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Abstract
Currently the parameters in a constraint solver are often selected by hand by experts in

the field; these parameters might include the level of preprocessing to be used and the variable
ordering heuristic. The efficient and automatic choice of a preprocessing level for a constraint
solver is a step towards making constraint programming a more widely accessible technology.
Self-learning sexual genetic algorithms are a new approach combining a self-learning mechanism
with sexual genetic algorithms in order to suggest or predict a suitable solver configuration for
large scale problems by learning from the same class of small scale problems. In this paper,
Self-learning Sexual genetic algorithms are applied to create an automatic solver configuration
mechanism for solving various constraint problems. The starting population of self-learning
sexual genetic algorithms will be trained through experience on small instances. The experiments
in this paper are a proof-of-concept for the idea of combining sexual genetic algorithms with a
self-learning strategy to aid in parameter selection for constraint programming.
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1 Introduction

The selection of suitable preprocessing levels for a given constraint problem is an important
part of constraint programming (CP); efficiently tuning a constraint solver will shorten the
search time and reduce the running cost. One significant method of increasing the search
speed for a constraint solver is by tuning the solver’s parameters [8]. Currently, the job of
tuning the parameters is done manually; a skilled user selects the most suitable preprocessing
method using previous experience from similar classes of problems. In most cases, the best
preprocessing method used in similar classes of problems will provide a useful clue to aid the
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user’s selection. However, this learning curve could be a barrier to novice users in learning
how to efficiently use a CP solver [9].

Genetic algorithms (GA) are a classic global optimisation method posed by John Holland
[6], which mimic the competition of organisms in nature and the mechanisms of evolution.
GAs are usually implemented in a computer simulation in which a population of abstract
representations of candidate solutions to an optimisation problem evolves towards better
solutions. GAs are widely applied to optimisation problems such as function optimisation.
Ansótegui et al. have proposed a gender-based genetic algorithm for the automatic config-
uration of algorithms[1] ; it shows that the sexual genetic algorithm (SGA) is feasible for
automatic configuration.

In this paper, sexual genetic-based algorithms were chosen to select a preprocessing
method for constraint satisfaction problems. There are three main reasons to choose SGAs
to optimise preprocessing selection:

SGAs have a powerful ability to tackle optimisation problems which lack auxiliary
information
SGAs perform parallel search rather than linear search; each chromosome (solution to
the problem) competes against others in each generation
SGAs are more efficient than standard GAs in preprocessing selection; it is not necessary
for the SGA to evaluate the fitness of all chromosomes, which is a considerable consumer
of CPU time.

Therefore the idea of combining SGAs and constraint programming seems worth exploring
further and it is expected that automatic tuning will lead to improvements over manual
tuning by users. ParamILS and CALIBRA [7] have demonstrated the practicality and
efficiency of automatic configuration for constraints solvers. However, the general framework
of combining GAs with constraint programming and the exploration of parameter sensitivity
of GAs to any problems, has not been achieved. In light of this situation, a self-learning sexual
genetic-based method for tuning Minion [4], which is one of the most efficient constraint
solvers in the world, was proposed.

This paper firstly investigates an SGA and explores its features. The efficiency of this
SGA will be tested by comparison with a standard GA for the Travelling Salesman Problem.
The self-learning genetic algorithm (SLGA) will then be introduced and applied to select
the preprocessing level. Finally, the efficiency of the self-learning sexual genetic algorithm
(SLSGA) will be analysed. This paper also provides a proof for one possibility of improving
sexual genetic algorithms for preprocessing selection in constraint satisfaction problems [2].

2 Sexual Genetic Algorithm

The basic concepts and features of SGAs are similar to standard GAs. As in standard
GAs, there are three basic operators in sexual genetic algorithms: selection, crossover and
mutation. The selection, which decides the parents for mating, is very important for evolution.
In standard genetic algorithms, there is just one selection strategy during evolution. In
nature, male individuals try to spread their gene information as widely as possible and
female individuals try to select the fittest males to mate with [13]. Inspired by the natural
behaviour of male vigor and female choice, sexual genetic algorithms [10] [12] apply two
different selection mechanisms: male group (competitive) and female group (co-operative).

The first step of a genetic algorithm (GA) is called the encoding which is to construct a
suitable starting chromosome for the optimisation problem and which can transfer solutions
of the optimisation problem to the child chromosomes, where each child chromosome presents
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Figure 1 The efficiency of sexual genetic algorithm in solving the Travelling Salesman Problem.

one possible solution. Fitness describes the ability of an individual to reproduce in biology;
the fitness function evaluates the difference between the desired result and the actual result.

Selection in genetic algorithms is the strategy which allows the best parents (with
highest fitness) to have an increased chance of being selected to generate the next generation.
Roulette wheel selection is a commonly-used way of choosing individuals from the population
of chromosomes in a way that is proportional to their fitness. Roulette does not guarantee that
the fittest member goes through to the next generation, merely that it has a better chance
of doing so. In sexual genetic algorithms, the population is randomly divided into to two
groups: male (competitive) and female (co-operative) as in nature. The male chromosomes
have to compete for the chance of mating (the elitisms (the chromosomes with better fitness)
will confer an increased chance of mating), while the female chromosomes have the same
opportunity for mating. The running time of the fitness evaluation is substantial when
automated tuning is used, because the fitness (searching time) of each chromosome has to
be calculated with a given set of preprocessing for the constraint problem. The pseudocode
(Algorithm 1) shows that half of the population is selected as male, meaning that half of the
fitness evaluation time is saved while the variety of the population is maintained. This is the
most important reason that sexual genetic algorithms were selected for the experiment in
this paper.

Crossover can improve the fitness of the whole population quickly by mating parents
to produce an offspring. Single-point crossover is the most common crossover in genetic
algorithms because it can be easily understood and realized. The single crossover will be
applied in sexual genetic algorithm.

Mutation, which changes one or more genes in an individual, is another operator used
in GA. Mutation can help genetic algorithms escape the local maximum state by creating a
new gene string. All of the mutations in this paper’s experiments are single-point mutations.

3 Sexual Genetic Algorithm vs. Standard Genetic Algorithm by
Solving TSP

The Travelling Salesman Problem (TSP) seeks the shortest Hamiltonian cycle path between
n given cities and is a classic NP-complete problem. To prove the efficiency of sexual genetic
algorithms and explore their features, a sexual genetic algorithm was applied to solve the TSP
with different elitism percentages and this was compared with a standard genetic algorithm.
There are three elitism strategies: one elitism, two elitisms and roulette wheel selection
elitism.
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Table 1 The solving times of different constraint satisfaction problems using of a sexual genetic
algorithm.

BIBD Langford
(Solving Time) (Solving Time)

Sexual GA 1.7 s 3.2 s
Standard GA 3.5 s 4.3 s

Figure 1 shows the efficiency of an SGA to solve the TSP. There are four curves in the
graph: standard GA, SGA with one elitism, two elitisms and roulette wheel selection elitisms
in male competition. It clearly shows that the SGA with two elitisms in male competition
is most the efficient in solving the TSP; however, more elitisms does not mean better
evolutionary speed because more elitisms could lead to high convergence. Compared with
the standard GA, the SGA with optimised elitisms in male competition always approaches a
better fitness.

Finally, the SGA was used to choose the best preprocessing method for constraint
problems. In this paper, two classic constraint optimisation problems, balanced incomplete
block design (BIBD) and the Langford’s Number problem1 , were chosen as the optimisation
problem for testing the SGA. Following David’s MicroGA Settings[3], the crossover rate is
0.5 and the mutation rate is 0.04 in all experiments. Each trial was run 100 times and the
average of the minima was recorded.

Table 1 shows the solving times of the SGA for different problems in comparison with a
standard GA. It shows that the SGA could find better preprocessing methods for both the
BIBD and Langford’s Number problems than standard GA for a small number of generations.

4 Self-learning Sexual Genetic Algorithm vs. Self-learning Genetic
Algorithm

Generally, machine learning makes predictions by training, validation and testing itself against
existing data [11] . Self-learning, which learns its own inductive bias based on previous
experience, is one of the typical algorithms in the machine learning domain. Self-learning
could avoid repetition of searching and computation in the previous experiments. In genetic
algorithms, the generation of the starting population is a considerable factor, as are the
crossover rate and mutation rate.

To check the influence of the fitness value in the starting population of genetic algorithms,
two different starting populations (set to high fitness and low fitness) were applied to optimise
the same function F (x) = x10[5] where 0 < x < 1. The size of both starting populations was
30 chromosomes. Figure 2 shows that the genetic algorithm with a starting population with
high fitness could approach better fitness than the one with a starting population with poor
fitness. This demonstrates that a suitable starting population for a genetic algorithm could
lead to a more rapid approach to best fitness, and suggests that this could be applied to
self-learning in machine learning.

A self-learning genetic algorithm (SLGA) [14] is an algorithm which makes the prepro-
cessing prediction by using previous experience on the same classes of constraint satisfaction
problem. An SLGA can improve the search speed by defining a specific starting population

1 All From www.csplib.org
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Figure 2 The evolutionary speed comparison with different starting populations. The X axis
is the mutation rate and the Y axis the Crossover rate. The Z axis is the best fitness after 50
generations with different mutation rate and crossover rate. The fitness of the starting population of
the left graph is lower than 0.1. The fitness of the starting population in the right graph is randomly
generated between 0 and 1.

(instead of a random starting population as normally used), with the starting population
taken from the training data of the same class of small instance problems.

4.1 Self-learning Sexual Genetic Algorithm for Constraint Satisfaction
Problem

The SLSGA pseudocode (Algorithm 1) introduces SLSGA’s working principle and clearly
shows how self-learning combines with the sexual genetic algorithm. Compared with the
self-learning standard genetic algorithm, the self-learning sexual genetic algorithm halves
the time spent on fitness evaluation and selects k elitisms from the male group, instead of
from the whole population. Compared with the SGA, the SLSGA also has an optimised
starting population; the SLSGA is trained using small scale problems to select the starting
population for large scale problems.

Algorithm 1 Self-learning Sexual Genetic Algorithm
Produce the starting populations Pi for small instance problem from the experience of
small instance . i is the population size
for j = 1 to n do . j is the generation

repeat
Randomly select m chromosomes of population as male
The rest chromosomes is selected as female . m = i/2 in our SGA for tuning

constraint programming solver
Evaluate the fitness of male chromosomes
Select k elitisms from male chromosomes to mating pool
Each female chromosomes has the same possibility for mating
New generation is created from k elitisms and mother chromosomes by crossover

and mutation
until λ =The best preprocessing found or the searching time is out of time limit

end for
return λ
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The experimental results of SLSGA show that an optimised starting population easily
and quickly leads to a better evolutionary result. The aim of automatic tuning is to use the
shortest time possible to find the optimal preprocessing settings. To prove the correctness
of the hybridization idea (combining self-learning with SGA) and the efficiency of SLSGA,
it was then applied to solve some constraint satisfaction problems with different instances:
BIBD, Langford’s Number and Open Stack problems. All the settings used were the same as
others described in this paper.

Table 2 shows the efficiency of SLSGA for solving various constraint satisfaction problems.
The table shows the number of search nodes and running time for the solver to find the
solution after optimisation of SGA and SLSGA. It clearly shows that SLSGA could arrive at
acceptable result more efficiently than SGA, improving the evolutionary speed and deriving
useful results at the same time. This shows that self-learning is a feasible algorithm for
preprocessing selection in constraint satisfaction problems, although the optimal result from
SLSGA is not significantly better than that from SGA.

5 Conclusions and Future work

To prove the concept and potential effectiveness of self-learning sexual genetic algorithms,
this paper has firstly shown the efficiency of a sexual genetic algorithm by solving the TSP
and comparing this with a standard genetic algorithm. It has demonstrated that the elitisms
percentage in the SGA is very important and that selecting suitable elitisms percentages
leads to an ideal optimisation speed. Self-learning was proposed to improve the tuning
efficiency from previous experience (in the same way as human behaviour) rather than by
logical inference. The experimental results showed that the large scale problem could be
properly solved using an optimised starting population which was trained using data from
small scale problems. Thus the self-learning sexual genetic algorithm was able to achieve
satisfactory results by combining two strategies.

The results show that self-learning genetic algorithms can be efficient methods for selecting
preprocessing of constraint-solving problems. However, a number of challenges remain for
future exploration. In this paper, four classic problems were used to verify the efficiency of a
self-learning sexual genetic algorithm on large problems. More and larger-scale problems
such as the car sequence problem will be used to explore the efficiency and limitations of
SLSGAs. With regard to self-learning, the convergence of the starting population is worth
further exploration, for example whether having many optimised individuals in the starting
population can lead to local traps. The application of the self-learning strategy to deal with
multiple instances is also of interest.

Currently the best model to solve a constraint satisfaction problem is selected by hand
by the user; this paper has shown that improved performance may be obtained by applying
self-learning sexual genetic algorithms to constraint satisfaction problems.
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