
Refactoring Boundary
Tim Wood1 and Sophia Drossopoulou2

1 Imperial College London t.wood12@imperial.ac.uk
2 Imperial College London s.drossopoulou@imperial.ac.uk

Abstract
We argue that the limit of the propagation of the heap effects of a source code modification is
determined by the aliasing structure of method parameters in a trace of the method calls that
cross a boundary which partitions the heap. Further, that this aliasing structure is sufficient to
uniquely determine the state of the part of the heap which has not been affected. And we give a
definition of what it means for a part of the heap to be unaffected by a source code modification.
This can be used to determine the correctness of a refactoring.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Refactoring, Object Oriented

Digital Object Identifier 10.4230/OASIcs.ICCSW.2013.119

1 Introduction

A refactoring is a transformation applied to the source code of a program that preserves
the meaning of the program. Most refactorings however do affect the internal behaviour
of a program, for example, new classes and methods may be introduced, conditionals may
be replaced with polymorphism and classes may be in-lined. Determining if a particular
transformation is indeed meaning preserving is a challenge.

According to our proposal, the heap is partitioned into an affected part and an unaffected
part. Moreover we give a sufficient condition that determines that the effects of the code
modification do not spread from the affected part into the unaffected part — which we call a
bounded modification.

Motivation: A programmer modifying a program wants to avoid breaking existing
functionality, even functionality that they may not be aware of. A programmer wants to
convince other programmers to accept their patch, and wants to show that their change is
safe. A programmer wants to precisely characterise the difference between two versions of a
program.

Contributions: We argue that a good way to characterise the difference between two
versions of a program is to partition the heap into an affected part and an unaffected part,
and require that executions correspond in the unaffected part. We propose a precise definition
of this novel property. We propose a novel sufficient condition for such a correspondence of
heaps — that there will be a correspondence in the unaffected part whenever the aliasing
structure of stack frames witnessed at the heap partition boundary is isomorphic between
executions of the two versions. We anticipate that this sufficient condition will provide a
basis for automated tools that can check if a modification is bounded

Our proposal gives a novel general definition of refactoring correctness in terms of the
heap effect of the modification. Moreover it offers a wider definition of refactoring correctness
than other approaches, depending on what unaffected partition is picked. For example, if all
I/O occurs in the unaffected partition then our approach is similar to traditional definitions

© Tim Wood and Sophia Drossopoulou;
licensed under Creative Commons License CC-BY

2013 Imperial College Computing Student Workshop (ICCSW’13).
Editors: Andrew V. Jones, Nicholas Ng; pp. 119–127

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62918184?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.ICCSW.2013.119
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

120 Refactoring Boundary

of refactoring correctness, but other choices of partition are possible that allow differences in
program I/O. This notion of correctness does not require any additional specification of the
program, nor does it require the programmer to limit themselves to previously known-correct
refactorings with established pre-conditions.

Related Work: Typically the correctness of refactorings is defined as I/O equivalence and
is checked by ad-hoc pre-condition checking[10][1] or by composing smaller refactorings[12].
State based encapsulation provides a method for reasoning about the equivalence of classes[9].
Program slicing can be used to establish the correctness of some statement reordering
refactorings[2]. Graph transformations have been suggested as a means to reason about
refactorings in general[11]. Regression verification uses bounded model checking to verify
the equivalence of some loop and recursion free programs[3]. Program verification tools
in conjunction with automated theorem provers can be used to check some programs for
equivalence[4][6], or library versions for backward compatibility[13]. Semantics aware trace
analysis[5] and BCT[7] use traces captured at runtime to attempt to isolate the causes
of regression failures. Guru[8] uses sequences of messages sends to define equivalence of
differently factored method implementations in an object-oriented system.

Structure: In section 2 we give a motivating example, and describe what it means for
the effect of a refactoring to be bounded. In section 3 we give a sufficient condition for
determining if a part of the heap is unaffected between executions of two versions of the
program. Then in section 4 we describe exactly how partitioning and trace comparison
works. In section 5 we give several interesting properties of bounded modifications, and in
section 6 sketch a proof of those properties.

2 Bounded Effect

An object oriented program p is modified to produce a program q. The heap is partitioned
into two parts Φm and Φu. We say that Φm bounds the modification if for any execution in
p there is a corresponding execution in q such that the heaps are equivalent within Φu. In
other words, the heap effect of a bounded modification does not spread beyond Φm.

1 class FiFo {
2 Node f;
3 void add(final Object o) {
4 if(f == null) { f=new Node(o); }
5 else { f.add(o); }}
6 Object remove () {
7 Object r=f. value (); f=f.next (); return

r;}}
8
9 class Node {

10 Object o; Node n;
11 Node(Object o) { this.o=o; }
12 Node next () { return n; }
13 Object value () { return o; }
14 void add(final Object o) {
15 if(n == null) { n=new Node(o); }
16 else { n.add(o); }}}

Listing 1 Program p — fifo queue with
recursive add.

1 class FiFo {
2 Node f, l;
3 void add(final Object o) {
4 if(f == null) { l=f=new Node(o); }
5 else { l=l.add(o); }}
6 Object remove () {
7 Object r=f. value (); f=f.next (); return

r;}}
8
9 class Node {

10 Object o; Node n;
11 Node(Object o) { this.o=o; }
12 Node next () { return n; }
13 Object value () { return o; }
14 Node add(Object o) {
15 return n=new Node(o); }}
16

Listing 2 Program q — fifo queue with
last element pointer. The modified parts are
highlighted.

1 class Test { Fifo fi = new Fifo (); Object o1 = new Object () , o2 = new Object ();
2 void test () { fi.add(o1); fi.add(o2); fi. remove (); fi. remove () ;}}

Listing 3 Test program for the FiFo queue.

T. Wood and S. Drossopoulou 121

We shall clarify the meaning of execution, correspondence, partitioning and equivalence
in terms of the following example. Listing 1 shows part of a larger program p. The code
shown is a fifo queue consisting of two classes FiFo and Node. The code is modified, as in
listing 2, to produce a new version q where the implementation and representation of the
queue has changed. Listing 3 shows a test program that could be run with the code from
either Listing 1 or Listing 2. The only values in our language are addresses, which can be
compared for equality but are otherwise opaque, and all fields are private.

Consider Figure 1 which shows the stack and heap when an execution of the test program
in Listing 3 with p is just about to return from the second call to add on line 2 of Listing 3.
In this figure Φm is chosen to include only objects of the FiFo and Node classes.

Key:
stack
boundary

1 object 1
pointer

this 3

o 2

this 0

Φu Φm

0

1

2

3

4
5

o1
o2

fi

f

n
o

o

Figure 1 Snapshot of an execution of p (Listing 3 and Listing 1). The heap and top two stack
frames are shown. The heap is partitioned so that objects at addresses 0,1,2 are in Φu, and objects
3,4,5 are in Φm. The top stack frame has a this pointer into the Φm partition, the stack frame below
it has a this pointer into the Φu partition.

In Figure 2 we show the stack and heap at a corresponding point in the execution of the
test program in Listing 3 with q. Notice that when compared to Figure 1 this figure has an
additional pointer between objects 10 and 12, this is due to the field l which has been added
in q as shown on line 2 of Listing 2.

We notice that the heap in Figure 1, which we will call h1, and the heap in Figure 2,
which we will call h2, are isomorphic when only the objects within Φu are considered. We
say that h1 is equivalent to h2 wrt. Φu, and in our notation we write this as h1 ≈Φu h2. In
this case, object 0 corresponds with object 7, 1 with 8, and 2 with 9.

Key:
stack
boundary

1 object 1
pointer

this 10

o 9

this 7

Φu Φm

7

8

9

10

11
12

o1
o2

fi

f

n
o

o

l

Figure 2 Snapshot of an execution of q (Listing 3 and Listing 2). Notice that there is an extra
pointer between objects 10 and 12 when compared to Figure 1.

Definition 1 gives the formal meaning of bounded, where we use γ, γp, γq to range over
runtime configurations, and γ−→−→pγ

′ to mean the multi-step execution of program p from
configuration γ to configuration γ′. We write heap(γ) to mean the heap of configuration γ.
The judgement init(γ) holds when γ is an initial state, which means it has an empty stack
and an expression consisting of a call to the program’s main method.

ICCSW’13

122 Refactoring Boundary

I Definition 1 (bounded). When Φm bounds the effect, for every sequence of states reachable
in p there is a sequence of states with equivalent heaps wrt. Φu reachable in q.

∀γ, γp, γ′
p : init(γ) ∧ γ−→−→pγp−→−→pγ

′
p

=⇒ ∃γq, γ′
q : γ−→−→qγq−→−→qγ

′
q ∧ heap(γp) ≈Φu heap(γq) ∧ heap(γ′

p) ≈Φu heap(γ′
q)

3 Trace Equivalence

Definition 1 is difficult to establish, it requires considering a potentially infinite number of
executions and deep inspection of the heap. In this section we propose a sufficient condition
for Definition 1, which can be established by inspection of the stack only at certain points in
each execution. We show this sufficient condition in Definition 2. We anticipate that this
condition combined with suitable approximation techniques will allow us to make progress in
applying static analysis to the problem of checking the correctness of refactorings.

In Definition 2 we will consider traces. A trace is the sequence of stack frames observable
upon entry/exit of Φu. Traces for our running example are shown in Figure 3. In this case
the elements of the trace correspond to the entry and exit points of the constructor, and
the add and remove methods, of the class FiFo. Each trace element contains the address of
the method receiver and the address of any parameters. On method return we use ret as a
synthetic method name, and also to name the return value. For example, on entry to the add
method we capture the address of this and the parameter o. On exit of the remove method
we capture the address of the return value. The ith element of trace τs is written as τsi.

Figure 3 also shows examples of isomorphic and non-isomorphic traces. Two traces are
equivalent if they have the same aliasing structure and null in the same places. Section
4 describes this in more detail. The judgement τs ≈ τs′ holds whenever τs and τs′ are
isomorphic modulo addresses.

Definition 2 gives the formal meaning of trace equivalent executions. It holds whenever,
for every initial state, execution in p produces an equivalent trace with execution in q.
We write γ τs−→−→pγ

′ to mean the multi-step execution of program p from configuration γ to
configuration γ′ with trace τs. Trace concatenation is performed by the · function.

I Definition 2 (Trace Equivalent Executions). p and q are trace equivalent iff for every state
reachable from an initial state with some trace in p (q), a state is reachable from the same
initial state in q (p) with an equivalent trace.

p and q are trace equivalent when:

∀ τsp, τsq, γ, γp, γq : init(γ) ∧ γ
τsp−→−→pγp ∧ γ

τsq−→−→qγq

=⇒

(
∃ τs′

p, γ
′
p : γp

τs′
p−→−→pγ

′
p ∧ τsp · τs′

p≈ τsq
)

∨(
∃ τs′

q, γ
′
q : γq

τs′
q−→−→qγ

′
q ∧ τsp≈ τsq · τs′

q

)

Lemma 3 relates Definition 1 and Definition 2. It directly relates equivalence of traces
to equivalence of heaps wrt. Φu. In particular it says that whenever executions of p and q

produce equivalent traces, then they will also correspond in Φu. Section 6 sketches a proof of
Lemma 3.

I Lemma 3. If p is trace equivalent with q (Definition 2) then Φm bounds the modification
(Definition 1).

T. Wood and S. Drossopoulou 123

4 Partitions and Traces

Heap partition is defined by the function part : Object→{Φm,Φu}, which gives a partition
identifier for any object. Objects must not move between partitions during execution. The
judgement mod(o) holds iff the object o is modified. An object is modified iff its class is
modified, and a class is modified iff any of its methods’ bodies or its fields differ between
p and q. All modified objects must be in the Φm partition, but the Φm may also contain
non-modified objects1.

We say that Φu is entered whenever the this pointer of the top stack frame points into Φm

and a stack frame is pushed or popped leaving a top stack frame whose this pointer points
into the Φu. And conversely for exit of Φu. For example, in Figure 1 if the top stack frame is
popped execution will enter Φu.

τsp1 Fifo this: 3
τsp2 ret ret: 3
τsp3 add this: 3 o: 1
τsp4 ret
τsp5 add this: 3 o: 2
τsp6 ret
τsp7 remove this: 3
τsp8 ret ret: 1
τsp9 remove this: 3
τsp10 ret ret: 2

τsp

τsp ≈β τsq when β = τsq 6≈ τsr(1,8),(3,10),(2,9)

τsq1 Fifo this: 10
τsq2 ret ret: 10
τsq3 add this: 10 o: 8
τsq4 ret
τsq5 add this: 10 o: 9
τsq6 ret
τsq7 remove this: 10
τsq8 ret ret: 8
τsq9 remove this: 10
τsq10 ret ret: 9

τsq

τsr1 Fifo this: 7
τsr2 ret ret: 7
τsr3 add this: 7 o: 4
τsr4 ret
τsr5 add this: 7 o: 6
τsr6 ret
τsr7 remove this: 7
τsr8 ret ret: 6
τsr9 remove this: 7
τsr10 ret ret: 4

τsr

Figure 3 Three traces. The trace τsp is from an execution of p. The trace τsq is from an execution
of q. The trace τsr is fictional and does not come from either p or q. Trace τsp is equivalent to trace
τsq under the address bijection, β, shown. Trace τsr is not equivalent to either τsp or τsq, there is
no bijection between the addresses of τsp and τsr that also preserves the aliasing structure of the
traces.

Each element of a trace contains the values of method parameters, or method return values,
from the top stack frame whenever the partition is crossed. Only the address values, and
associated parameter names, actually present in the stack frame are captured, no information
from the heap is needed. Since the actual addresses used by any two executions can vary
unpredictably we cannot compare traces directly. Instead we say that traces are equivalent
if there exists a bijection β between the addresses present in each trace, that preserves the
structure of the trace. Figure 3 shows an example of trace equivalence and non-equivalence.

We write τsi(x) to mean the value at the location associated with the variable x in the
ith element of trace τs, or ⊥ if the variable is not defined in that trace element, and τsi(meth)
to mean the name of the method associated with the ith element of trace τs.

1 For example, we may refactor some code to keep a list sorted for improved search performance. The
code of list would not be modified, but its state in the heap would be affected.

ICCSW’13

124 Refactoring Boundary

The equivalence relation ≈ over traces, τs, τs′, holds if the traces contain the same number
of elements, elements at the same position in the sequence are calls to methods with the same
identifier, there is a structure preserving bijection between the addresses in each trace, and
both traces have null at the same locations. Therefore, whenever τs≈ τs′ holds, whatever is
an alias in τs is an alias in τs′ and vice versa.

I Definition 4. The relation ≈ holds whenever two traces contain the same sequence of
method names, and when the aliasing structure of both traces is precisely the same.

≈β ⊆ Trace×Trace

τs≈β τs′ def⇐⇒ ∀i ∈ N, x ∈ Idv : (τsi(meth) = τs′
i(meth) ∧ β(τsi(x)) = τs′

i(x)) ∧
β(null) = null ∧ (∀a, a′ :β(a) = β(a′) =⇒ a = a′)

τs≈ τs′ def⇐⇒ ∃β : τs≈β τs′

5 Properties of Bounded modifications

In this section we describe some properties of executions when part has been picked such that
Definition 1 holds, i.e. Φm bounds the modification of interest. The usefulness of definition 1
is that it helps a programmer to reason about heaps, stacks and executions. We now describe
some properties of heaps, stacks and executions that follow from Lemma 3 and hold for
bounded modifications.

The structure of executions wrt. the partitioning is a sequence of execution steps in one
partition, followed by a sequence of execution steps in the other partition, then back to the
original partition, and so on in an interleaved fashion as shown in Figure 4.

Corollary 5 describes the sequences of states that the Φu partition reaches when execution
is in Φm. We write part(γ) to mean the partition of the object pointed to by the this pointer
of the topmost stack frame of state γ. Figure 4 illustrates the preservation of Φu heap
equivalence, when execution is in Φm, that the corollary describes. In particular, between
corresponding parts of the executions in Φm all of the heaps are equivalent wrt. the Φu

partition.

I Corollary 5. When Φm bounds the modification, every state with execution inside Φm

reachable with some trace in p, and every state reachable with some equivalent trace in q

have equivalent heaps wrt. Φu.

∀γ, γp, γq, τsp, τsq : init(γ) ∧ γ
τsp−→−→pγp ∧ γ

τsq−→−→qγq ∧ τsp≈ τsq ∧ part(γp) = Φm

=⇒ heap(γp) ≈Φu heap(γq)

Corollary 6 describes the sequences of states that the Φu partition reaches for execution in
Φu. We write τ−→p to mean a single execution step in program p that produces the non-empty
trace τ , and we write ε−→p to mean a single execution step in program p that produces an
empty trace. We use the equivalence γ ≈Φu γ′ to mean that the part of the heap consisting
only of objects in Φu and the topmost stack frames of γ and γ′ are isomorphic modulo
addresses. Figure 4 illustrates the lockstep equivalence wrt. Φu when execution is within Φu.

In particular, between corresponding parts of the executions in Φu, the same number
of steps are executed in p as q, and corresponding pairs of states are equivalent wrt. Φu.
Intuitively, the two executions proceed in lockstep for as long as execution remains in Φu.

I Corollary 6. When Φm bounds the modification, for every state reachable n steps after
entering Φu with some trace in p, there is an equivalent state wrt. Φu reachable n steps after

T. Wood and S. Drossopoulou 125

each entry to Φu that is reachable with an equivalent trace in q, provided that none of the n
steps in p crosses out of Φu.

∀γ, n, γp, γp1 . . . γpn, γq, γ′
q, τsp, τp, τsq, τ

′
q :∃γq1 . . . γqn :

init(γ) ∧ part(γp1) = Φu ∧ τsp · τp≈ τsq · τ q
γ
τsp−→−→pγp

τp−→p γp1
ε−→p ...

ε−→p γpn ∧ γ
τsq−→−→qγq

τq−→q γ
′
q

=⇒

γ′
q = γq1 ∧ γq1

ε−→q ...
ε−→q γqn ∧

n∧
i=1

γpi ≈Φu γqi

≈Φu ≈Φu ≈Φu ≈Φu

Φu Φm

≈Φu ≈Φu ≈Φu ≈Φu

Φu Φm

≈Φu ≈Φu ≈Φu ≈Φu

Φu

p γ

heap ≈Φu heap heap ≈Φu heap

q γ

≈Φu ≈Φu ≈Φu ≈Φu

Φu Φm

≈Φu ≈Φu ≈Φu ≈Φu

Φu Φm

≈Φu ≈Φu ≈Φu ≈Φu

Φu

p γ

heap ≈Φu heap heap ≈Φu heap

q γ

≈Φu ≈Φu ≈Φu ≈Φu

Φu Φm

≈Φu ≈Φu ≈Φu ≈Φu

Φu Φm

≈Φu ≈Φu ≈Φu ≈Φu

Φu

p γ

heap ≈Φu heap heap ≈Φu heap

q γ

Figure 4 Two executions from initial state γ are shown. The top execution is of program p and
the bottom execution is of q. The modification between p and q is assumed to be bounded by Φm.
The leftmost magnified area shows the step wise correspondence of execution steps when execution
is within Φu. The pairs of states are stepwise equivalent wrt. Φu, in accordance with Corollary 6.
The rightmost magnified area shows the preservation of heap equivalence wrt. Φu whilst execution is
in Φm, in accordance with Corollary 5.

6 Proof Sketch

We provide two auxiliary lemmas that support Lemma 3. Lemma 7 says that for as long as an
execution remains outside of a partition, it will not affect the state of any heap objects inside
of the partition. We write heap(γ)φ to mean the the heap of state γ with objects outside
φ deleted (leaving dangling pointers if necessary). We justify this lemma by noting that:
privacy of fields prevents manipulation of the state of a partition unless the this pointer is
pointing inside that partition; entering the partition would cause the trace to be non-empty.

I Lemma 7. As long as the execution is outside the partition the heap inside the partition
is preserved.

∀p, γ, γ′, φ : γ ε−→−→pγ
′ ∧ part(γ) 6= φ =⇒ heap(γ)φ = heap(γ′)φ

Lemma 8 says that the behaviour of an execution while it is in a partition φ is not affected
by the state of the heap outside of that partition. We write γφ to mean the state which
is the same as γ, but with any objects not in φ deleted from the heap. In particular that,
unless execution leaves φ, the heap inside the partition will reach the same heap states wrt.
the partition dependent only on the state inside the partition. We justify this lemma by
noting that: field privacy prevents observation of the state of a partition unless execution is

ICCSW’13

126 Refactoring Boundary

in the partition; execution is deterministic; and the continuations of γ and γφ are the same.
Therefore, only the aliasing structure of pointers inside the partition (including those that
point out of the partition), and the code of the classes of objects inside the partition, affects
the execution inside the partition.

I Lemma 8. The state of the heap outside a partition does not affect execution inside the
partition. In particular, if all the objects outside of the partition φ were deleted from the
heap, execution will still reach equal states wrt. φ as long as execution does not leave φ.

∀p, φ, γ, γ′∃γ′′ : part(γ) = φ ∧ γ
ε−→−→pγ

′ =⇒ γφ
ε−→−→pγ

′′ ∧ γ′
φ = γ′′

7 Conclusion

We have argued that information about aliasing in partition crossing calls is sufficient to check
the propagation of heap effects between areas of the heap. We have presented a definition
of what it means for the heap effect of a program modification to be contained within a
programmer defined heap partition.

We intend to continue this work by performing a proof of the lemmas given in this paper.
We will then try to extend this work to characterise program modifications that are not
behaviour preserving.

References
1 Fabian Bannwart and Peter Müller. Changing programs correctly: Refactoring with spe-

cifications. FM 2006: Formal Methods, pages 492–507, 2006.
2 Ran Ettinger. Program sliding. In James Noble, editor, ECOOP 2012 Object-Oriented

Programming, volume 7313 of Lecture Notes in Computer Science, pages 713–737. Springer
Berlin Heidelberg, 2012.

3 B. Godlin and O. Strichman. Regression verification. In Design Automation Conference,
2009. DAC ’09. 46th ACM/IEEE, pages 466 –471, july 2009.

4 Chris Hawblitzel, Ming Kawaguchi, Shuvendu K Lahiri, and Henrique Rebêlo. Towards
modularly comparing programs using automated theorem provers. International Confer-
ence on Automated Deduction, June 2013.

5 Kevin J. Hoffman, Patrick Eugster, and Suresh Jagannathan. Semantics-aware trace ana-
lysis. In Proceedings of the 2009 ACM SIGPLAN conference on Programming language
design and implementation, PLDI ’09, pages 453–464, New York, NY, USA, 2009. ACM.

6 Shuvendu Lahiri, Ken McMillan, Rahul Sharma, and Chris Hawblitzel. Differential asser-
tion checking. In Foundations of Software Engineering. ACM, 2013.

7 Leonardo Mariani, Fabrizio Pastore, and Mauro Pezze. Dynamic analysis for diagnosing
integration faults. IEEE Trans. Softw. Eng., 37(4):486–508, July 2011.

8 Ivan Moore. Automatic inheritance hierarchy restructuring and method refactoring. In
ACM SIGPLAN Notices, volume 31, pages 235–250. ACM, 1996.

9 David Naumann and Anindya Banerjee. State based encapsulation for modular reasoning
about behaviour-preserving refactorings. In Dave Clarke, James Noble, and Tobias Wrig-
stad, editors, Aliasing in Object-oriented Programming. Springer State-of-the-art Surveys,
2012.

10 William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, 1992.
11 Javier Perez, Yania Crespo, Berthold Hoffmann, and Tom Mens. A case study to evaluate

the suitability of graph transformation tools for program refactoring. Software Tools for
Technology Transfer - Special Section on GraBaTs 08, 12(3-4):183–199, 2009. (c) Springer,
2009.

T. Wood and S. Drossopoulou 127

12 Max Schäfer, Mathieu Verbaere, Torbjörn Ekman, and Oege Moor. Stepping stones over
the refactoring rubicon. In Proceedings of the 23rd European Conference on ECOOP 2009
— Object-Oriented Programming, Genoa, pages 369–393, Berlin, Heidelberg, 2009. Springer-
Verlag.

13 Yannick Welsch and Arnd Poetzsch-Heffter. Verifying backwards compatibility of object-
oriented libraries using boogie. In Proceedings of the 14th Workshop on Formal Techniques
for Java-like Programs, FTfJP ’12, pages 35–41, New York, NY, USA, 2012. ACM.

ICCSW’13

	Introduction
	Bounded Effect
	Trace Equivalence
	Partitions and Traces
	Properties of Bounded modifications
	Proof Sketch
	Conclusion

