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Abstract
In the field of artificial intelligence (AI), the subdomain of knowledge representation (KR) has
the aim to represent, integrate, and exchange knowledge in order to do some reasoning about
the given information. During the last decades many different KR-languages were proposed for
a variety of certain applications with specific needs. The concept of a managed Multi-Context
System (mMCS) was introduced to provide adequate formal tools to interchange and integrate
knowledge between different KR-approaches. Another arising field of interest in computer sci-
ence is the design of online applications, which react directly to (possibly infinite) streams of
information. This paper presents a genuine approach to generalize mMCS for online applica-
tions with continuous streams of information. Our major goal is to find a good tradeoff between
expressiveness and computational complexity.
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1 Introduction

Research in the field of knowledge representation has originated a large variety of formats
and languages. To use those formal concepts a wealth of tools have emerged (e.g. databases,
ontologies, triple-stores, modal logics, temporal logics, nonmonotonic logics, logic programs
under nonmonotonic answer set semantics, . . . ). Those tools were designed for specific needs
of certain applications in mind. With the idea of a “connected world”, nowadays we do not
intend to divide information over different applications. It is desirable to have all information
available for every application if need be. To express all of this knowledge, represented in
specifically tailored languages, in a universal language would be too hard to achieve from
the point of view of complexity as well as the troubles arising from the translation of the
representations.

A second issue in current knowledge representation, which is already addressed in dif-
ferent fields of knowledge representation (e.g. stream data processing and querying [10, 9],
stream reasoning with answer set programming [6], forgetting in general [8, 5]), is the lack
of online usage of KR tools and formalisms. Most of the approaches only assume one-shot
computations, which is triggered by a user. This may be a specific request in the form of a
query to a computer. In practice there are many applications where knowledge is provided in
a constant flow of information and it is desired to reason over this knowledge in a continuous
manner.
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The concept of nonmonotonic Multi-Context Systems (MCS) [2] is a promising approach
to achieve a formalism which will not suffer from any of the two shortcomings of current
KR-languages. The problem of connecting divided knowledge was the motivation of MCS
and its successor [4]. In the following we want to generalize those mMCS to be reactive to
their environment.

The paper proceeds as follows. After providing some motivating examples for an applic-
ation of reactive managed Multi-Context Systems in Section 2, we will give an overview on
the necessary background regarding managed Multi-Context Systems in Section 3. Section
4 will then introduce the new reactive concepts as an extension to managed Multi-Context
Systems. A conclusion with possible future work and a discussion of related work concludes
the paper.

2 Motivation

In this section we want to describe one specific application, where a reactive version of MCS
would be beneficial. Although our new concept was intended to work for this special use-
case, the present approach provides a general and abstract formalism for the whole variety
of online-applications.

2.1 Assisted Living
In general we mean by Assisted Living some sort of intelligent apartment, which tries to
analyze the behavior of its inhabitants to support them in their daily living. To be more
precise, one application of Assisted Living could be the detection of emergencies that may
occur in the apartment. As an example imagine a kitchen with different sensors installed.
One severe emergency would be that the resident forgot to turn off the cooking stove.
Then the intelligent system should react accordingly and either turn it off by itself or by
giving an adequate reminder to the resident. Another example could be the detection of
an accident. In case one inhabitant had a heart attack or got injured badly, the intelligent
apartment should detect it and launch an appropriate emergency-measure (e.g. emergency
call). Another convenience-increasing action that could be taken by the apartment is to
detect whether the inhabitant wants to be disturbed or not (e.g. he is sleeping). Based
on this knowledge it could become handy to mute the mobile phone to avoid an unwanted
interruption. But it would be wise to enable the sound again if someone important is calling
or the alarm clock wants to awake the inhabitant. These examples are only few possibilities
and they may be extended by additional interaction of the apartment (e.g. by giving it access
to robots and similar mechanics).

2.2 Realization
The above described apartment may be realized by the installation of different sensors in
each room. Some possibilities would be: cameras, microphones, pressure plates, thermostats,
and power meters. Each of these sensors will provide a constant flow of information (i.e. a
stream). For one apartment an intelligent agent will reason about these streams and conclude
on the current behavior of the inhabitant (e.g. if the inhabitant is in the kitchen and the
cooking stove is on then he will cook something). Due to the high amount of information
given by the stream of each sensor, it is now desirable to get some preprocessing done by the
sensors before they send their information to the agent (e.g. the camera detects movement
or identifies objects). To get more sophisticated information it is now imaginable to group
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a set of sensors to an own agent with its own reasoning (e.g. all sensors in the kitchen,
all sensors that track movement, . . . ). Then it is the task for the apartment-agent to find
reasonable conclusions based on the information delivered by the different sensors/agents.
Those conclusions can be the current activity of one inhabitant and the appropriate reactions
by the agent itself. Due to the possibility of wrong sensor-data, previously drawn conclusions
which are refuted, and other inconsistencies/conflicts between the different streams, it is
now important to find some kind of equilibria between those agents in a similar way as it is
described for Multi-Context Systems [3, 4, 1].

In addition, the agent may encounter many situations with exceptions. One example
could be that an inhabitant is cooking and during the waiting time he goes to the restroom.
In this case the apartment would not be asked for detecting an emergency. It may also not
be an emergency if the inhabitant is going to watch television during the cooking time. But
it is an emergency situation if he falls asleep during watching television and will not awake
when the meal is done.

3 Background

In this section we will present the already existing definitions for managed Multi-Context
Systems (mMCS) [4]. Intuitively, the management extension of MCS changes the bridge
rules of the MCS in such a way, that the head of the bridge rule is an arbitrary operator. At
first we need to define a logic suite, which allows dynamic changes of the context semantics.

I Definition 1. A logic suite LS = (BSLS ,KBLS ,ACCLS) consists of the set BSLS of
possible belief sets, the set KBLS of well-formed knowledge-bases, and a nonempty set
ACCLS of possible semantics of LS, i.e. ACCLS ∈ ACCLS implies ACCLS : KBLS → 2BSLS .

Each logic suite LS has a set of formulas FLS = {s ∈ kb | kb ∈ KBLS} which represent
all formulas occurring in its knowledge base. To describe which operators are allowed, we
use a management base OP , which is a set of operation names. For each logic suite LS

and management base OP , let F OP
LS = {o(s) | o ∈ OP, s ∈ FLS} be the set of operational

statements which can be built from OP and FLS . The semantics of statements in F OP
LS is

defined in terms of a management function. It allows to modify formulas in a context (e.g.
by addition, removal, . . . ) as well as any desired operation to be applied on a formula or a
context.

I Definition 2. A management function over a logic suite LS and a management base OP

is a function mng : 2F OP
LS ×KBLS → 2KBLS×ACCLS \ {∅}.

I Definition 3. A managed Multi-Context System M is a collection (C1, . . . , Cn) of man-
aged contexts where, for 1 ≤ i ≤ n, each managed context Ci is a quintuple Ci =
(LSi, kbi, bri, OPi, mngi) such that

LSi = (BSLSi ,KBLSi ,ACCLSi) is a logic suite,
kbi ∈ KBLSi

is a knowledge base,
OPi is a management base,
bri is a set of bridge rules for Ci, with the form

opi ← (c1 : p1), . . . , (cj : pj), not(cj+1 : pj+1), . . . , not(cm : pm).

such that opi ∈ F OPi

LSi
and for all 1 ≤ k ≤ m there exists a context ck ∈ (C1, . . . , Cn)

such that pk ∈ S ∈ BSLSck
, and

mngi is a management function over LSi and OPi.

ICCSW’13
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For a bridge rule r ∈ bri we will use op(r) to denote the operator opi ∈ F OPi

LSi
and body(r)

denotes the set {(ck1 : pk1) | 1 ≤ k1 ≤ j} ∪ {not(ck2 : pk2) | j < k2 ≤ m}.
A belief state S = (S1, . . . , Sn) of M is a belief set for every context, i.e. Si ∈ BSLSi

. We
denote the set of applicable operations by appi(S) = {op(r) | r ∈ bri ∧ S |= body(r)}. The
term of equilibrium is used to define the semantics of an mMCS.

I Definition 4. Let M = (C1, . . . , Cn) be an mMCS. A belief state S = (S1, . . . , Sn) is an
equilibrium of M iff for every 1 ≤ i ≤ n there exists some (kb′i, ACCLSi) ∈ mngi(appi(S), kbi)
such that Si ∈ ACCLSi

(kb′i).

4 Reactive Managed Multi-Context Systems

In the following we will present different approaches to a reactive managed Multi-Context
System. At first we will try to get a generalization of the already existing approach of
managed Multi-Context Systems. Afterwards we will propose a less complex approach for
faster reactions to incoming information. Finally we will combine both variants to gain a
solution which benefits from both approaches.

4.1 Preference-Based Iterative Managed Multi-Context System
This part will sketch what needs to be added to the current approach of mMCS to make
it suitable for the previously given applications. We have chosen a similar approach to the
reactive concept as it was applied by Schaub et al. [6, 7] for their Answer Set Programming-
Solver. So we will manipulate our knowledge bases iteratively, based on the current equilibria
which may take different input stream information into account. Therefore we will refer to
it as an iterative managed Multi-Context System (imMCS). For easier recognition of the
different tasks, we will introduce different types of contexts. We will need at least three of
them:

observing contexts: these contexts are connected via sensors to the outside world and
obtain new information constantly.
reasoning contexts: these contexts are internal modules. It is important that those are
not connected to sensors and so they do rely on the information given by other contexts.
They are responsible to interpret the different observations and determine what is going
on, i.e. are things working properly, does an action need to be taken.
control contexts: this context has the role to do some kind of meta-reasoning for the
imMCS. Its role is to:
1. set sliding windows for other contexts1,
2. set inconsistency handling policies (e.g. take sensor reliability into account in case of

inconsistencies),
3. set the used semantics and reasoning modes,
4. determine necessary actions2 (e.g. start an alarm), and
5. decide which contexts need to re-reason (e.g. after a change done by the control

context) or which context shall be idle.
To model the dynamic development of equilibria over time, we introduce the notion of a
run of an mMCS. Intuitively a run describes the provided knowledge and the computed
equilibria at a given time.

1 Reactive reasoning mechanisms use sliding windows to handle possibly infinite streams (c.f. [6]).
2 It would be reasonable to use such control contexts as the way to communicate with the real world
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I Definition 5. Let M be a managed MCS with contexts C = (C1, . . . , Cn) (C1, . . . , Ck are
observer contexts). Let Obs = (Obs0, Obs1, . . .) be a sequence of observations, that is, for
j ≥ 0, Obsj = (Obsj

i )i≤k, where Obsj
i is the new (sensor) information for context i at step

j, which is formalized as sets of formulas. A run R of M induced by Obs is a sequence

R = Kb0, Eq0, Kb1, Eq1, . . .

where
Kb0 = (Kb0

i )i≤n is the collection of initial knowledge bases, Eq0 an equilibrium of Kb0,
for j ≥ 1 and i ≤ n, Kbj

i is the knowledge base of context Ci produced by the context’s
management function for the computation of Eqj−1, and Kbj = (Kbj

i )i≤n,
for j ≥ 1, Eqj is an equilibrium for the knowledge bases

(Kbj
0 ∪Obsj

0, . . . , Kbj
k ∪Obsj

k, Kbj
k+1, . . . , Kbj

n).

We call M ′ = (C, Obs) an iterative managed MCS (imMCS).

Note that there may be more than one equilibrium, which would lead to different knowledge
bases at the next step of the run. To avoid this multiplication of underlying knowledge, we
need to introduce a method to reduce the number of possible equilibria. For this task there
are different possible approaches:
1. usage of brave and cautious reasoning methods3 for the selection of the applicable oper-

ations on the contexts.
2. preferences over the bridge rules to get a preferred equilibrium.
In general it may lead to side effects when using brave reasoning for the selection of applicable
operations. For example one equilibrium may add a positive literal to a knowledge base,
while another equilibrium would add the negated literal. That would lead obviously to
an inconsistency although both equilibria were consistent. On the other hand cautious
reasoning may lead to a situation where some crucial consistency preserving operations may
be missing (c.f. Example 6).

I Example 6. Let Kb0
1 be an initial knowledge base in an imMCS M ′. The operation insert

(resp. revoke) adds (resp. removes) formulas to (resp. from) the knowledge base. Suppose
the negated literals ¬a and ¬b are both in Kb0

1. The computation of the equilibria results in
two sets of belief states {Eq0

1 , Eq0
2} = Eq0, where app1(Eq0

1) = {revoke(¬a), insert(a ∨ b)}
and app1(Eq0

2) = {revoke(¬b), insert(a ∨ b)}. With cautious reasoning only the operation
insert(a ∨ b) would be executed, which would result in an inconsistent knowledge base.

To ensure that only one equilibrium remains, we will introduce the preference function pref i.
Each context provides this function, which takes the set of equilibria and returns a strict
total order over them. In addition the whole Multi-Context System provides the preference
function pref, which takes the total orderings and returns one unique equilibrium.
I Definition 7. Let M = (C, Obs) be an imMCS and EQ be a set of equilibria. Mp =
(C, Obs, pref) is a preference based imMCS (pimMCS) where

each context Ci has a function prefi : EQ → total(EQ), where
total(EQ) = {R ⊆ EQ × EQ | R is strictly totally ordered} to associate a strict total
ordering of equilibria to each context, and
the function pref : (pref1(EQ), . . . , prefn(EQ)) 7→ Eq returns exactly one equilibrium
Eq ∈ EQ.

3 Intuitively, given alternative sets of beliefs, for brave reasoning it is sufficient that one belief set supports
a conclusion, while cautious reasoning requires that each belief set supports a conclusion

ICCSW’13
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Intuitively, each context propagates its most appreciated equilibria. Afterwards the Multi-
Context System determines the "best" fitting equilibrium. Note that at this point we do
not intend to give a semantic definition for those two functions. How these equilibria are
ordered and how the equilibrium is selected remains adjustable to the specific instance of
the Multi-Context System.

4.2 Reactive Bridge Rules
In general the computation of equilibria is expensive [4]. It was shown that the identifica-
tion of a global equilibria is always one level higher on the polynomial hierarchy than the
computation of belief sets of the context with the hardest problem. Due to this potentially
high amount of computation time, we present another approach, which will not utilize the
concept of global equilibria. The intuitive idea behind our Reactive Bridge Rules (RBR) is
to provide rules to add supplementary information to the input stream of another reactive
context. These rules are evalutated over the belief sets of the different contexts. To control
how "informative" one of those rules is, it can be specified for each rule whether its literals
need to occur in one or every belief set of the context.

I Definition 8. A Reactive Bridge Rule (RBR) r for a context Ci of a collection of n contexts
is a rule of the form

t, j : h← b1, . . . , bk, not bk+1, . . . , not bm

where
t ∈ {b, c} specifies whether the literals need to be evaluated bravely or cautiously,
j ≤ n specifies which context will be provided with additional information,
h is some information which may be added to the input stream of Cj , and
for l ≤ m, bl is a literal.

We will denote the body of one RBR r as body(r), all positive literals bl, where l ≤ k as
b+(r), and all negated literals bl, where k < l ≤ m as b−(r). Based on the given evaluation
mode of the rule, there are different semantics to be applied to the rule. Note that it is
obligatory for each context that it has an input stream.

IDefinition 9. Let r be an RBR of a context Ci, ACCLSi
∈ ACCLSi

be a selected semantics,
and S = {S1 . . . , Sj} be the belief sets of Ci at the step t, such that S = ACCLSi

(kbt
i), where

kbt
i is the knowledge base of context Ci at step t.
If r is a cautious RBR, it is satisfied if ∀B∈S(b+(r) ⊆ B ∧ b−(r) ∩B = ∅).
If r is a brave RBR, it is satisfied if ∃B∈S(b+(r) ⊆ B ∧ b−(r) ∩B = ∅).

If a rule r is satisfied, then h will be added to the input stream of the context Cj at step
t + 1.

We will writeRBRj
i to denote the set of added information to the input stream of context i at

step j+1, based on the belief sets of step j. Intuitively a RBR wants to inform other contexts
of the outcome of different conclusions drawn by a context, based on its observations. The
two types of rules were chosen to distinguish between possible conclusions which may be very
important and those conclusions which can be drawn safely. In our assisted living scenario
there may be events which are more critical than others. For example the possibility of an
emergency should be considered as soon as possible, even if it is not assured in every belief
set of a context. On the other hand some conclusions may not be neccessary to be forwarded
to another context. One example could be the control of the door lock. The door should
only open for visitors if every belief set is sure that the person may enter the assisted living
environment.
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4.3 Combination Of Both Concepts
The two newly introduced concepts have their advantages and disadvantages. The pimMCS
do compute equilibria and therefore it is required that all involved contexts agree on a de-
cision. Alas, their computation is quite expensive. Thus it may happen that the computation
of an equilibrium takes very long compared to the intervals of newly arriving information
in the input streams. With infinite data streams in mind this is a serious issue. The use
of sliding windows will force that older, but probably important information is lost due to
its size. In case the window is extended automatically to be able to fit all new information
since the last equilibria-computation in the run, this memory will grow larger the longer
the computation takes. In addition a larger window may also increase the time effort of the
next computation of the equilibria, which is some kind of a vicious cycle.

On the other hand RBRs only need the belief sets of each context and there is no
need for any agreement on their conclusions and beliefs. This computation involves no
communication between the contexts and further it is not neccessary to find an equilibrium.
Of course the results are not as strong as an equilibrium, as there is no commonly acceptable
belief set of the problem and only local points of view about them.

Now we want to combine both approaches to achieve a Reactive Managed Multi-Context
System (rmMCS), which takes the advantages of both ideas and avoids their disadvantages.
In general it is desirable to get a formal system which computes equilibria on which decisions
are done. Our idea is to compute a run for a pimMCS, where each context has an input
stream. During the computation of an equilibrium each context can agree with, RBRs are
allowed to manipulate the input streams of the contexts. We also allow each context to
change its belief sets based on new stream information, such that another set of RBRs is
allowed to manipulate the streams further. Note that this manipulation and change of beliefs
shall not affect the computation of the equilibrium. Intuitively, it can be seen as a parallel
process.

I Definition 10. Let M be a preference based iterative managed MCS with contexts
C0, . . . , Cn, context-specific preferences pref0, . . . , prefn and a global preference pref . Let
Is = (Is0, Is1, . . .) be a sequence of input streams, that is, for j ≥ 0, Isj = (Isj

i )i≤n, where
Isj

i is the current input stream for context i at step j. Let f(Eqi) be a function that returns
the step where the computation of the equilibrium of step i finished, and RBR be a set of
reactive bridge rules. A run R of M induced by IS is a sequence

R = Kb0, Eq0, Kbf(Eq0), Eqf(Eq0), . . .

where
Kb0 = (Kb0

i )i≤n is the collection of initial knowledge bases, Eq0 an equilibrium of Kb0,
for i ≤ n, mIs0

i = Is0
i is the modified initial input stream,

for j ≥ 1 and i ≤ n, mIsj
i = Isj

i ∪RBR
j−1
i is the modified input stream at step j,

for j ≥ 0, Eqj is the preferred equilibrium at step j,
for j ≥ 1 and i ≤ n, Kbj

i is the knowledge base of context Ci produced by the context’s
management function for the computation of Eqk, such that f(Eqk) = j, and Kbj =
(Kbj

i )i≤n, and
for j ≥ 1, Eqj is an equilibrium for the knowledge bases

(Kbj
0 ∪mIsj

0, . . . , Kbj
n ∪mIsj

n).

We call M ′ = (M, Is, RBR) a reactive managed Multi-Context System.

ICCSW’13
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5 Conclusion & Future Work

In this paper we have presented two generalizations for managed Multi-Context Systems,
which can utilize streams containing information. We want to mention again that we had
stream reasoners, such as oclingo[6] as contexts in mind. However, the presented formalism
may work well with different approaches. Our goal with this new formalism is to provide a
framework where as many formalisms as possible may be used as contexts.

Intended future work is an instantiation of the formalism, to model the given application
of assisted living. In addition it will be necessary to investigate possible side effects of the
RBR with respect to the rmMCS. In this field there are also some questions which are
not answered in this paper (e.g. how should the preference functions be handled). Another
interesting field is in general the usage of other formalisms. Are there any undesired effects
if we use e.g. C-SPARQL [9]. Is it important to restrict our systems in any way to such
that their underlying contexts are not affected in an undesired way. Additionally it is open
on how to utilize KR formalisms and tools which do not support online reasoning. Is it
sufficient to provide some kind of reactive add-on, which communicates between a stream
and a one-shot offline formalism?
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