Then, W is extended with ψ(~a). After this step, g is still
a homomorphism for W , since W → C implies C |= φ(g(~a)), C |= M and hence, also
C |= ψ(g(~a)) holds.
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Procedure FindCore
Input: Source instance I, terminating mappingM = (S,T,Σ)
Output: Core universal solution for I underM

(1) Set J := chase(I,Σ), and let Jst be a preuniversal subinstance of J , Jst = chase(I,Σst)
(2) Initialize retraction r to be identity on dom(J);
(3) for each X ∈ nulls(r(J)), Y ∈ range(r), X 6= Y do
(4) Compute KXY ;
(5) if exists h : KXY → r(J) s.t. h(X) = h(Y ) then
(6) Set g := Extend(J, r, h);
(7) Set r := ToRetraction(g); //Lemma 8
(8) return r(J)

For a non-full target tgd τ : φ(~x) → ∃~y ψ(~x, ~y) in M such that W |= φ(~a) but the τ -
children ~Y of ~a are not in dom(W ), both W and g have to be extended: W is augmented
with ψ(~a, ~Y ), while g is extended to map ~Y into dom(C). Since J has been created
by the oblivious chase, we know that there are τ -children of g(~a) among the nulls
of J : ~Y ′ ∈ nulls(J), such that g(~a) τ⇒ ~Y ′ holds. Moreover, as C is a retract of J ,
C |= ψ(g(~a), r(~Y ′)) holds as well. It suffices to extend g in order to map elements of ~Y
onto the respective elements of r(~Y ′).

By replaying all chase steps with non-full tgds, g can be extended to an endomorphism on
J . It takes the time linear in the size of J , provided that the parent relation is maintained
during the chase of J .2 Procedure Extend captures this idea. J

Finally, we can define the core computation algorithm FindCore, which, given a ter-
minating mappingM, performs the following steps. It starts with a trivial automorphism r,
and tries to improve it: The main cycle of FindCore performs an exhaustive search for all
pairs X,Y where X ∈ nulls(r(J)), Y ∈ range(r) and a homomorphism h : KX,Y → r(J)
exists, such that h(X) = h(Y ). When such homomorphism h is found, it is lifted to an
endomorphism g on J by applying the procedure Extend. Since g unifies at least two terms
in r(J), it is an improvement for r and can be shown to send J onto some proper subset of
r(J). Thus, r is updated to be g and transformed into a retraction by an iterative procedure
from the proof of Lemma 8, after which the computation starts over from line 3.

4.3.1 Core computation for skolemized mappings
In [16] Marnette made a number of important contributions to the problem of tractability of
core computation. He proved that the idea of FindCore is applicable to any terminating
mapping based on tgds, and that this result can be extended to support egds by encoding
them as tgds. Moreover, the reformulation of FindCore for skolemized mappings resulted
in a simpler and more efficient version of the algorithm.

I Example 16 (Skolemized mapping). Consider the skolemization of the mapping from
Example 13. The full tgds τ1,2 are not affected by the skolemization. The dependencies τst
and τ3 after skolemization have the form

τskst : E(x1, x2)→ D(x1, fst(x1, x2)) ∧D(x2, fst(x1, x2))
τsk3 : D(2, x1) ∧ C(x1, x2)→ C2(x2, f3(x2)) J

2 For skolemized mappings, no special tracking of parents is required, see Section 4.3.1
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Note that the chase with skolemized mappings produces nulls labeled with Skolem terms.
These terms can be nested: in particular, the dependency τsk3 in Example 16 generates terms
of the form f3

〈
fst〈·, ·〉

〉
. Each such Skolem term denoting a labeled null in the target instance

contains its ancestors (see Definition 11) as subterms. The notion of ancestor here is refined
in comparison to Definition 11. Consider the dependency τsk3 . According to Definition 11,
each null introduced by τsk3 in the C2 relation has two parents, instantiating the variables x1
and x2. However, the Skolem term in τsk3 only has x2 as argument, since x1 does not occur
in the conclusion of the dependency. This skolemization strategy ensures that the size of
each Skolem term in an instance created by chasing a mapping has bounded size, provided
that the mapping is based on tgds and is terminating.

The above observation is crucial, since the kernel KXY from Definition 14 now can be
redefined using closure under subterms. Also the procedure Extend, lifting a homomorphism
on a kernel to an endomorphism on the target instance can be defined much more concisely
than for the non-skolemized tgds:

Given a retraction r selecting the current approximation of the core of the canonical
universal solution J (with the preuniversal instance Jst), and the homomorphism h : Kxy →
r(J) , the endomorphism g for J is defined recursively as

g(x) =


x if x ∈ const(J) ,
h(x) if x ∈ dom(h) ,
r
(
f
〈
e(t1), . . . , e(tn)

〉)
if x 6∈ dom(h) ∪ const(J) and x = f〈t1, . . . , tn〉 .

This formulation is similar to that given in the proof of Claim (2) of Theorem 15 and replaces
the procedure Extend for skolemized mappings. A clear advantage of this new extension
procedure is that no special tracing of the chase process is needed, in contrast to the original
procedure. Another improvement of [16] to FindCore is concerned with target egds and
therefore will be considered in the next section.

4.4 Target tgds and egds
The FindCore algorithm can be extended to the case when target dependencies contain egds
in addition to tgds. The strategy, considered by Gottlob and Nash [12] and by Marnette [16],
is to encode egds by target tgds, generating special “equality” facts in the target instance.
This solution fits quite naturally to the setting of [16], which assumes databases with equality
constraints.

The set Σt of egds and tgds over the target schema T is transformed into the set Σ̄t of
tgds over the schema T∪{E}, where equality relation E is not part of T. The transformation
in [12] consists of the following steps:

1. Replace all equations x = y with E(x, y), turning every egd into a tgd.
2. Add constraints for symmetry E(x, y)→ E(y, x), transitivity E(x, y) ∧ E(y, z)→ E(x, z),

and reflexivity of E : R(x1, . . . , xk)→ E(xi, xi) for every R ∈ T and i ∈ {1, 2, . . . , k}.
3. Add consistency constraints: R(x1, . . . , xk), E(xi, y) → R(x1, . . . , y, . . . , xk) for every

R ∈ T and i ∈ {1, 2, . . . , k}.

The consistency constraints are problematic, as they can cause non-termination of the
mapping:

I Example 17 ([16]). Consider two target dependencies τ, ε, and a tgd encoding τε of the
latter, together with the E-symmetry constraint τs and the consistency constraint τ cR for R:
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τ : R(x)→ ∃y P (x, y)
ε : P (x, x′)→ x = x′

τε : P (x, x′)→ E(x, x′)
τs : E(x, x′)→ E(x′, x)

τ cR :
R(x)∧E(x, x′)→ R(x′)

While the original set of dependencies {τ, ε} is terminating, the rewriting {τ, τε, τs, τ cR} is
not: Oblivious chase does not terminate on any instance with a non-empty relation R, while
the non-oblivious chase terminates only if τs is satisfied before τ cR. J

Gottlob and Nash address this problem by defining a special nice order of tgd applications
in the non-oblivious chase, determined at execution time. In [16] Marnette gives an improved
encoding scheme coinciding with the approach used by Duschka et al. for query answering
using views [4]. It is based on so-called rectification of antecedents: for instance, a rectification
of P (x, x)∧Q(x, z) is P (x, x′)∧Q(x′′, z)∧E(x, x′)∧E(x, x′′), while the tgd τ from Example 17
after rectification rewrites as R(x)∧ E(x, x′)→ ∃y P (x′, y). Consistency constraints can now
be avoided.3

Whatever encoding scheme is chosen, it should be noted that chase(I,Σst ∪ Σ̄t) is not a
universal solution and may violate the egds of Σt. In [16] this is circumvented by assuming
that the target instance includes equality constraints, whereas in the encoding approach of
[12] the satisfaction of egds is a by-product of core computation. The subinstances found
by the iterations of post-processing algorithms suffer from the same problem. A further
disadvantage is a necessity to instantiate the E-facts in the target instance, instead of unifying
the nulls and thus reducing its domain size.

These shortcomings motivated the introduction of FindCoreE by Pichler and Savenkov
[20], an adaptation of FindCore for the immediate application of egds in the chase. The
main idea is to redefine the kernel KXY , using the parent relation over facts rather than nulls
(the latter is not robust w.r.t. egds). To identify facts, each relation in the target schema is
equipped with a new Id attribute, to be instantiated with fresh unique nulls (fact identifiers)
and neither copied to other facts nor affected by egds (cf. Example 18).

The sibling facts are those created at the same chase step. The assumption is, that
sibling facts always form a single fact block. Such assumption is harmless, since a tgd
φ(~x)→ ∃~y1, ~y2 ψ1(~x, ~y1)∧ψ(~x, ~y2) where ~y1∩~y2 = ∅ can be rewritten as φ(~x)→ ∃~y1 φ1(~x, ~y1)
and φ(~x)→ ∃~y2 ψ2(~x, ~y2). If no such rewriting is possible, the tgds are called normalized.
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Figure 2 Parent relation over facts.

As in the tgds-only case, the parent re-
lation ensures a bound on the kernel size.
To define it, the notion of term position is
introduced as a pair (T,A) of a tuple id T
and attribute name A; such a position is
called native if at the chase step with the
tgd τ introducing T , a fresh null was created
for the attribute A in T ; otherwise, the posi-
tion is called foreign. The origin of a native

position (T,A) is defined as the fact T and its sibling facts; if (T,A) is foreign, we first find
its source as a position (T ′, A′), from which τ has copied the value to instantiate (T,A): T ′
is among the facts that satisfied the antecedent of τ , and at the moment of instantiation,
(T,A) has the same value as its sources. The origin of a foreign position is than defined as
the origin of any its source position (chosen non-deterministically). Finally, the parent facts
of T and its sibling facts ST is the union of the origin facts for foreign positions in {T} ∪ ST .

3 In [16, 17] Marnette proves that core computation remains tractable for mappings whose encodings
according to the rectification scheme are terminating. However, it is never explicitly discussed if this
result holds for any terminating mapping with tgds and egds as target dependencies.
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I Example 18. Consider two target tgds from Figure 2 of which an id-aware version is

σ1 : S(ts, x, y)→ ∃tp, z P (tp, y, z) σ2 : P (tp, y, z)→ ∃tq, v Q(tp, z, v)

and assume that the preuniversal instance contains the fact S(Ts, X1, Y1). With its antecedent
satisfied by the fact Ts, σ1 yields a fact R(Tr, Y1, Z1), and then σ2 introduces Q(Tq, Z1, V1),
where Trq, Y1, Z1 are fresh nulls. The three facts are shown in Figure 2, without the ids.
Although the Q-fact was introduced by a tgd firing on the fact Tp, Tp is not a parent of Tq,
since it has not contributed unique nulls to it: V1 is native to Tq, whereas the origin of Y1 at
the foreign position of Tq is the fact Ts. Hence, Ts is the only parent of Tq (and of Tp). J

Similarly to the Definition 14, the kernel K ′XY is defined as a set containing the origin
facts of X,Y , and closed over the siblings and parents relation (on facts). No other facts of Jst
resp. J have to be taken in the kernel, unlike the original definition from Section 4.3. If target
constraints consist of tgds, the inclusion K ′XY ⊆ KXY holds, where KXY is constructed
according to Definition 14. Moreover, the rigidity of nulls has to be taken into account for
proving an analog of Theorem 15 for mappings with tgds and egds.

5 Direct core computation

The algorithms presented so far followed the same general strategy: they first created a
solution with redundant facts, and then optimized it. An immediate question is, if it would
be possible to create only the necessary facts in the first place. This is the goal of direct core
computation. This question has been conceived already by Fagin et al. in [7]. They pointed
out, that simple rewriting of individual rules is not enough, by giving the following example:

I Example 19. Consider an instance I = {S(1, 1, 2, 3)} chased with the two st-tgds τ1,2 :

τ1 : S(a, b, c, d)→ ∃y1∃y2∃y3∃y4∃y5
R(y5, b, y1, y2, a)
∧R(y5, c, y3, y4, a)
∧R(d, c, y3, y4, b) )

τ2 : S(a, b, c, d)→ ∃y1∃y2∃y3∃y4∃y5
R(d, a, a, y1, b)
∧R(y5, a, a, y1, a)
∧R(y5, c, y2, y3, y4) )

The chase of I yields the following six facts (left column is due to τ1, the right one to τ2):

R(N5, 1, N1, N2, 1), R(3, 1, 1, N ′1, 1),
R(N5, 2, N3, N4, 1), R(N ′5, 1, 1, N ′1, 1),
R(3, 2, N3, N4, 1), R(N ′5, 2, N ′2, N ′3, N ′4).

The core universal solution contains the two underlined facts. However, in isolation each tgd
yields an instance which cannot be reduced. J

This example sheds some light on the intricacy of direct core computation. In particular,
it is clearly not possible to consider individual st-dependencies, or update the definition of
the chase step, without taking the interference between different st-tgds into account. Since
the above example was published in 2005, it was not until 2009 that a full-fledged solution
for direct core computation has been proposed, at least for the case of mappings without
target constraints: Core schema mappings by Mecca et al. [19] and Laconic schema mappings
by ten Cate et al. [22]. We will give an overview of these approaches in the next subsection.
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5.1 No target dependencies
The essence of direct core computation is predicting which dependencies can eventually
introduce redundant facts (that is, facts which are not part of the core), and under which
conditions. In absence of target constraints, there is a finite number of ways in which st-tgds
can interfere with each other. This gave rise to two approaches which we consider in this
section.

5.1.1 Core schema mappings
An illustrative example of the interference between st-tgds resulting in target redundancy we
take the coverage of conclusion atoms, in terminology of [19]:

I Example 20. Consider the mapping Σ consisting of the following four st-tgds:

τ1 : S1(x1, x2)→ ∃y1∃y2 R(x1, y1) ∧ P (x2, y2, y1)
τ2 : S2(x1, x2)→ ∃y R(x1, y) ∧ P (x2, x1, y)
τ3 : S3(x1, x2)→ R(x1, x2)
τ4 : S4(x1, x2, x3)→ P (x2, x1, x3)

Those tuples (a, b) ∈ S1 which also occur in S2, trigger creation of the facts we de-
note as Jab = {R(a, Y1), P (b, Y2, Y1)} which do not belong to the core: indeed, τ2 yields
the instance J ′ab = {R(a, Y ′), P (b, a, Y ′)}, onto which Jab is mapped by a homomorph-
ism {Y1 → Y ′1 , Y2 → a}. We say, that τ1 is covered by τ2. Similarly, both τ1 and τ2
are covered by a pair of dependencies {τ3, τ4}. To see this, consider a chase of an in-
stance I ′′ = {S1(a, b), S2(a, b), S3(a, c), S4(a, b, c)}. In addition to the facts of Jab and J ′ab,
chase(I ′′,Σ) contains the facts R(a, c) and P (b, a, c), onto which J ′ab can be mapped with
the homomorphism {Y ′ → c} and Jab with {Y1 → c, Y2 → a}. J

The goal of dependency rewriting is to discover potential coverages by means of static
analysis of mappings: that is, analysis performed at design time and valid for arbitrary
inputs. To this end, coverages are formalized as relationships between dependencies rather
than facts in possible target instances.

I Definition 21. Let ψ(~x, ~y) be a conclusion of a tgd τ with the ∀-variables ~x and ∃-variables
~y. We say that τ is covered by the tgds with conclusions ψ1(~x1, ~y1), . . . , ψk(~xk, ~yk), if there
exists a unification θ for ∀-variables ~x, ~x1, . . . , ~xk, and a substitution λ for ~y, such that
ψ(~xθ, ~xλ) is a subformula of φ0(~x, ~y0) ∧

∧
1≤i≤k φ(~xiθ, ~yi), where ψ0(~x, ~y0) is a subformula

of ψ with ~y0 ⊂ ~y. Moreover, ∀i 1 ≤ i ≤ k (~xi ∪ ~yi) ∩ range(λ) 6= ∅ must hold. If also
(~x0 ∪ ~y0) ∩ range(λ) 6= ∅ holds, the coverage is called partial (some atoms of ψ are mapped
onto other atoms of ψ), otherwise, the coverage is total.

Example 20 illustrates the total coverage. As Mecca et al. point out, for tgds without
self-joins in the conclusions, only this type of coverages is possible. To address such cases,
the antecedent of each tgd τ must be taken in conjunction with the negated antecedents of
tgds that cover τ .

I Example 22. Generation of redundant facts by the tgd τ1 from Example 20 can be
prevented by the following rewriting:

1. S1(x1, x2) ∧ ¬S2(x1, x2) ∧ ¬S3(x1, x2) ∧ ¬(∃x3S4(x1, x2, x3))→
∃y1∃y2 R(x1, y1) ∧ P (x2, y2, y1)

2. S1(x1, x2) ∧ S3(x1, x2) ∧ ¬(∃x3S4(x1, x2, x3))→ ∃y1∃y2 P (x2, y2, y1)
3. S1(x1, x2) ∧ S4(x1, x2, x3) ∧ ¬S3(x1, x2)→ ∃y1 R(x1, y1) J
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For tgds with self-joins in the conclusions also the partial coverages, as in the Example 19,
have to be taken into account. A solution of Mecca et al. [19] uses atom labeling as a starting
point for enumeration of partial coverages:

I Example 23. The st-tgds from Example 19 can be labeled as follows:

τ∗1 : S(a, b, c, d)→ ∃y1∃y2∃y3∃y4∃y5
R1(y5, b, y1, y2, a)
∧R2(y5, c, y3, y4, a)
∧R3(d, c, y3, y4, b) )

τ∗2 : S(e, f, g, h)→ ∃z1∃z2∃z3∃z4∃z5
R4(d, e, z1, f)
∧R5(z5, e, e, z1, e)
∧R6(z5, g, z2, z3, z4) )

A possible partial coverage of τ∗1 , enabled by the unification θ = {b→ c} of ∀-variables in τ∗,
is given by a substitution {y1 → y3, y2 → y4} on ∃-variables, sending R1 onto R2. J

Coverages of the tgd τ : φ(~x)→ ψ(~x, ~y) are represented by conjunctive formulas called
expansions, of the form χi ∧ ψi. Here, χi contains atoms that cover ψ, and ψi consists of ψ
together with equalities Ei such that there exists a substitution λ for ~y that turns it into a
subformula of χi, provided that the universal variables are unified according to Ei.

I Example 24. The dependency τ∗1 from Example 19 gives rise to the following expansions
(among others):

e23 : R2(y5, c, y3, y4, a) ∧R3(d, c, y3, y4, b) ∧ (R1(y5, b, y1, y2, a) ∧ b = c)
e44 : R4(h, e, e, z1, f) ∧R4(h′, e′, e′, z1, f

′) ∧ h = h′∧
(R1(y5, b, y1, y2, a) ∧R2(y5, c, y3, y4, a) ∧R3(d, c, y3, y4, b)∧
e = b ∧ f = a ∧ e′ = c ∧ f ′ = a ∧ h′ = d ∧ e′ = c ∧ f ′ = b)

The expansion formulas start with a covering part χ followed by the covered part in parenthesis,
consisting of the covered atoms ψ and a set E of equalities. The expansion e23 is taken from
Example 23 while e44 shows that two copies of τ∗2 provide a total coverage for τ∗1 . J

For a tgd τ with a conclusion ψ the coverages can be found by exhaustively enumerating
all mappings of ψ onto the multisets of tgd conclusions. Yet this alone does not bring us
to the goal of preventing redundant facts: While an expansion χi ∧ ψi indicates that some
atoms of ψ should not be instantiated because of the atoms in χi, should the atoms of χi be
instantiated? If an atom Rk in χi is covered by the atom Rl in some tgd conclusion, there
will be also an expansion of τ using Rl instead of Rk. Hence, avoiding redundancy comes
down to selecting the “safest” coverage at execution time. Mecca et al. distinguishes two
orders on expansions, one according to the size of a covering conjunction χ and another
favoring coverages with fewer existential variables: for example, a coverage of τ1 with {τ3, τ4}
in Example 20 is safer than the coverage with τ2, since the former two tgds have fewer
existential variables. We use an informal order “safer” for both cases, leaving the exact
details to [19].

The core computation in [19] is then implemented as a two-stage data exchange. The
first stage uses a target schema T′, obtained from T by taking the labeled atoms in Σ as new
distinct relation names (For instance, the S → T′ exchange with two tgds of Example 19
can use the labeled tgds of Example 23). The second phase transfers the data from T′ to T,
ruled by the set Σ′ of dependencies obtained from expansions as follows:

If expansion e : χ ∧ ψ is most safe, a full tgd τe : χ ∧ ψ → χ¬∗ is added to Σ′, where
¬∗ denotes elimination of labels.
Otherwise, τe has the form χ∧ψ∧¬(

∧
j ej)→ χ¬∗ where j ranges over expansions which

are safer than e.
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The combination of expansions in the latter case is quite similar to the way tgd antecedents
in the Example 22 were obtained. It ensures that the safest possible coverage is taken into
account when the tgd is applied.

I Example 25. The expansion e44 is safer than e23. Hence, the antecedent of the tgd,
obtained from e23 will contain the following conjuncts:

erew23 : R2(y5, c, y3, y4, a) ∧R3(d, c, y3, y4, b) ∧ (R1(y5, b, y1, y2, a) ∧ b = c)
¬
(
R4(h, e, e, z1, f) ∧R4(h′, e′, e′, z′1, f ′) ∧ h = h′∧(
R1(y′5, b′, y′1, y′2, a′) ∧R2(y′5, c′, y′3, y′4, a′) ∧R3(d′, c′, y′3, y′4, b′)∧

e = b′ ∧ f = a′ ∧ e′ = c′ ∧ f ′ = a′ ∧ h′ = d′ ∧ f ′ = b′
)

∧ c = e ∧ a = f ∧ d = h′ ∧ c = e′ ∧ b = f ′
)

The corresponding conclusion of the tgd is ∃y3∃y4∃y5 R(y5, c, y3, y4, a)∧R(d, c, y3, y4, b). J

However, two further problems with isomorphic fact blocks are yet to be addressed: based
on expansions which are equally safe, distinct T′ → T tgds with isomorphic conclusions can
be produced in Σ′. The second problem is concerned with a particular type of tgds:

I Example 26. Consider a tgd S(x1, x2)→ ∃y R(x1, y)∧R(x2, y). Given a “reflexive” source
{S(1, 2), S(2, 1)}, it yields a target instance {R(1, Y1), R(2, Y1), R(2, Y2), R(1, Y2)} with two
cores. Such tgd is said to have a conclusion with a non-trivial automorphism: indeed, under
the unification x1 → x2, there is a renaming of ∃-variables that map the first conclusion
atom on the second one and vice versa. J

Core schema mappings address both issues using a special skolemization strategy, in the
case of tgds with non-trivial automorphisms in the conclusion also involving interpreted
functions sort. The Skolem terms that replace ∃-variables are strings encoding the structure
of the fact block, instantiated by applications of the tgd (This technique assumes that the
dependencies are normalized as described in Section 4.4):
1. All facts in the block (∃-variables omitted). In case of fact blocks with non-trivial

automorphisms, the list of facts is sorted before producing the Skolem string.
2. Joins between nulls.
3. A self-reference to the null represented by the Skolem string, in the fact block.

In this way, two variables will be instantiated with the same Skolem terms if and only if
they correspond to the respective positions in isomorphic fact blocks.

I Example 27. The ∃-variable y in the tgd with non-trivial automorphism from Example 26
is skolemized with a string of the following pattern:

sort(R[A : x0], R[A : x1]); j : [R.B = R.B]; v : j

The first component lists two facts in the block together with their ∀-variables. The prefix
sort indicates that actual values of x0, x1 must be sorted before composing the string. The
second component, prefixed with j, denotes the join between the two facts, while the last
component v : j associates the Skolem string to the positions participating in the join. Taking
the source instance of Example 26, both facts S(1, 2) and S(2, 1) generate the Skolem string
’R[A:1] R[A:2]; j:[R.B=R.B]; v:j’. J

To summarize, core computation is performed by chasing the skolemized mappings, with
FO antecedents and interpreted Skolem functions. The two-phase data exchange via the
intermediate schema T′ is avoided in practice by rewriting expansions over the source schema
[19]. In the next section, we will consider another algorithm for direct core computation in
the absence of target constraints.
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5.1.2 Laconic schema mappings

A different approach for direct core computation, named Laconic schema mappings has been
developed by ten Cate, Chiticariu, Kolaitis and Tan [22].

I Definition 28 (Laconicity). A mapping M is Laconic if for each source instance I, the
canonical universal solution for I underM is a core.

A favorable property of Laconic mappings is that they allow core computation by means
of standard SQL queries, without any procedural extensions, e.g., for sorting the arguments
of Skolem terms. Besides the algorithm itself, the authors provide a number of optimality
results for their SQL encoding. These results take advantage of an abstract representation of
skolemized mappings, in which every k-ary target relation R ∈ T has a form:

R := {(t1(~x), . . . , tk(~x)) | φ(~x)} ∪ · · · ∪ {(t′1(~x′), . . . , t′k(~x)) | φ′(~x′)} (1)

Here, t1, . . . , tk, . . . , t′1, . . . , t′k are terms and φ, . . . , φ′ are first-order queries over the source
schema. Since FO queries correspond to SQL queries, one can easily use a relational DBMS
in order to compute the tuples in the relation R.

I Definition 29 (L-term interpretation). Let L be any query language. An L-term interpret-
ation Π is a map assigning to each k-ary relation symbol R ∈ T a union of expressions of
the form (1) where t1, . . . , tk ∈ Terms[~x] and φ(~x) is an L-query over S.

Here, Terms[~x] is a set of terms built using the set of constants ~x and functional symbols
from some countably infinite vocabulary. As usual, the proper terms Terms[~x] \ ~x are
considered as nulls while the members of ~x are constants. The goal of direct core computation
is then to find an L-term interpretation of a core universal solution for a given schema
mappingM. Moreover, to reduce the complexity of data exchange, it is desirable to use the
least expressive language L.

Given a Laconic mapping with L st-tgds, it is straightforward to obtain a L-term
interpretation, whose target relations are core universal solutions: it suffices to apply the
standard Skolemization, and use the antecedent of a st-tgd as a precondition of conclusion
atom. The main result of ten Cate et al. in [22] is that every mapping based on FO< st-tgds
can be converted into a logically equivalent Laconic mapping, also consisting of FO< st-tgds.
They also show optimality of this language, even for input mappings consisting of CQ st
tgds: see Section 5.2. Hence, from now on we will focus on obtaining the Laconic mappings,
rather than term interpretations.

Unlike Core schema mappings, which adapts each individual st-tgd to the case when it
fires along with other dependencies, ten Cate et al. follow a top-down approach: taking a
global perspective on a given mapping, they create its Laconic version from scratch.

The algorithm builds upon the observation exploited in Section 4.1: Namely, that in the
absence on target constraints, the size of fact blocks in the target instance is bounded by the
maximal number of conclusion atoms in the tgds. Hence, one can enumerate all possible fact
block patterns (up to renaming of nulls and unifications of constants) in the core universal
solution. This is captured by the notion of fact block type (f-block type for short):

I Definition 30. An f-block type t(~x; ~y) is a set of atomic formulas in two disjoint sets of
variables ~x and ~y, respectively called c-variables and n-variables. A fact block B is said to
have the type t(~x; ~y), if it can be obtained by instantiating c-variables of t with constants,
and replacing each n-variable with a distinct null. Let a fact block B = t(~a, ~Y ) be such an
instantiation. We say that t is realized at ~a.
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The algorithm proceeds in four steps which are outlined in the subsequent paragraphs.
1. Identify all f-block types that can be realized in a core universal solution underM, for

any source instance I.
2. For each f-block type t(~x, ~y), construct a query precont(~x) over the source schema,

retrieving all assignments ~a for ~x, such that t is realized in core(I,Σ) at ~a. Such query is
called a precondition of t.

3. For each f-block type t′ with non-trivial automorphisms, strengthen precont′(~x) to ensure
that if two assignments ~a1,~a2 for ~x are distinct, the corresponding fact blocks t′(~a1, ~N1)
and t′(~a2, ~N2) are not isomorphic. Such additional constraints for the precondition of t′
are called side-conditions denoted as sidecont(~x).

4. For each f-block type t(~x, ~y), produce a tgd precont(~x) ∧ sidecont(~x)→ ∃~y t(~x, ~y).

Generating f-block types forMamounts to examination of tgd conclusions inM, and taking
certain subsets of them. Importantly, f-block types are (1) connected w.r.t. to n-variables,
and (2) cores — if considered as instances where c-variables are constants and n-variables
are nulls, — and (3) cannot be obtained from any other f-block type by renaming c- or
n-variables. The result of this step is the set TypesM of f-block types generated by M.

Finding the preconditions. This is the crux of the algorithm, for which one can give an
intuition as follows. Consider an f-block type t as a query qt(~x) ← ∃~y t(~x, ~y). For all
homomorphic images of t in a canonical target instance J , qt selects satisfying assignments
for the c-variables ~x. Suppose that we manage to restrict qt(~x) in order to select only the
assignments for ~x at which t is realized, in the core of J . By Definition 30, we have to filter
out every assignment ~a for ~x, such that
1. ~a contains nulls, or
2. ∃~b ∈ dom(J) : J |= t(~a,~b) and for some i ≤ |~b|, bi ∈ const(J), or
3. ∃ ~N ∈ nulls(J) : J |= t(~a, ~N) and for some i, j ≤ | ~N | Ni = Nj holds, or
4. ∃ ~N1 ∈ nulls(J) : J |= t(~a, ~N1) and for some fact block B ⊆ J , ~N1 ⊂ nulls(B): this case

prohibits mapping of t(~x, ~y) into a bigger fact block of J .

The first item is addressed by considering only the certain answers of qt: we can be sure
that all certain answers belong to the core of J . Moreover, we can immediately rewrite
certain(qt(~x)) over the source schema. This rewriting, denoted as certainM(∃~y t)(~x), uses
well-known techniques and will be discussed shortly. It remains to address the items (3) and
(4): so far, the assignments of ~y of are not restricted in any way.

Concerning (3), suppose that we want to query for all images of t in which some yi ∈ ~y is
mapped onto a constant in the core of J . It suffices to bring yi into the set of c-variables
of t, and ask for certain answers for ∃y−i t(~xyi; ~y−i), where ~y−i is ~y without elements equal
to yi. Then the assignments for ~x can be projected and excluded from the answers to
certainM(∃~y t)(~x). The same is done for each n-variable of t, and a similar approach allows
to handle the case (4). A corresponding query is defined as an approximated precondition
precon′t(~x) of the form

certainM(∃~y
∧
t)(~x) ∧

∧
i

¬∃x′ certainM(∃~y−i
∧
t[yi/x′])(~x, x′)

∧
∧
i6=j
¬certainM(∃~y−i

∧
t[yi/yj ])(~x)



V. Savenkov 61

Procedure ConvertToLaconic

Input: MappingM = (S,T,Σ) consisting of FO< st-tgds
Output: Laconic mappingM′ ≡M with the set of FO< st-tgds Σ′

(1) Set Σ′ := ∅
(2) Generate TypesM
(3) for each t(~x; ~y) ∈ TypesM do
(4) Compute preconditions precont(~x)
(5) Compute side-condition sidecont(~x)
(6) Add the following FO< st-tgd to Σ′:
(7) ∀~x (precont(~x) ∧ sidecont(~x)→ ∃~y

∧
t(~x; ~y))

(8) return (S,T,Σ′)

To handle (5), precon′t is combined with negated approximated preconditions precon′t′ for
each f-block type t′, on which t can be mapped by a non-surjective homomorphism:

precont(~x) = precon′t(~x) ∧
∧

t′(~x′; ~y′) ∈ TypesM

h : t(~x; ~y)→ t′(~x′; ~y′) non-surjective

¬∃~x′
(∧

i

(xi = h(xi)) ∧ precon′p′(~x′)
)

As pointed out in [22], one of possibilities for rewriting t(~x; ~y) over the source schema is
splitting upM into a compositionM1 ◦M2, whereM1 consists of full st-tgds and tgds in
M2 have single atoms over some intermediary schema in the antecedents; such tgds can be
rewritten using an algorithm like MiniCon [21] (cf. Section 3.3 in Chapter 5), after which
the unfolding of atoms according toM1 would give a desired rewriting.

Adding side-conditions. A special tgd from Example 26 considered in the Section 5.1.1 has
to be taken care of in the context of Laconic mappings as well. Unlike Core schema mappings,
a non-standard skolemization is not necessary now: the preconditions are enhanced with
side-conditions which rely on inequalities and are defined over the source schema. This can
be seen on example:

I Example 31. The st-tgd S(x1, x2)→ ∃y R(x1, y)∧R(x2, y) from Example 26 is rewritten
as (S(x1, x2) ∨ S(x2, x1)) ∧ x1 ≤ x2 → ∃y R(x1, y) ∧ R(x2, y). It is easy to see that on a
problematic source instance {S(1, 2), S(2, 1)} the rewritten tgd is triggered only once. J

Side-conditions are only introduced for f-block types with non-trivial automorphisms. In
particular, they are not used for mappings in which tgds have no self-joins in the conclusion.

Generating the st-tgds. Given the set TypesM of f-block types ofM, together with their
preconditions and side-conditions, generation of the new st-tgds for the Laconic version of
M comes down to combining the f-block type and its preconditions resp. side-conditions in
a single tgd, as specified in the procedure ConvertToLaconic.

5.1.3 Discussion
We have described two approaches to direct core computation, which use the same language
elements: st-tgds with antecedents FO and linear order on the source constants. Despite
of these similarities, these mappings are obtained in quite different ways: Core schema
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mappings are built bottom-up, adapting existing st-tgds to take care of other dependencies
and, whereas Laconic schema mappings are constructed top-town, by using a given schema
mapping as a black box and applying query rewriting algorithms like MiniCon [21].

The algorithm of Mecca et al. is currently the only known implementation of direct core
computation. This can be hardly overestimated, especially taking into account the promising
performance reports, with millions of tuples in the source instance processed in a few minutes
(More detailed discussion of experimental results is postponed until Section 6). At the same
time, ten Cate et al. provide important optimality results, justifying the language constructs
found both in Laconic mappings and in Core mappings. These results will be the subject of
the next section.

5.2 Complexity and expressiveness
The first theoretical result of ten Cate et al. addresses complexity of a test for laconicity:

I Theorem 32. [22] Testing laconicity of schema mappings specified by FO st-tgds is
undecidable. It is coNP-hard already for schema mappings specified by LAV st-tgds.

Producing a Laconic or Core schema mapping based on a set of st-tgds can result in an
exponential increase in the number of dependencies. This is not a coincidence: ten Cate et
al. show, that this cannot be avoided:

I Theorem 33. [22] There is a sequence of schema mappingsM1,M2, ... specified by LAV
st-tgds such that the specification of eachMk is of length O(k), and such that every Laconic
schema mapping logically equivalent to Mk specified by FO< st-tgds contains at least 2k
many FO< st-tgds.

Concering the optimality of FO< as a language used in the antecedents of the Laconic
st-tgds, the following results show, that such neither linear order on constants nor negation
can be avoided.

I Theorem 34. [22] Consider the schema mappingM = (S,T,Σ) where S = {S}, T = {R}
and Σ consists of a single LAV st-tgd S(x1, x2) → ∃y S(x1, y) ∧ S(y, x2). No FO-term
interpretation yields, for each source instance I, the core universal solution of I w.r.t. M.

I Theorem 35. [22] There exists schema mapping M with dependencies given by st-tgds,
such that no UCQ<-term interpretation can compute the core universal solution for each
source instance.

Proof hint. Any mapping with coverage between st-tgds, like that in Example 20, can be
shown to require negation for achieving laconicity. J

The language ingredients used by Core schema mappings in Section 5.1.1 are fully
consistent with the results cited above: The interpreted sort function used to produce Skolem
strings (see Example 27) assume the linear order on the source constants, and negation in
the antecedents is used to combine expansions (Example 25).

5.3 Target constraints
Two direct core computation algorithms presented in the previous chapter only dealt with
the mappings without target constraints. This is a major restriction in comparison to the
post-processing approach. However, as ten Cate et al. show [22], there is a good reason for
that: for a mapping with full target tgds, there is no Laconic version based on FO< st-tgds
and target tgds and egds.
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I Theorem 36. [22] There is a schema mappingM specified by finitely many LAV st-tgds
and full target tgds, for which there is no schema mappingM′ specified by FO< tgds, target
tgds and target egds, such that for every source instance I, the canonical universal solution
of I under M ′ is the core universal solution of I underM.

Proof idea. LetM be the schema mapping with S = {S′, S1, S2, S3}, T = {R′, P1, P2, P3,

Q1, Q2, Q3} specified by four LAV s-t tgds and three full target tgds:

S(x1, x2)→ R(x1, x2)
Si(x)→ ∃y Qi(y)

for i ∈ {1, 2, 3}

R(x, y) ∧R(y, z)→ R(x, z)
R(x1, x1) ∧Q1(x2)→ Q3(x2)
R(x1, x1) ∧Q2(x2)→ Q3(x2)

For source instances I in which all source relations are non-empty, the core universal
solution J will have the following shape: R is the transitive closure of S, and Q1,2,3 are
non-empty. Moreover, if S contains a cycle, then the core universal solution contains the
facts Q1(N1), Q2(N2) and Q3(N1), Q3(N2) for distinct null values N1, N2. If S in I is acyclic,
Q1,2,3 each contain a single null, occurring exactly once in the core universal solution.

Suppose that a fact Q3(N ′) is present in the target instance. It is a part of the core
universal solution if and only if the source relation S is acyclic. One can show, that the
Laconic mapping must contain a dependency that fires on cyclic instances and not fires on
acyclic ones, and that such behavior can be achieved neither by st-tgds (we cannot detect
cycles with a FO< antecedent) nor by monotone target dependencies. J

In [22], it is conjectured that the same inexpressibility result should hold for the mappings
with target egds. Hence, the problem of direct core computation becomes highly non-trivial
even in presence of restricted target constraints. However, Marnette, Mecca and Papotti
give an experimental evidence based on the system +Spicy [18], that a best-effort approach
via FO-term interpretations can tackle practically relevant mappings with target functional
dependencies (FDs). We will outline their algorithm which we refer to as Spicy-FD in the
rest of this section.

Recall the Rigidity Lemma from Section 4.2: let an egd equate the nulls X,Y from the
domains of different blocks in the preuniversal instance Jst (the canonical universal solution
with respect to the st-tgds Σst of the mapping), then the null resulting from this unification
is rigid: e.g., assume that both X and Y have been replaced by the same term a in the
canonical universal instance J , obtained by enforcing the target egds on Jst. Then, for any
endomorphism e on J , e(a) = a holds. One of the key ideas behind the Spicy-FD approach
is reminiscent of this property:

1. Suppose that the mappingM whose set of dependencies Σ consists of st-tgds and target
FDs is such that a FO-term interpretation for universal solutions under M exists. In
[18], this interpretation is constructed in the form of skolemized FO st-tgds, called a FO
implementation RM of M. RM is sound and complete, if for each source instance I,
chase(I,RM) |= Σ iff chase(I,Σ) does not fail.

2. A sound and complete FO implementation RM correctly instantiates the ∃-variables that
would be affected by FDs in the target chase. Some of them are (rigid) nulls and some
are constants: we refer to them as to rigid terms. RM can be rewritten in a way to store
rigid terms in an auxiliary schema F with a relation Fi per each target FD εi inM.

3. For core computation, rigid nulls are indistinguishable from constants. Marnette et al.
notice that independently of the source instance I, each ∃-variable in the st-tgds Σst of
M is instantiated either by rigid terms or by non-rigid nulls (see Example 39 below). The
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former are converted into ∀-variables, stemming from the relations of the auxiliary schema
F, which are added to the antecedent of the st-tgd. The result of such transformation is
then made Laconic (or converted to a Core mapping), giving a set of FO< st-tgds Σc.

4. The core universal solution is obtained by a sequence of chases with RM followed by Σc.

Constructing FO implementation RM of M. Let Σ be a set of st-tgds and target FDs of
M. For each source instance I, chase(I,RM) |= Σ must hold, in which case RM is called
sound and complete implementation ofM with skolemized FO st-tgds.

The idea of this step is similar to that behind Core schema mappings: each st-tgd is
rewritten to anticipate the effect of target FDs. We illustrate it by rewriting the following
mapping over the source schema S = {S1,2} and the target schema T = {P,R,Q} where R
has attributes ABC, with a functional dependency ε : R〈A→ C〉 defined. Besides ε, the
mappingM = (S,T,Σ), Σ contains two st-tgds:

σ1 : S1(x1, x2)→ ∃y P (y) ∧R(x1, x2, y) σ2 : S2(x1, x2)→ ∃y R(x1, x2, y) ∧Q(y)

It is easy to see that on each pair of source facts I = {S1(a, b), S2(a, b′)} the single block
J = {P (N), R(a, b,N), R(a, b′, N), Q(N)} is introduced in the target instance, due to the
effect of the FD on R. This behavior can be captured by the st-tgd:

σ12 : S1(x1, x2) ∧ S2(x1, x3)→ ∃y P (y) ∧R(x1, x2, y) ∧R(x1, x3, y) ∧Q(y)

Such combined dependencies are called overlap st-tgds Σovl
st . Two issues arise: firstly, the

process of constructing Σovlst can fail to terminate. A solution is to abort with failure after
certain limit of number of steps has been reached.

Secondly, the set Σst ∪ Σovlst = {σ1,2,12} cannot yet be seen as an implementation ofM:
oblivious chase of I yields the instance J ∪ J1 ∪ J2 6|= ε where J1 = {P (N1), R(a, b,N1)}
instantiates the conclusion of σ1 and J2 = {R(a, b′, N2), Q(N2)} instantiates that of σ2:
these dependencies fire whenever the overlap st-tgd σ12 does. To suppress redundant facts,
the antecedents of σ1 and σ2 are rewritten respectively as S1(x1, x2)∧¬(∃x3 S2(x1, x3)) and
S2(x1, x2) ∧ ¬(∃x3 S1(x1, x3)). Procedure responsible for such rewriting is called AddNeg.

However, these measures still do not result in a desired implementation of M with
source-to-target dependencies: an instance I ′ = {S1(a, b), S1(a, b′)} is a simple counter-
example. The oblivious chase of I ′ with AddNeg(Σst ∪ Σovl

st ) creates a target instance
J ′ = {P (N1), R(a, b,N1), P (N2), R(a, b′, N2)} 6|= ε. This issue is solved by choosing a non-
standard skolemization strategy: in our example, the ∃-variable y in all three st-tgds is
substituted by a Skolem term with a single attribute x1 (Standard skolemization would yield
terms with attributes x1, x2 for σ1,2, and x1, x2, x3 in case of σ12). A key here is finding a
minimal set of attributes determining the rigid null: In general, there might be several FDs
affecting it. The minimal set (called determination in [18]) must be unique, otherwise the
procedure Skolemize aborts with failure.

In overall, the mapping Skolemize
(
AddNeg(Σst ∪ Σovlst )

)
is proven to be a sound and

complete FO implementation ofM, provided that no failure occurs while creating Σovlst or
performing the skolemization.

Eliminating rigid ∃-variables. We start by adorning each conclusion atom in st-tgds with
a unique label, as it was done in Section 5.1.1.

I Definition 37. Position in a conclusion atom Rl(z1, ...zk) of a st-tgd τ is a pair (l, i), for
i ≤ k. Let τ be applied in the chase, generating a fact R(a1, . . . ak) in the target instance.
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Procedure Spicy-FD

Input: Schema mappingM = S,T,Σst ∪ Σt where Σt as set of FDs
Output: Mappings (RF ,RC).

/* The core universal solution for I can be found as chase(I ∪ chase(I, RF ), RC) */

(1) Generate Σovlst and Set R := Skolemize
(
AddNeg(Σst ∪ Σovlst )

)
or fail

(2) Let F be the schema {Fε | ε : R〈i1 . . . im, j〉 ∈ Σt}, Fε fresh symbol of arity m+ 1
(3) Let RF = ∅
(4) for each φ(~x)→ ψ(~x) in R, ε : 〈i1 . . . im, j〉 ∈ Σt and R(t1, . . . tn) in ψ
(5) Set RF := RF ∪ {φ(~x)→ Fε(ti1 , . . . , tim , tm)}

/* Eliminate rigid ∃-variables */
(6) Set ΣFst := Σst ∪ Σovlst

(7) while fixpoint is reached do
(8) for each τ : φ(~x)→ ∃y, ~z ψ(~x, y, ~z) in Σ′st and ε : R〈i1, . . . im → j〉 ∈ Σt
(9) and each atom R(t1, . . . tn) in ψ such that tj = y and {ti1 , . . . , tim} ∈ ~x
(10) Replace τ in ΣFst by ∀~x∀y (F (ti1 , . . . tim , y) ∧ φ(~x)→ ∃z ψ(~x, y, ~z))

/* Apply algorithms from Section 5.1.1 or Section 5.1.2 */
(11) Convert ΣFst into a Laconic or Core mapping RC
(12) return (RF ,RC)

Positions (l, 1), . . . (l, k) are said to be instantiated with the terms a1, . . . ak, respectively.
A position (l, i) is called rigid, if for any source instance I, it is instantiated either with a
constant or with a rigid null in chase(I,Σ), and non-rigid otherwise.

It turns out, that each position can be uniquely classified as rigid or non-rigid, for arbitrary
source instances:

I Lemma 38. LetM be a mapping with an st-tgd τ . The position (l, j) of the conclusion
atom Rl(z1, . . . zj . . . zk) in τ is rigid iff one of the following condition holds: (1) zj is a
∀-variable, or (2) the positions (l, i1), ...(l, im) are rigid and an FD R〈i1 . . . im → j〉 is inM,
or (3) zi is a ∃-variable occurring in a rigid position in the conclusion of τ .

The first case of rigidity is trivial: the positions occupied by ∀-variable are instantiated by
constants and thus are rigid. Concerning the inductive case, consider the following example
(for brevity, we do not consider overlap st-tgds):

I Example 39. Consider a mapping with four st-tgds and a target FD:

τ1 : S1(x1, x2)→ ∃z R1(x1, x2, z)
τ3 : S3(x1, x2)→ Q4(x1, x2, x2)
τ4 : S4(x)→ ∃y R5(y, x, y)

τ2 : S2(x1, x2, x3)→ ∃y1∃y2 R
2(x1, y1, y2)

∧Q3(x2, x3, y1)
ε1 : R〈A,B → C〉

We assume that all target relations have attributes A,B,C. We will write R2.A to denote
the position (2, 1) in the conclusion of τ2, occupied by a ∀-variable x1. ∀-variables occur also
at positions R1.AB,R5.B, Q3.AB and Q4.ABC, rendering them all rigid. Also the position
R1.C is rigid, since the attribute R.C depends functionally on R.AB, and positions R1.AB

are rigid. Indeed, let R1 be instantiated as a fact R(a1, a2, N) in the canonical universal
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solution U . If there exists an endomorphism for U that maps N onto some c 6= N , the fact
R(a1, a2, c) must be present in U . Thus U 6|= ε1, which is a contradiction.

The remaining positions Q3.C, R5.AC and R2.BC are not rigid. As an example, con-
sider a source instance I = {S1(a, c), S2(a, b, c), S3(b, c)}. The canonical universal solu-
tion J = chase(I,Σ) = {R(a, c, Z), R(a, Y1, Y2), Q(b, c, Y1), Q(b, c, c)}, with core(J) =
{R(a, c, Z), Q(b, c, c)} obtained by the endomorphism {Y1 → c, Y2 → Z}. Note that the
facts R(a, Y1, Y2) and Q(b, c, Y1) were generated by chasing τ2: Y2 instantiating the non-rigid
position R2.C and Y1 instantiating the non-rigid positions R2.B and Q3.C. At the lines 7–10
of the procedure Spicy-FD, the rigid ∃-variables are transformed into ∀-variables in τ1:

τ ′1 : S1(x1, x2) ∧ F1(x1, x2, z)→ R(x1, x2, z)
Now, let Σ′ be Σ extended with an FD ε2 : Q〈A→ C〉. This makes position Q3.C rigid, by
the same reason as R1.C. In turn, also R2.B becomes rigid as sharing a ∃-variable with
Q3.C, and so is R2.C. The procedure Spicy-FD now would also be able to rewrite τ2:

τ ′2 : S2(x1, x2, x3) ∧ F2(x2, y1) ∧ F1(x1, y1, y2)→ R(x1, y1, y2) ∧Q(x2, x3, y1) J

Computing the core. The actual values for rigid nulls in relations Fi are provided by the
FO implementation RM of M. To this end, RM is rewritten to as the mapping RF at
the lines 3–5 of Spicy-FD, populating the relations Fi with the values instantiating the
rigid nulls, and with the values, by which the nulls are determined. Lines 6–10 perform the
elimination of rigid ∃-variables from Σst∪Σovlst , resulting in the set of st-tgds ΣFst. Its Laconic
version RC is computed at line 11. Finally, a composition of RF with RC allows to produce
a core universal solution for each source instance I.

6 Performance
Of the several presented core computation algorithms, only two have been actually imple-
mented: a post-processing approach FindCoreE [12, 20] and the Core schema mappings,
including the extension for target functional dependencies (the +Spicy system, [19, 18]).
Both systems employ the database engines for performing the chase. In the latter case, this
suffices to compute the core. In the post-processing case, searching for homomorphisms
and extensions thereof is delegated to the DBMS, while the main cycle is driven by a Java
program. The experimental evaluation allows to draw the following conclusions regarding
practical feasibility of the core computation algorithms.

Post-processing approach: Despite polynomial data complexity, the most flexible algorithm
based on FindCore only scales to with several thousands of nulls in the source database.
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Figure 3 Performance (a) and the progress (b) of core computation [20].
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Figure 3: SQL Scripts: Execution Times for the Second Group

for the four scenarios that do not contain self-joins in the target. As it can be seen, execution times for all scenarios
were extremely fast for both configurations. The overhead introduced by the rewriting of the FO-rules using negations is
always acceptable, with a maximum of around 10 seconds for scenarios of one million tuples.

Figure 3 reports the results for the five scenarios with self-joins. It can be seen that the first three self-joins scenarios,
sj1 – sj3, show times increasing linearly and did scale up to 1M tuples both in the core and in the canonical scripts
executions. The difference is instead notable with sj4 and sj5, but is not surprising for two reasons. First, considering
that many self-joins can trigger the exponential behavior discussed in the previous Section. Second, the running time
to interpret the Skolem functions fills some of the overhead time. For these reasons, the core computation script for sj4
took up to four times the canonical script execution time (21 minutes for the 1 million tuples source instance), while we
stopped the execution for sj5 on the biggest input (the core script took 41 minutes for the 500k tuples source instance).

Quality of Solutions We now want to study to which extent core universal solutions are more compact than canonical
solutions. To do this, we consider source databases with different degrees of “redundancy”. We dropped sj5 from this
comparison. For each of the remaining eight scenarios, we generated five synthetic source instances of fixed size (10K
tuples) based on a pool of values of decreasing size. This process generated different levels of redundancy (from 0% to
40%) in the source databases and enabled a comparison of the quality of the two solutions. Figure 4 shows the percent

Figure 4: Core vs Canonical: Size Reduction in Solutions

reduction in the output size for core solutions compared to canonical solutions. As output size, we measured the number
of tuples in the solutions. Figure 4.a shows results for the four scenarios that do not contain self-joins in the target.
As expected, core solutions are more compact than canonical ones in all the scenarios and this behavior becomes more
apparent with the increasing redundancy. The two subsumptions scenarios – s1 and s2 – follow the trend, but less

36

Figure 3: Execution Times for Source Instances of Increasing Size

tion phase increased exponentially with the number of tgds.
This is due to the fact that the algorithm has in general to
inspect an exponential number of possible overlaps. On the
contrary, the actual script execution times remained pretty
low, even for scenario s100, where more than 120 tgds were
processed.

8. RELATED WORK
As discussed in the previous sections, the notion of a data

exchange problem was originally introduced in [10] and the
properties of core solutions were first studied in [12]. Sophis-
ticated polynomial algorithms for core computation have
been given in [12] first, and then in [13, 23, 16]. These
algorithms assume that a specialized engine is used to post-
process a canonical solution, find endomorphisms and gener-
ate the core. Rewriting algorithms to generate core solutions
by means of SQL scripts have been given in [17, 24]. As it
was already discussed, these approaches are not applicable
to scenarios with target dependencies.
More recently, a rewriting algorithm for mappings that

also considers target egds [14] has been proposed. However,
in this case the purpose of the rewriting is quite different,
since it aims at optimizing and normalizing the input con-
straints; intuitively, the goal is to minimize the constraints
to make them easier to handle and to improve the quality
of solutions. The rewriting of [14] is therefore independent
from the one proposed in this paper and the two can be
easily combined.
The complexity of dealing with functional dependencies

has also been studied in the context of data integration,
both for LAV [9, 2] and GAV [7] mappings. In that context,
query rewriting techniques were developed to compute query
rewritings in presence of functional dependencies.
The presence of key constraints plays a key role also in

the data fusion literature [5]. However, these works adopt
a different approach: they merge data as a separate step
from the data translation and do not consider the presence
of labeled nulls (i.e., generated values).
An early attempt to partially incorporate key constraints

in mapping systems has been proposed by [6]. There, users
are supposed to provide specialized inputs so that the map-
ping algorithm can handle keys.
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Figure 4 Performance of direct core computation with +Spicy: no target constraints [19] (a)
and target FDs [18] (b).

This is not completely unexpected, taking into account a quadratic number of iterations in
the main cycle. As seen in Fig. 3(b), the core can be quite well approximated already by
a single iteration, but much time has to be spent to eliminate few remaining nulls and to
validate the minimality of the core.

Direct core computation approach of +Spicy, on the contrary, has proven to scale to
source databases with millions of facts, even in the presence of target FDs. Figure 4 presents
two charts adopted from [19] and [18] respectively, illustrating the performance of the two
implementations. Fig. 4(a) shows performance charts for mappings with self-joins in the
conclusions of st-tgds. The mapping ’SJ5’ has been specially crafted to generate a rewriting
with exponential number of dependencies. The chart in Fig. 4(b), produced with mappings
with simpler st-tgds, which is compensated by adding target functional dependencies. It
clearly demonstrates the robustness of the Spicy-FD procedure: the authors point out that
the scenario ’sd’ was specially designed to generate an exponential number of overlap st-tgds.
A better performance of the core computation in presence of target egds is not surprising,
taking into account the effect of rigid nulls, discussed in Sections 4.2 and 5.3.

7 Conclusion

We gave an overview of the algorithms for core computation in data exchange. They can be
roughly divided into two groups: the post-processing algorithms, optimizing the canonical
universal solution obtained by chasing a given set of dependencies, and direct computation,
constructing the core as a result of the chase with the preprocessed dependencies. Both
approaches provide polynomial data complexity of core computation. The advantage of
post-processing is the support for expressive mappings, however no scalable implementation
of this approach exists yet. In contrast, experiments with direct core computation have
shown very encouraging performance results, but on rather restricted mappings. As shown
in [22, 18], in presence of target dependencies it is often the case that no Laconic variant of
the given mapping can be found. On the other hand, the best-effort approach of [18] can be
used in many practical scenarios.

There is a need for further implementations of core computation in data exchange: so
far, only a single scalable implementation (the +Spicy system by Mecca et al.[19, 18])
has been reported. For the post-processing approach, the optimization potential can be
found in applying the decomposition-based homomorphism computation, adding the natural
support of egds for skolemized mappings by combining the ideas of [16] and [20], and
finding heuristics for approximation of the core. In the area of direct core computation, the
algorithms supporting more expressive mappings can be considered as one of the primary
goals. Furthermore, a combination of the two paradigms is conceivable, especially in the case
of mappings with target egds for which no FO-term implementations can be found.
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